Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vonvolmbl Structured version   Visualization version   GIF version

Theorem vonvolmbl 45675
Description: A subset of Real numbers is Lebesgue measurable if and only if its corresponding 1-dimensional set is measurable w.r.t. the 1-dimensional Lebesgue measure. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
vonvolmbl.a (𝜑𝐴𝑉)
vonvolmbl.b (𝜑𝐵 ⊆ ℝ)
Assertion
Ref Expression
vonvolmbl (𝜑 → ((𝐵m {𝐴}) ∈ dom (voln‘{𝐴}) ↔ 𝐵 ∈ dom vol))

Proof of Theorem vonvolmbl
Dummy variables 𝑓 𝑥 𝑦 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3476 . . . . . . . . . . . . . 14 𝑦 ∈ V
21a1i 11 . . . . . . . . . . . . 13 (𝜑𝑦 ∈ V)
3 reex 11203 . . . . . . . . . . . . . . 15 ℝ ∈ V
43a1i 11 . . . . . . . . . . . . . 14 (𝜑 → ℝ ∈ V)
5 vonvolmbl.b . . . . . . . . . . . . . 14 (𝜑𝐵 ⊆ ℝ)
64, 5ssexd 5323 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ V)
7 snfi 9046 . . . . . . . . . . . . . . 15 {𝐴} ∈ Fin
87a1i 11 . . . . . . . . . . . . . 14 (𝜑 → {𝐴} ∈ Fin)
98elexd 3493 . . . . . . . . . . . . 13 (𝜑 → {𝐴} ∈ V)
102, 6, 9inmap 44206 . . . . . . . . . . . 12 (𝜑 → ((𝑦m {𝐴}) ∩ (𝐵m {𝐴})) = ((𝑦𝐵) ↑m {𝐴}))
1110eqcomd 2736 . . . . . . . . . . 11 (𝜑 → ((𝑦𝐵) ↑m {𝐴}) = ((𝑦m {𝐴}) ∩ (𝐵m {𝐴})))
1211fveq2d 6894 . . . . . . . . . 10 (𝜑 → ((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴})) = ((voln*‘{𝐴})‘((𝑦m {𝐴}) ∩ (𝐵m {𝐴}))))
13 vonvolmbl.a . . . . . . . . . . . . 13 (𝜑𝐴𝑉)
142, 6, 13difmapsn 44209 . . . . . . . . . . . 12 (𝜑 → ((𝑦m {𝐴}) ∖ (𝐵m {𝐴})) = ((𝑦𝐵) ↑m {𝐴}))
1514eqcomd 2736 . . . . . . . . . . 11 (𝜑 → ((𝑦𝐵) ↑m {𝐴}) = ((𝑦m {𝐴}) ∖ (𝐵m {𝐴})))
1615fveq2d 6894 . . . . . . . . . 10 (𝜑 → ((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴})) = ((voln*‘{𝐴})‘((𝑦m {𝐴}) ∖ (𝐵m {𝐴}))))
1712, 16oveq12d 7429 . . . . . . . . 9 (𝜑 → (((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴})) +𝑒 ((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴}))) = (((voln*‘{𝐴})‘((𝑦m {𝐴}) ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘((𝑦m {𝐴}) ∖ (𝐵m {𝐴})))))
1817ad2antrr 722 . . . . . . . 8 (((𝜑 ∧ ∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥)) ∧ 𝑦 ∈ 𝒫 ℝ) → (((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴})) +𝑒 ((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴}))) = (((voln*‘{𝐴})‘((𝑦m {𝐴}) ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘((𝑦m {𝐴}) ∖ (𝐵m {𝐴})))))
19 ovexd 7446 . . . . . . . . . . . 12 (𝑦 ∈ 𝒫 ℝ → (𝑦m {𝐴}) ∈ V)
203a1i 11 . . . . . . . . . . . . 13 (𝑦 ∈ 𝒫 ℝ → ℝ ∈ V)
21 elpwi 4608 . . . . . . . . . . . . 13 (𝑦 ∈ 𝒫 ℝ → 𝑦 ⊆ ℝ)
22 mapss 8885 . . . . . . . . . . . . 13 ((ℝ ∈ V ∧ 𝑦 ⊆ ℝ) → (𝑦m {𝐴}) ⊆ (ℝ ↑m {𝐴}))
2320, 21, 22syl2anc 582 . . . . . . . . . . . 12 (𝑦 ∈ 𝒫 ℝ → (𝑦m {𝐴}) ⊆ (ℝ ↑m {𝐴}))
2419, 23elpwd 4607 . . . . . . . . . . 11 (𝑦 ∈ 𝒫 ℝ → (𝑦m {𝐴}) ∈ 𝒫 (ℝ ↑m {𝐴}))
2524adantl 480 . . . . . . . . . 10 ((∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥) ∧ 𝑦 ∈ 𝒫 ℝ) → (𝑦m {𝐴}) ∈ 𝒫 (ℝ ↑m {𝐴}))
26 simpl 481 . . . . . . . . . 10 ((∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥) ∧ 𝑦 ∈ 𝒫 ℝ) → ∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥))
27 ineq1 4204 . . . . . . . . . . . . . 14 (𝑥 = (𝑦m {𝐴}) → (𝑥 ∩ (𝐵m {𝐴})) = ((𝑦m {𝐴}) ∩ (𝐵m {𝐴})))
2827fveq2d 6894 . . . . . . . . . . . . 13 (𝑥 = (𝑦m {𝐴}) → ((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) = ((voln*‘{𝐴})‘((𝑦m {𝐴}) ∩ (𝐵m {𝐴}))))
29 difeq1 4114 . . . . . . . . . . . . . 14 (𝑥 = (𝑦m {𝐴}) → (𝑥 ∖ (𝐵m {𝐴})) = ((𝑦m {𝐴}) ∖ (𝐵m {𝐴})))
3029fveq2d 6894 . . . . . . . . . . . . 13 (𝑥 = (𝑦m {𝐴}) → ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴}))) = ((voln*‘{𝐴})‘((𝑦m {𝐴}) ∖ (𝐵m {𝐴}))))
3128, 30oveq12d 7429 . . . . . . . . . . . 12 (𝑥 = (𝑦m {𝐴}) → (((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = (((voln*‘{𝐴})‘((𝑦m {𝐴}) ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘((𝑦m {𝐴}) ∖ (𝐵m {𝐴})))))
32 fveq2 6890 . . . . . . . . . . . 12 (𝑥 = (𝑦m {𝐴}) → ((voln*‘{𝐴})‘𝑥) = ((voln*‘{𝐴})‘(𝑦m {𝐴})))
3331, 32eqeq12d 2746 . . . . . . . . . . 11 (𝑥 = (𝑦m {𝐴}) → ((((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥) ↔ (((voln*‘{𝐴})‘((𝑦m {𝐴}) ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘((𝑦m {𝐴}) ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘(𝑦m {𝐴}))))
3433rspcva 3609 . . . . . . . . . 10 (((𝑦m {𝐴}) ∈ 𝒫 (ℝ ↑m {𝐴}) ∧ ∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥)) → (((voln*‘{𝐴})‘((𝑦m {𝐴}) ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘((𝑦m {𝐴}) ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘(𝑦m {𝐴})))
3525, 26, 34syl2anc 582 . . . . . . . . 9 ((∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥) ∧ 𝑦 ∈ 𝒫 ℝ) → (((voln*‘{𝐴})‘((𝑦m {𝐴}) ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘((𝑦m {𝐴}) ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘(𝑦m {𝐴})))
3635adantll 710 . . . . . . . 8 (((𝜑 ∧ ∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥)) ∧ 𝑦 ∈ 𝒫 ℝ) → (((voln*‘{𝐴})‘((𝑦m {𝐴}) ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘((𝑦m {𝐴}) ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘(𝑦m {𝐴})))
37 eqidd 2731 . . . . . . . 8 (((𝜑 ∧ ∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥)) ∧ 𝑦 ∈ 𝒫 ℝ) → ((voln*‘{𝐴})‘(𝑦m {𝐴})) = ((voln*‘{𝐴})‘(𝑦m {𝐴})))
3818, 36, 373eqtrd 2774 . . . . . . 7 (((𝜑 ∧ ∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥)) ∧ 𝑦 ∈ 𝒫 ℝ) → (((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴})) +𝑒 ((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴}))) = ((voln*‘{𝐴})‘(𝑦m {𝐴})))
3938eqcomd 2736 . . . . . 6 (((𝜑 ∧ ∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥)) ∧ 𝑦 ∈ 𝒫 ℝ) → ((voln*‘{𝐴})‘(𝑦m {𝐴})) = (((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴})) +𝑒 ((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴}))))
4013adantr 479 . . . . . . . 8 ((𝜑𝑦 ∈ 𝒫 ℝ) → 𝐴𝑉)
4121adantl 480 . . . . . . . 8 ((𝜑𝑦 ∈ 𝒫 ℝ) → 𝑦 ⊆ ℝ)
4240, 41ovnovol 45673 . . . . . . 7 ((𝜑𝑦 ∈ 𝒫 ℝ) → ((voln*‘{𝐴})‘(𝑦m {𝐴})) = (vol*‘𝑦))
4342adantlr 711 . . . . . 6 (((𝜑 ∧ ∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥)) ∧ 𝑦 ∈ 𝒫 ℝ) → ((voln*‘{𝐴})‘(𝑦m {𝐴})) = (vol*‘𝑦))
4441ssinss1d 44036 . . . . . . . . 9 ((𝜑𝑦 ∈ 𝒫 ℝ) → (𝑦𝐵) ⊆ ℝ)
4540, 44ovnovol 45673 . . . . . . . 8 ((𝜑𝑦 ∈ 𝒫 ℝ) → ((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴})) = (vol*‘(𝑦𝐵)))
4641ssdifssd 4141 . . . . . . . . 9 ((𝜑𝑦 ∈ 𝒫 ℝ) → (𝑦𝐵) ⊆ ℝ)
4740, 46ovnovol 45673 . . . . . . . 8 ((𝜑𝑦 ∈ 𝒫 ℝ) → ((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴})) = (vol*‘(𝑦𝐵)))
4845, 47oveq12d 7429 . . . . . . 7 ((𝜑𝑦 ∈ 𝒫 ℝ) → (((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴})) +𝑒 ((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴}))) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵))))
4948adantlr 711 . . . . . 6 (((𝜑 ∧ ∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥)) ∧ 𝑦 ∈ 𝒫 ℝ) → (((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴})) +𝑒 ((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴}))) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵))))
5039, 43, 493eqtr3d 2778 . . . . 5 (((𝜑 ∧ ∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥)) ∧ 𝑦 ∈ 𝒫 ℝ) → (vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵))))
5150ralrimiva 3144 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥)) → ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵))))
5251ex 411 . . 3 (𝜑 → (∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥) → ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵)))))
5313ad2antrr 722 . . . . . 6 (((𝜑 ∧ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵)))) ∧ 𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})) → 𝐴𝑉)
545ad2antrr 722 . . . . . 6 (((𝜑 ∧ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵)))) ∧ 𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})) → 𝐵 ⊆ ℝ)
55 simplr 765 . . . . . 6 (((𝜑 ∧ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵)))) ∧ 𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})) → ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵))))
56 elpwi 4608 . . . . . . 7 (𝑥 ∈ 𝒫 (ℝ ↑m {𝐴}) → 𝑥 ⊆ (ℝ ↑m {𝐴}))
5756adantl 480 . . . . . 6 (((𝜑 ∧ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵)))) ∧ 𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})) → 𝑥 ⊆ (ℝ ↑m {𝐴}))
58 rneq 5934 . . . . . . 7 (𝑔 = 𝑓 → ran 𝑔 = ran 𝑓)
5958cbviunv 5042 . . . . . 6 𝑔𝑥 ran 𝑔 = 𝑓𝑥 ran 𝑓
6053, 54, 55, 57, 59vonvolmbllem 45674 . . . . 5 (((𝜑 ∧ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵)))) ∧ 𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})) → (((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥))
6160ralrimiva 3144 . . . 4 ((𝜑 ∧ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵)))) → ∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥))
6261ex 411 . . 3 (𝜑 → (∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵))) → ∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥)))
6352, 62impbid 211 . 2 (𝜑 → (∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥) ↔ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵)))))
64 mapss 8885 . . . 4 ((ℝ ∈ V ∧ 𝐵 ⊆ ℝ) → (𝐵m {𝐴}) ⊆ (ℝ ↑m {𝐴}))
654, 5, 64syl2anc 582 . . 3 (𝜑 → (𝐵m {𝐴}) ⊆ (ℝ ↑m {𝐴}))
668isvonmbl 45652 . . 3 (𝜑 → ((𝐵m {𝐴}) ∈ dom (voln‘{𝐴}) ↔ ((𝐵m {𝐴}) ⊆ (ℝ ↑m {𝐴}) ∧ ∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥))))
6765, 66mpbirand 703 . 2 (𝜑 → ((𝐵m {𝐴}) ∈ dom (voln‘{𝐴}) ↔ ∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥)))
68 ismbl4 45007 . . . 4 (𝐵 ∈ dom vol ↔ (𝐵 ⊆ ℝ ∧ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵)))))
6968a1i 11 . . 3 (𝜑 → (𝐵 ∈ dom vol ↔ (𝐵 ⊆ ℝ ∧ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵))))))
705, 69mpbirand 703 . 2 (𝜑 → (𝐵 ∈ dom vol ↔ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵)))))
7163, 67, 703bitr4d 310 1 (𝜑 → ((𝐵m {𝐴}) ∈ dom (voln‘{𝐴}) ↔ 𝐵 ∈ dom vol))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1539  wcel 2104  wral 3059  Vcvv 3472  cdif 3944  cin 3946  wss 3947  𝒫 cpw 4601  {csn 4627   ciun 4996  dom cdm 5675  ran crn 5676  cfv 6542  (class class class)co 7411  m cmap 8822  Fincfn 8941  cr 11111   +𝑒 cxad 13094  vol*covol 25211  volcvol 25212  voln*covoln 45550  volncvoln 45552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-inf2 9638  ax-cc 10432  ax-ac2 10460  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190  ax-addf 11191  ax-mulf 11192
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-disj 5113  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-of 7672  df-om 7858  df-1st 7977  df-2nd 7978  df-tpos 8213  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-2o 8469  df-er 8705  df-map 8824  df-pm 8825  df-ixp 8894  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-fi 9408  df-sup 9439  df-inf 9440  df-oi 9507  df-dju 9898  df-card 9936  df-acn 9939  df-ac 10113  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-5 12282  df-6 12283  df-7 12284  df-8 12285  df-9 12286  df-n0 12477  df-z 12563  df-dec 12682  df-uz 12827  df-q 12937  df-rp 12979  df-xneg 13096  df-xadd 13097  df-xmul 13098  df-ioo 13332  df-ico 13334  df-icc 13335  df-fz 13489  df-fzo 13632  df-fl 13761  df-seq 13971  df-exp 14032  df-hash 14295  df-cj 15050  df-re 15051  df-im 15052  df-sqrt 15186  df-abs 15187  df-clim 15436  df-rlim 15437  df-sum 15637  df-prod 15854  df-struct 17084  df-sets 17101  df-slot 17119  df-ndx 17131  df-base 17149  df-ress 17178  df-plusg 17214  df-mulr 17215  df-starv 17216  df-tset 17220  df-ple 17221  df-ds 17223  df-unif 17224  df-rest 17372  df-0g 17391  df-topgen 17393  df-mgm 18565  df-sgrp 18644  df-mnd 18660  df-grp 18858  df-minusg 18859  df-subg 19039  df-cmn 19691  df-abl 19692  df-mgp 20029  df-rng 20047  df-ur 20076  df-ring 20129  df-cring 20130  df-oppr 20225  df-dvdsr 20248  df-unit 20249  df-invr 20279  df-dvr 20292  df-drng 20502  df-psmet 21136  df-xmet 21137  df-met 21138  df-bl 21139  df-mopn 21140  df-cnfld 21145  df-top 22616  df-topon 22633  df-bases 22669  df-cmp 23111  df-ovol 25213  df-vol 25214  df-sumge0 45377  df-ome 45504  df-caragen 45506  df-ovoln 45551  df-voln 45553
This theorem is referenced by:  vonvol  45676  vonvolmbl2  45677  vonvol2  45678
  Copyright terms: Public domain W3C validator