Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vonvolmbl Structured version   Visualization version   GIF version

Theorem vonvolmbl 44988
Description: A subset of Real numbers is Lebesgue measurable if and only if its corresponding 1-dimensional set is measurable w.r.t. the 1-dimensional Lebesgue measure. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
vonvolmbl.a (𝜑𝐴𝑉)
vonvolmbl.b (𝜑𝐵 ⊆ ℝ)
Assertion
Ref Expression
vonvolmbl (𝜑 → ((𝐵m {𝐴}) ∈ dom (voln‘{𝐴}) ↔ 𝐵 ∈ dom vol))

Proof of Theorem vonvolmbl
Dummy variables 𝑓 𝑥 𝑦 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3448 . . . . . . . . . . . . . 14 𝑦 ∈ V
21a1i 11 . . . . . . . . . . . . 13 (𝜑𝑦 ∈ V)
3 reex 11147 . . . . . . . . . . . . . . 15 ℝ ∈ V
43a1i 11 . . . . . . . . . . . . . 14 (𝜑 → ℝ ∈ V)
5 vonvolmbl.b . . . . . . . . . . . . . 14 (𝜑𝐵 ⊆ ℝ)
64, 5ssexd 5282 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ V)
7 snfi 8991 . . . . . . . . . . . . . . 15 {𝐴} ∈ Fin
87a1i 11 . . . . . . . . . . . . . 14 (𝜑 → {𝐴} ∈ Fin)
98elexd 3464 . . . . . . . . . . . . 13 (𝜑 → {𝐴} ∈ V)
102, 6, 9inmap 43517 . . . . . . . . . . . 12 (𝜑 → ((𝑦m {𝐴}) ∩ (𝐵m {𝐴})) = ((𝑦𝐵) ↑m {𝐴}))
1110eqcomd 2739 . . . . . . . . . . 11 (𝜑 → ((𝑦𝐵) ↑m {𝐴}) = ((𝑦m {𝐴}) ∩ (𝐵m {𝐴})))
1211fveq2d 6847 . . . . . . . . . 10 (𝜑 → ((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴})) = ((voln*‘{𝐴})‘((𝑦m {𝐴}) ∩ (𝐵m {𝐴}))))
13 vonvolmbl.a . . . . . . . . . . . . 13 (𝜑𝐴𝑉)
142, 6, 13difmapsn 43520 . . . . . . . . . . . 12 (𝜑 → ((𝑦m {𝐴}) ∖ (𝐵m {𝐴})) = ((𝑦𝐵) ↑m {𝐴}))
1514eqcomd 2739 . . . . . . . . . . 11 (𝜑 → ((𝑦𝐵) ↑m {𝐴}) = ((𝑦m {𝐴}) ∖ (𝐵m {𝐴})))
1615fveq2d 6847 . . . . . . . . . 10 (𝜑 → ((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴})) = ((voln*‘{𝐴})‘((𝑦m {𝐴}) ∖ (𝐵m {𝐴}))))
1712, 16oveq12d 7376 . . . . . . . . 9 (𝜑 → (((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴})) +𝑒 ((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴}))) = (((voln*‘{𝐴})‘((𝑦m {𝐴}) ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘((𝑦m {𝐴}) ∖ (𝐵m {𝐴})))))
1817ad2antrr 725 . . . . . . . 8 (((𝜑 ∧ ∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥)) ∧ 𝑦 ∈ 𝒫 ℝ) → (((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴})) +𝑒 ((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴}))) = (((voln*‘{𝐴})‘((𝑦m {𝐴}) ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘((𝑦m {𝐴}) ∖ (𝐵m {𝐴})))))
19 ovexd 7393 . . . . . . . . . . . 12 (𝑦 ∈ 𝒫 ℝ → (𝑦m {𝐴}) ∈ V)
203a1i 11 . . . . . . . . . . . . 13 (𝑦 ∈ 𝒫 ℝ → ℝ ∈ V)
21 elpwi 4568 . . . . . . . . . . . . 13 (𝑦 ∈ 𝒫 ℝ → 𝑦 ⊆ ℝ)
22 mapss 8830 . . . . . . . . . . . . 13 ((ℝ ∈ V ∧ 𝑦 ⊆ ℝ) → (𝑦m {𝐴}) ⊆ (ℝ ↑m {𝐴}))
2320, 21, 22syl2anc 585 . . . . . . . . . . . 12 (𝑦 ∈ 𝒫 ℝ → (𝑦m {𝐴}) ⊆ (ℝ ↑m {𝐴}))
2419, 23elpwd 4567 . . . . . . . . . . 11 (𝑦 ∈ 𝒫 ℝ → (𝑦m {𝐴}) ∈ 𝒫 (ℝ ↑m {𝐴}))
2524adantl 483 . . . . . . . . . 10 ((∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥) ∧ 𝑦 ∈ 𝒫 ℝ) → (𝑦m {𝐴}) ∈ 𝒫 (ℝ ↑m {𝐴}))
26 simpl 484 . . . . . . . . . 10 ((∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥) ∧ 𝑦 ∈ 𝒫 ℝ) → ∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥))
27 ineq1 4166 . . . . . . . . . . . . . 14 (𝑥 = (𝑦m {𝐴}) → (𝑥 ∩ (𝐵m {𝐴})) = ((𝑦m {𝐴}) ∩ (𝐵m {𝐴})))
2827fveq2d 6847 . . . . . . . . . . . . 13 (𝑥 = (𝑦m {𝐴}) → ((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) = ((voln*‘{𝐴})‘((𝑦m {𝐴}) ∩ (𝐵m {𝐴}))))
29 difeq1 4076 . . . . . . . . . . . . . 14 (𝑥 = (𝑦m {𝐴}) → (𝑥 ∖ (𝐵m {𝐴})) = ((𝑦m {𝐴}) ∖ (𝐵m {𝐴})))
3029fveq2d 6847 . . . . . . . . . . . . 13 (𝑥 = (𝑦m {𝐴}) → ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴}))) = ((voln*‘{𝐴})‘((𝑦m {𝐴}) ∖ (𝐵m {𝐴}))))
3128, 30oveq12d 7376 . . . . . . . . . . . 12 (𝑥 = (𝑦m {𝐴}) → (((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = (((voln*‘{𝐴})‘((𝑦m {𝐴}) ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘((𝑦m {𝐴}) ∖ (𝐵m {𝐴})))))
32 fveq2 6843 . . . . . . . . . . . 12 (𝑥 = (𝑦m {𝐴}) → ((voln*‘{𝐴})‘𝑥) = ((voln*‘{𝐴})‘(𝑦m {𝐴})))
3331, 32eqeq12d 2749 . . . . . . . . . . 11 (𝑥 = (𝑦m {𝐴}) → ((((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥) ↔ (((voln*‘{𝐴})‘((𝑦m {𝐴}) ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘((𝑦m {𝐴}) ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘(𝑦m {𝐴}))))
3433rspcva 3578 . . . . . . . . . 10 (((𝑦m {𝐴}) ∈ 𝒫 (ℝ ↑m {𝐴}) ∧ ∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥)) → (((voln*‘{𝐴})‘((𝑦m {𝐴}) ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘((𝑦m {𝐴}) ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘(𝑦m {𝐴})))
3525, 26, 34syl2anc 585 . . . . . . . . 9 ((∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥) ∧ 𝑦 ∈ 𝒫 ℝ) → (((voln*‘{𝐴})‘((𝑦m {𝐴}) ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘((𝑦m {𝐴}) ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘(𝑦m {𝐴})))
3635adantll 713 . . . . . . . 8 (((𝜑 ∧ ∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥)) ∧ 𝑦 ∈ 𝒫 ℝ) → (((voln*‘{𝐴})‘((𝑦m {𝐴}) ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘((𝑦m {𝐴}) ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘(𝑦m {𝐴})))
37 eqidd 2734 . . . . . . . 8 (((𝜑 ∧ ∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥)) ∧ 𝑦 ∈ 𝒫 ℝ) → ((voln*‘{𝐴})‘(𝑦m {𝐴})) = ((voln*‘{𝐴})‘(𝑦m {𝐴})))
3818, 36, 373eqtrd 2777 . . . . . . 7 (((𝜑 ∧ ∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥)) ∧ 𝑦 ∈ 𝒫 ℝ) → (((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴})) +𝑒 ((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴}))) = ((voln*‘{𝐴})‘(𝑦m {𝐴})))
3938eqcomd 2739 . . . . . 6 (((𝜑 ∧ ∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥)) ∧ 𝑦 ∈ 𝒫 ℝ) → ((voln*‘{𝐴})‘(𝑦m {𝐴})) = (((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴})) +𝑒 ((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴}))))
4013adantr 482 . . . . . . . 8 ((𝜑𝑦 ∈ 𝒫 ℝ) → 𝐴𝑉)
4121adantl 483 . . . . . . . 8 ((𝜑𝑦 ∈ 𝒫 ℝ) → 𝑦 ⊆ ℝ)
4240, 41ovnovol 44986 . . . . . . 7 ((𝜑𝑦 ∈ 𝒫 ℝ) → ((voln*‘{𝐴})‘(𝑦m {𝐴})) = (vol*‘𝑦))
4342adantlr 714 . . . . . 6 (((𝜑 ∧ ∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥)) ∧ 𝑦 ∈ 𝒫 ℝ) → ((voln*‘{𝐴})‘(𝑦m {𝐴})) = (vol*‘𝑦))
4441ssinss1d 43344 . . . . . . . . 9 ((𝜑𝑦 ∈ 𝒫 ℝ) → (𝑦𝐵) ⊆ ℝ)
4540, 44ovnovol 44986 . . . . . . . 8 ((𝜑𝑦 ∈ 𝒫 ℝ) → ((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴})) = (vol*‘(𝑦𝐵)))
4641ssdifssd 4103 . . . . . . . . 9 ((𝜑𝑦 ∈ 𝒫 ℝ) → (𝑦𝐵) ⊆ ℝ)
4740, 46ovnovol 44986 . . . . . . . 8 ((𝜑𝑦 ∈ 𝒫 ℝ) → ((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴})) = (vol*‘(𝑦𝐵)))
4845, 47oveq12d 7376 . . . . . . 7 ((𝜑𝑦 ∈ 𝒫 ℝ) → (((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴})) +𝑒 ((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴}))) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵))))
4948adantlr 714 . . . . . 6 (((𝜑 ∧ ∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥)) ∧ 𝑦 ∈ 𝒫 ℝ) → (((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴})) +𝑒 ((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴}))) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵))))
5039, 43, 493eqtr3d 2781 . . . . 5 (((𝜑 ∧ ∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥)) ∧ 𝑦 ∈ 𝒫 ℝ) → (vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵))))
5150ralrimiva 3140 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥)) → ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵))))
5251ex 414 . . 3 (𝜑 → (∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥) → ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵)))))
5313ad2antrr 725 . . . . . 6 (((𝜑 ∧ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵)))) ∧ 𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})) → 𝐴𝑉)
545ad2antrr 725 . . . . . 6 (((𝜑 ∧ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵)))) ∧ 𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})) → 𝐵 ⊆ ℝ)
55 simplr 768 . . . . . 6 (((𝜑 ∧ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵)))) ∧ 𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})) → ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵))))
56 elpwi 4568 . . . . . . 7 (𝑥 ∈ 𝒫 (ℝ ↑m {𝐴}) → 𝑥 ⊆ (ℝ ↑m {𝐴}))
5756adantl 483 . . . . . 6 (((𝜑 ∧ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵)))) ∧ 𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})) → 𝑥 ⊆ (ℝ ↑m {𝐴}))
58 rneq 5892 . . . . . . 7 (𝑔 = 𝑓 → ran 𝑔 = ran 𝑓)
5958cbviunv 5001 . . . . . 6 𝑔𝑥 ran 𝑔 = 𝑓𝑥 ran 𝑓
6053, 54, 55, 57, 59vonvolmbllem 44987 . . . . 5 (((𝜑 ∧ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵)))) ∧ 𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})) → (((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥))
6160ralrimiva 3140 . . . 4 ((𝜑 ∧ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵)))) → ∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥))
6261ex 414 . . 3 (𝜑 → (∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵))) → ∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥)))
6352, 62impbid 211 . 2 (𝜑 → (∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥) ↔ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵)))))
64 mapss 8830 . . . 4 ((ℝ ∈ V ∧ 𝐵 ⊆ ℝ) → (𝐵m {𝐴}) ⊆ (ℝ ↑m {𝐴}))
654, 5, 64syl2anc 585 . . 3 (𝜑 → (𝐵m {𝐴}) ⊆ (ℝ ↑m {𝐴}))
668isvonmbl 44965 . . 3 (𝜑 → ((𝐵m {𝐴}) ∈ dom (voln‘{𝐴}) ↔ ((𝐵m {𝐴}) ⊆ (ℝ ↑m {𝐴}) ∧ ∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥))))
6765, 66mpbirand 706 . 2 (𝜑 → ((𝐵m {𝐴}) ∈ dom (voln‘{𝐴}) ↔ ∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥)))
68 ismbl4 44320 . . . 4 (𝐵 ∈ dom vol ↔ (𝐵 ⊆ ℝ ∧ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵)))))
6968a1i 11 . . 3 (𝜑 → (𝐵 ∈ dom vol ↔ (𝐵 ⊆ ℝ ∧ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵))))))
705, 69mpbirand 706 . 2 (𝜑 → (𝐵 ∈ dom vol ↔ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵)))))
7163, 67, 703bitr4d 311 1 (𝜑 → ((𝐵m {𝐴}) ∈ dom (voln‘{𝐴}) ↔ 𝐵 ∈ dom vol))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wral 3061  Vcvv 3444  cdif 3908  cin 3910  wss 3911  𝒫 cpw 4561  {csn 4587   ciun 4955  dom cdm 5634  ran crn 5635  cfv 6497  (class class class)co 7358  m cmap 8768  Fincfn 8886  cr 11055   +𝑒 cxad 13036  vol*covol 24842  volcvol 24843  voln*covoln 44863  volncvoln 44865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-inf2 9582  ax-cc 10376  ax-ac2 10404  ax-cnex 11112  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132  ax-pre-mulgt0 11133  ax-pre-sup 11134  ax-addf 11135  ax-mulf 11136
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-tp 4592  df-op 4594  df-uni 4867  df-int 4909  df-iun 4957  df-disj 5072  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-se 5590  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-isom 6506  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-of 7618  df-om 7804  df-1st 7922  df-2nd 7923  df-tpos 8158  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-1o 8413  df-2o 8414  df-er 8651  df-map 8770  df-pm 8771  df-ixp 8839  df-en 8887  df-dom 8888  df-sdom 8889  df-fin 8890  df-fi 9352  df-sup 9383  df-inf 9384  df-oi 9451  df-dju 9842  df-card 9880  df-acn 9883  df-ac 10057  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200  df-sub 11392  df-neg 11393  df-div 11818  df-nn 12159  df-2 12221  df-3 12222  df-4 12223  df-5 12224  df-6 12225  df-7 12226  df-8 12227  df-9 12228  df-n0 12419  df-z 12505  df-dec 12624  df-uz 12769  df-q 12879  df-rp 12921  df-xneg 13038  df-xadd 13039  df-xmul 13040  df-ioo 13274  df-ico 13276  df-icc 13277  df-fz 13431  df-fzo 13574  df-fl 13703  df-seq 13913  df-exp 13974  df-hash 14237  df-cj 14990  df-re 14991  df-im 14992  df-sqrt 15126  df-abs 15127  df-clim 15376  df-rlim 15377  df-sum 15577  df-prod 15794  df-struct 17024  df-sets 17041  df-slot 17059  df-ndx 17071  df-base 17089  df-ress 17118  df-plusg 17151  df-mulr 17152  df-starv 17153  df-tset 17157  df-ple 17158  df-ds 17160  df-unif 17161  df-rest 17309  df-0g 17328  df-topgen 17330  df-mgm 18502  df-sgrp 18551  df-mnd 18562  df-grp 18756  df-minusg 18757  df-subg 18930  df-cmn 19569  df-abl 19570  df-mgp 19902  df-ur 19919  df-ring 19971  df-cring 19972  df-oppr 20054  df-dvdsr 20075  df-unit 20076  df-invr 20106  df-dvr 20117  df-drng 20199  df-psmet 20804  df-xmet 20805  df-met 20806  df-bl 20807  df-mopn 20808  df-cnfld 20813  df-top 22259  df-topon 22276  df-bases 22312  df-cmp 22754  df-ovol 24844  df-vol 24845  df-sumge0 44690  df-ome 44817  df-caragen 44819  df-ovoln 44864  df-voln 44866
This theorem is referenced by:  vonvol  44989  vonvolmbl2  44990  vonvol2  44991
  Copyright terms: Public domain W3C validator