Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vonvolmbl Structured version   Visualization version   GIF version

Theorem vonvolmbl 43874
Description: A subset of Real numbers is Lebesgue measurable if and only if its corresponding 1-dimensional set is measurable w.r.t. the 1-dimensional Lebesgue measure. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
vonvolmbl.a (𝜑𝐴𝑉)
vonvolmbl.b (𝜑𝐵 ⊆ ℝ)
Assertion
Ref Expression
vonvolmbl (𝜑 → ((𝐵m {𝐴}) ∈ dom (voln‘{𝐴}) ↔ 𝐵 ∈ dom vol))

Proof of Theorem vonvolmbl
Dummy variables 𝑓 𝑥 𝑦 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3412 . . . . . . . . . . . . . 14 𝑦 ∈ V
21a1i 11 . . . . . . . . . . . . 13 (𝜑𝑦 ∈ V)
3 reex 10820 . . . . . . . . . . . . . . 15 ℝ ∈ V
43a1i 11 . . . . . . . . . . . . . 14 (𝜑 → ℝ ∈ V)
5 vonvolmbl.b . . . . . . . . . . . . . 14 (𝜑𝐵 ⊆ ℝ)
64, 5ssexd 5217 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ V)
7 snfi 8721 . . . . . . . . . . . . . . 15 {𝐴} ∈ Fin
87a1i 11 . . . . . . . . . . . . . 14 (𝜑 → {𝐴} ∈ Fin)
98elexd 3428 . . . . . . . . . . . . 13 (𝜑 → {𝐴} ∈ V)
102, 6, 9inmap 42422 . . . . . . . . . . . 12 (𝜑 → ((𝑦m {𝐴}) ∩ (𝐵m {𝐴})) = ((𝑦𝐵) ↑m {𝐴}))
1110eqcomd 2743 . . . . . . . . . . 11 (𝜑 → ((𝑦𝐵) ↑m {𝐴}) = ((𝑦m {𝐴}) ∩ (𝐵m {𝐴})))
1211fveq2d 6721 . . . . . . . . . 10 (𝜑 → ((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴})) = ((voln*‘{𝐴})‘((𝑦m {𝐴}) ∩ (𝐵m {𝐴}))))
13 vonvolmbl.a . . . . . . . . . . . . 13 (𝜑𝐴𝑉)
142, 6, 13difmapsn 42425 . . . . . . . . . . . 12 (𝜑 → ((𝑦m {𝐴}) ∖ (𝐵m {𝐴})) = ((𝑦𝐵) ↑m {𝐴}))
1514eqcomd 2743 . . . . . . . . . . 11 (𝜑 → ((𝑦𝐵) ↑m {𝐴}) = ((𝑦m {𝐴}) ∖ (𝐵m {𝐴})))
1615fveq2d 6721 . . . . . . . . . 10 (𝜑 → ((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴})) = ((voln*‘{𝐴})‘((𝑦m {𝐴}) ∖ (𝐵m {𝐴}))))
1712, 16oveq12d 7231 . . . . . . . . 9 (𝜑 → (((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴})) +𝑒 ((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴}))) = (((voln*‘{𝐴})‘((𝑦m {𝐴}) ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘((𝑦m {𝐴}) ∖ (𝐵m {𝐴})))))
1817ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ ∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥)) ∧ 𝑦 ∈ 𝒫 ℝ) → (((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴})) +𝑒 ((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴}))) = (((voln*‘{𝐴})‘((𝑦m {𝐴}) ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘((𝑦m {𝐴}) ∖ (𝐵m {𝐴})))))
19 ovexd 7248 . . . . . . . . . . . 12 (𝑦 ∈ 𝒫 ℝ → (𝑦m {𝐴}) ∈ V)
203a1i 11 . . . . . . . . . . . . 13 (𝑦 ∈ 𝒫 ℝ → ℝ ∈ V)
21 elpwi 4522 . . . . . . . . . . . . 13 (𝑦 ∈ 𝒫 ℝ → 𝑦 ⊆ ℝ)
22 mapss 8570 . . . . . . . . . . . . 13 ((ℝ ∈ V ∧ 𝑦 ⊆ ℝ) → (𝑦m {𝐴}) ⊆ (ℝ ↑m {𝐴}))
2320, 21, 22syl2anc 587 . . . . . . . . . . . 12 (𝑦 ∈ 𝒫 ℝ → (𝑦m {𝐴}) ⊆ (ℝ ↑m {𝐴}))
2419, 23elpwd 4521 . . . . . . . . . . 11 (𝑦 ∈ 𝒫 ℝ → (𝑦m {𝐴}) ∈ 𝒫 (ℝ ↑m {𝐴}))
2524adantl 485 . . . . . . . . . 10 ((∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥) ∧ 𝑦 ∈ 𝒫 ℝ) → (𝑦m {𝐴}) ∈ 𝒫 (ℝ ↑m {𝐴}))
26 simpl 486 . . . . . . . . . 10 ((∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥) ∧ 𝑦 ∈ 𝒫 ℝ) → ∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥))
27 ineq1 4120 . . . . . . . . . . . . . 14 (𝑥 = (𝑦m {𝐴}) → (𝑥 ∩ (𝐵m {𝐴})) = ((𝑦m {𝐴}) ∩ (𝐵m {𝐴})))
2827fveq2d 6721 . . . . . . . . . . . . 13 (𝑥 = (𝑦m {𝐴}) → ((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) = ((voln*‘{𝐴})‘((𝑦m {𝐴}) ∩ (𝐵m {𝐴}))))
29 difeq1 4030 . . . . . . . . . . . . . 14 (𝑥 = (𝑦m {𝐴}) → (𝑥 ∖ (𝐵m {𝐴})) = ((𝑦m {𝐴}) ∖ (𝐵m {𝐴})))
3029fveq2d 6721 . . . . . . . . . . . . 13 (𝑥 = (𝑦m {𝐴}) → ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴}))) = ((voln*‘{𝐴})‘((𝑦m {𝐴}) ∖ (𝐵m {𝐴}))))
3128, 30oveq12d 7231 . . . . . . . . . . . 12 (𝑥 = (𝑦m {𝐴}) → (((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = (((voln*‘{𝐴})‘((𝑦m {𝐴}) ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘((𝑦m {𝐴}) ∖ (𝐵m {𝐴})))))
32 fveq2 6717 . . . . . . . . . . . 12 (𝑥 = (𝑦m {𝐴}) → ((voln*‘{𝐴})‘𝑥) = ((voln*‘{𝐴})‘(𝑦m {𝐴})))
3331, 32eqeq12d 2753 . . . . . . . . . . 11 (𝑥 = (𝑦m {𝐴}) → ((((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥) ↔ (((voln*‘{𝐴})‘((𝑦m {𝐴}) ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘((𝑦m {𝐴}) ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘(𝑦m {𝐴}))))
3433rspcva 3535 . . . . . . . . . 10 (((𝑦m {𝐴}) ∈ 𝒫 (ℝ ↑m {𝐴}) ∧ ∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥)) → (((voln*‘{𝐴})‘((𝑦m {𝐴}) ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘((𝑦m {𝐴}) ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘(𝑦m {𝐴})))
3525, 26, 34syl2anc 587 . . . . . . . . 9 ((∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥) ∧ 𝑦 ∈ 𝒫 ℝ) → (((voln*‘{𝐴})‘((𝑦m {𝐴}) ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘((𝑦m {𝐴}) ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘(𝑦m {𝐴})))
3635adantll 714 . . . . . . . 8 (((𝜑 ∧ ∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥)) ∧ 𝑦 ∈ 𝒫 ℝ) → (((voln*‘{𝐴})‘((𝑦m {𝐴}) ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘((𝑦m {𝐴}) ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘(𝑦m {𝐴})))
37 eqidd 2738 . . . . . . . 8 (((𝜑 ∧ ∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥)) ∧ 𝑦 ∈ 𝒫 ℝ) → ((voln*‘{𝐴})‘(𝑦m {𝐴})) = ((voln*‘{𝐴})‘(𝑦m {𝐴})))
3818, 36, 373eqtrd 2781 . . . . . . 7 (((𝜑 ∧ ∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥)) ∧ 𝑦 ∈ 𝒫 ℝ) → (((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴})) +𝑒 ((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴}))) = ((voln*‘{𝐴})‘(𝑦m {𝐴})))
3938eqcomd 2743 . . . . . 6 (((𝜑 ∧ ∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥)) ∧ 𝑦 ∈ 𝒫 ℝ) → ((voln*‘{𝐴})‘(𝑦m {𝐴})) = (((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴})) +𝑒 ((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴}))))
4013adantr 484 . . . . . . . 8 ((𝜑𝑦 ∈ 𝒫 ℝ) → 𝐴𝑉)
4121adantl 485 . . . . . . . 8 ((𝜑𝑦 ∈ 𝒫 ℝ) → 𝑦 ⊆ ℝ)
4240, 41ovnovol 43872 . . . . . . 7 ((𝜑𝑦 ∈ 𝒫 ℝ) → ((voln*‘{𝐴})‘(𝑦m {𝐴})) = (vol*‘𝑦))
4342adantlr 715 . . . . . 6 (((𝜑 ∧ ∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥)) ∧ 𝑦 ∈ 𝒫 ℝ) → ((voln*‘{𝐴})‘(𝑦m {𝐴})) = (vol*‘𝑦))
4441ssinss1d 42269 . . . . . . . . 9 ((𝜑𝑦 ∈ 𝒫 ℝ) → (𝑦𝐵) ⊆ ℝ)
4540, 44ovnovol 43872 . . . . . . . 8 ((𝜑𝑦 ∈ 𝒫 ℝ) → ((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴})) = (vol*‘(𝑦𝐵)))
4641ssdifssd 4057 . . . . . . . . 9 ((𝜑𝑦 ∈ 𝒫 ℝ) → (𝑦𝐵) ⊆ ℝ)
4740, 46ovnovol 43872 . . . . . . . 8 ((𝜑𝑦 ∈ 𝒫 ℝ) → ((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴})) = (vol*‘(𝑦𝐵)))
4845, 47oveq12d 7231 . . . . . . 7 ((𝜑𝑦 ∈ 𝒫 ℝ) → (((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴})) +𝑒 ((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴}))) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵))))
4948adantlr 715 . . . . . 6 (((𝜑 ∧ ∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥)) ∧ 𝑦 ∈ 𝒫 ℝ) → (((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴})) +𝑒 ((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴}))) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵))))
5039, 43, 493eqtr3d 2785 . . . . 5 (((𝜑 ∧ ∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥)) ∧ 𝑦 ∈ 𝒫 ℝ) → (vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵))))
5150ralrimiva 3105 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥)) → ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵))))
5251ex 416 . . 3 (𝜑 → (∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥) → ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵)))))
5313ad2antrr 726 . . . . . 6 (((𝜑 ∧ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵)))) ∧ 𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})) → 𝐴𝑉)
545ad2antrr 726 . . . . . 6 (((𝜑 ∧ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵)))) ∧ 𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})) → 𝐵 ⊆ ℝ)
55 simplr 769 . . . . . 6 (((𝜑 ∧ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵)))) ∧ 𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})) → ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵))))
56 elpwi 4522 . . . . . . 7 (𝑥 ∈ 𝒫 (ℝ ↑m {𝐴}) → 𝑥 ⊆ (ℝ ↑m {𝐴}))
5756adantl 485 . . . . . 6 (((𝜑 ∧ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵)))) ∧ 𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})) → 𝑥 ⊆ (ℝ ↑m {𝐴}))
58 rneq 5805 . . . . . . 7 (𝑔 = 𝑓 → ran 𝑔 = ran 𝑓)
5958cbviunv 4949 . . . . . 6 𝑔𝑥 ran 𝑔 = 𝑓𝑥 ran 𝑓
6053, 54, 55, 57, 59vonvolmbllem 43873 . . . . 5 (((𝜑 ∧ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵)))) ∧ 𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})) → (((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥))
6160ralrimiva 3105 . . . 4 ((𝜑 ∧ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵)))) → ∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥))
6261ex 416 . . 3 (𝜑 → (∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵))) → ∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥)))
6352, 62impbid 215 . 2 (𝜑 → (∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥) ↔ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵)))))
64 mapss 8570 . . . 4 ((ℝ ∈ V ∧ 𝐵 ⊆ ℝ) → (𝐵m {𝐴}) ⊆ (ℝ ↑m {𝐴}))
654, 5, 64syl2anc 587 . . 3 (𝜑 → (𝐵m {𝐴}) ⊆ (ℝ ↑m {𝐴}))
668isvonmbl 43851 . . 3 (𝜑 → ((𝐵m {𝐴}) ∈ dom (voln‘{𝐴}) ↔ ((𝐵m {𝐴}) ⊆ (ℝ ↑m {𝐴}) ∧ ∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥))))
6765, 66mpbirand 707 . 2 (𝜑 → ((𝐵m {𝐴}) ∈ dom (voln‘{𝐴}) ↔ ∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥)))
68 ismbl4 43209 . . . 4 (𝐵 ∈ dom vol ↔ (𝐵 ⊆ ℝ ∧ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵)))))
6968a1i 11 . . 3 (𝜑 → (𝐵 ∈ dom vol ↔ (𝐵 ⊆ ℝ ∧ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵))))))
705, 69mpbirand 707 . 2 (𝜑 → (𝐵 ∈ dom vol ↔ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵)))))
7163, 67, 703bitr4d 314 1 (𝜑 → ((𝐵m {𝐴}) ∈ dom (voln‘{𝐴}) ↔ 𝐵 ∈ dom vol))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wral 3061  Vcvv 3408  cdif 3863  cin 3865  wss 3866  𝒫 cpw 4513  {csn 4541   ciun 4904  dom cdm 5551  ran crn 5552  cfv 6380  (class class class)co 7213  m cmap 8508  Fincfn 8626  cr 10728   +𝑒 cxad 12702  vol*covol 24359  volcvol 24360  voln*covoln 43749  volncvoln 43751
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256  ax-cc 10049  ax-ac2 10077  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807  ax-addf 10808  ax-mulf 10809
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-disj 5019  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-of 7469  df-om 7645  df-1st 7761  df-2nd 7762  df-tpos 7968  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-2o 8203  df-er 8391  df-map 8510  df-pm 8511  df-ixp 8579  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fi 9027  df-sup 9058  df-inf 9059  df-oi 9126  df-dju 9517  df-card 9555  df-acn 9558  df-ac 9730  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-z 12177  df-dec 12294  df-uz 12439  df-q 12545  df-rp 12587  df-xneg 12704  df-xadd 12705  df-xmul 12706  df-ioo 12939  df-ico 12941  df-icc 12942  df-fz 13096  df-fzo 13239  df-fl 13367  df-seq 13575  df-exp 13636  df-hash 13897  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-clim 15049  df-rlim 15050  df-sum 15250  df-prod 15468  df-struct 16700  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-mulr 16816  df-starv 16817  df-tset 16821  df-ple 16822  df-ds 16824  df-unif 16825  df-rest 16927  df-0g 16946  df-topgen 16948  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-grp 18368  df-minusg 18369  df-subg 18540  df-cmn 19172  df-abl 19173  df-mgp 19505  df-ur 19517  df-ring 19564  df-cring 19565  df-oppr 19641  df-dvdsr 19659  df-unit 19660  df-invr 19690  df-dvr 19701  df-drng 19769  df-psmet 20355  df-xmet 20356  df-met 20357  df-bl 20358  df-mopn 20359  df-cnfld 20364  df-top 21791  df-topon 21808  df-bases 21843  df-cmp 22284  df-ovol 24361  df-vol 24362  df-sumge0 43576  df-ome 43703  df-caragen 43705  df-ovoln 43750  df-voln 43752
This theorem is referenced by:  vonvol  43875  vonvolmbl2  43876  vonvol2  43877
  Copyright terms: Public domain W3C validator