Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vonvolmbl Structured version   Visualization version   GIF version

Theorem vonvolmbl 42505
Description: A subset of Real numbers is Lebesgue measurable if and only if its corresponding 1-dimensional set is measurable w.r.t. the 1-dimensional Lebesgue measure. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
vonvolmbl.a (𝜑𝐴𝑉)
vonvolmbl.b (𝜑𝐵 ⊆ ℝ)
Assertion
Ref Expression
vonvolmbl (𝜑 → ((𝐵𝑚 {𝐴}) ∈ dom (voln‘{𝐴}) ↔ 𝐵 ∈ dom vol))

Proof of Theorem vonvolmbl
Dummy variables 𝑓 𝑥 𝑦 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3440 . . . . . . . . . . . . . 14 𝑦 ∈ V
21a1i 11 . . . . . . . . . . . . 13 (𝜑𝑦 ∈ V)
3 reex 10474 . . . . . . . . . . . . . . 15 ℝ ∈ V
43a1i 11 . . . . . . . . . . . . . 14 (𝜑 → ℝ ∈ V)
5 vonvolmbl.b . . . . . . . . . . . . . 14 (𝜑𝐵 ⊆ ℝ)
64, 5ssexd 5119 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ V)
7 snfi 8442 . . . . . . . . . . . . . . 15 {𝐴} ∈ Fin
87a1i 11 . . . . . . . . . . . . . 14 (𝜑 → {𝐴} ∈ Fin)
98elexd 3457 . . . . . . . . . . . . 13 (𝜑 → {𝐴} ∈ V)
102, 6, 9inmap 41031 . . . . . . . . . . . 12 (𝜑 → ((𝑦𝑚 {𝐴}) ∩ (𝐵𝑚 {𝐴})) = ((𝑦𝐵) ↑𝑚 {𝐴}))
1110eqcomd 2801 . . . . . . . . . . 11 (𝜑 → ((𝑦𝐵) ↑𝑚 {𝐴}) = ((𝑦𝑚 {𝐴}) ∩ (𝐵𝑚 {𝐴})))
1211fveq2d 6542 . . . . . . . . . 10 (𝜑 → ((voln*‘{𝐴})‘((𝑦𝐵) ↑𝑚 {𝐴})) = ((voln*‘{𝐴})‘((𝑦𝑚 {𝐴}) ∩ (𝐵𝑚 {𝐴}))))
13 vonvolmbl.a . . . . . . . . . . . . 13 (𝜑𝐴𝑉)
142, 6, 13difmapsn 41034 . . . . . . . . . . . 12 (𝜑 → ((𝑦𝑚 {𝐴}) ∖ (𝐵𝑚 {𝐴})) = ((𝑦𝐵) ↑𝑚 {𝐴}))
1514eqcomd 2801 . . . . . . . . . . 11 (𝜑 → ((𝑦𝐵) ↑𝑚 {𝐴}) = ((𝑦𝑚 {𝐴}) ∖ (𝐵𝑚 {𝐴})))
1615fveq2d 6542 . . . . . . . . . 10 (𝜑 → ((voln*‘{𝐴})‘((𝑦𝐵) ↑𝑚 {𝐴})) = ((voln*‘{𝐴})‘((𝑦𝑚 {𝐴}) ∖ (𝐵𝑚 {𝐴}))))
1712, 16oveq12d 7034 . . . . . . . . 9 (𝜑 → (((voln*‘{𝐴})‘((𝑦𝐵) ↑𝑚 {𝐴})) +𝑒 ((voln*‘{𝐴})‘((𝑦𝐵) ↑𝑚 {𝐴}))) = (((voln*‘{𝐴})‘((𝑦𝑚 {𝐴}) ∩ (𝐵𝑚 {𝐴}))) +𝑒 ((voln*‘{𝐴})‘((𝑦𝑚 {𝐴}) ∖ (𝐵𝑚 {𝐴})))))
1817ad2antrr 722 . . . . . . . 8 (((𝜑 ∧ ∀𝑥 ∈ 𝒫 (ℝ ↑𝑚 {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵𝑚 {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵𝑚 {𝐴})))) = ((voln*‘{𝐴})‘𝑥)) ∧ 𝑦 ∈ 𝒫 ℝ) → (((voln*‘{𝐴})‘((𝑦𝐵) ↑𝑚 {𝐴})) +𝑒 ((voln*‘{𝐴})‘((𝑦𝐵) ↑𝑚 {𝐴}))) = (((voln*‘{𝐴})‘((𝑦𝑚 {𝐴}) ∩ (𝐵𝑚 {𝐴}))) +𝑒 ((voln*‘{𝐴})‘((𝑦𝑚 {𝐴}) ∖ (𝐵𝑚 {𝐴})))))
19 ovexd 7050 . . . . . . . . . . . 12 (𝑦 ∈ 𝒫 ℝ → (𝑦𝑚 {𝐴}) ∈ V)
203a1i 11 . . . . . . . . . . . . 13 (𝑦 ∈ 𝒫 ℝ → ℝ ∈ V)
21 elpwi 4463 . . . . . . . . . . . . 13 (𝑦 ∈ 𝒫 ℝ → 𝑦 ⊆ ℝ)
22 mapss 8302 . . . . . . . . . . . . 13 ((ℝ ∈ V ∧ 𝑦 ⊆ ℝ) → (𝑦𝑚 {𝐴}) ⊆ (ℝ ↑𝑚 {𝐴}))
2320, 21, 22syl2anc 584 . . . . . . . . . . . 12 (𝑦 ∈ 𝒫 ℝ → (𝑦𝑚 {𝐴}) ⊆ (ℝ ↑𝑚 {𝐴}))
2419, 23elpwd 4462 . . . . . . . . . . 11 (𝑦 ∈ 𝒫 ℝ → (𝑦𝑚 {𝐴}) ∈ 𝒫 (ℝ ↑𝑚 {𝐴}))
2524adantl 482 . . . . . . . . . 10 ((∀𝑥 ∈ 𝒫 (ℝ ↑𝑚 {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵𝑚 {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵𝑚 {𝐴})))) = ((voln*‘{𝐴})‘𝑥) ∧ 𝑦 ∈ 𝒫 ℝ) → (𝑦𝑚 {𝐴}) ∈ 𝒫 (ℝ ↑𝑚 {𝐴}))
26 simpl 483 . . . . . . . . . 10 ((∀𝑥 ∈ 𝒫 (ℝ ↑𝑚 {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵𝑚 {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵𝑚 {𝐴})))) = ((voln*‘{𝐴})‘𝑥) ∧ 𝑦 ∈ 𝒫 ℝ) → ∀𝑥 ∈ 𝒫 (ℝ ↑𝑚 {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵𝑚 {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵𝑚 {𝐴})))) = ((voln*‘{𝐴})‘𝑥))
27 ineq1 4101 . . . . . . . . . . . . . 14 (𝑥 = (𝑦𝑚 {𝐴}) → (𝑥 ∩ (𝐵𝑚 {𝐴})) = ((𝑦𝑚 {𝐴}) ∩ (𝐵𝑚 {𝐴})))
2827fveq2d 6542 . . . . . . . . . . . . 13 (𝑥 = (𝑦𝑚 {𝐴}) → ((voln*‘{𝐴})‘(𝑥 ∩ (𝐵𝑚 {𝐴}))) = ((voln*‘{𝐴})‘((𝑦𝑚 {𝐴}) ∩ (𝐵𝑚 {𝐴}))))
29 difeq1 4013 . . . . . . . . . . . . . 14 (𝑥 = (𝑦𝑚 {𝐴}) → (𝑥 ∖ (𝐵𝑚 {𝐴})) = ((𝑦𝑚 {𝐴}) ∖ (𝐵𝑚 {𝐴})))
3029fveq2d 6542 . . . . . . . . . . . . 13 (𝑥 = (𝑦𝑚 {𝐴}) → ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵𝑚 {𝐴}))) = ((voln*‘{𝐴})‘((𝑦𝑚 {𝐴}) ∖ (𝐵𝑚 {𝐴}))))
3128, 30oveq12d 7034 . . . . . . . . . . . 12 (𝑥 = (𝑦𝑚 {𝐴}) → (((voln*‘{𝐴})‘(𝑥 ∩ (𝐵𝑚 {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵𝑚 {𝐴})))) = (((voln*‘{𝐴})‘((𝑦𝑚 {𝐴}) ∩ (𝐵𝑚 {𝐴}))) +𝑒 ((voln*‘{𝐴})‘((𝑦𝑚 {𝐴}) ∖ (𝐵𝑚 {𝐴})))))
32 fveq2 6538 . . . . . . . . . . . 12 (𝑥 = (𝑦𝑚 {𝐴}) → ((voln*‘{𝐴})‘𝑥) = ((voln*‘{𝐴})‘(𝑦𝑚 {𝐴})))
3331, 32eqeq12d 2810 . . . . . . . . . . 11 (𝑥 = (𝑦𝑚 {𝐴}) → ((((voln*‘{𝐴})‘(𝑥 ∩ (𝐵𝑚 {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵𝑚 {𝐴})))) = ((voln*‘{𝐴})‘𝑥) ↔ (((voln*‘{𝐴})‘((𝑦𝑚 {𝐴}) ∩ (𝐵𝑚 {𝐴}))) +𝑒 ((voln*‘{𝐴})‘((𝑦𝑚 {𝐴}) ∖ (𝐵𝑚 {𝐴})))) = ((voln*‘{𝐴})‘(𝑦𝑚 {𝐴}))))
3433rspcva 3557 . . . . . . . . . 10 (((𝑦𝑚 {𝐴}) ∈ 𝒫 (ℝ ↑𝑚 {𝐴}) ∧ ∀𝑥 ∈ 𝒫 (ℝ ↑𝑚 {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵𝑚 {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵𝑚 {𝐴})))) = ((voln*‘{𝐴})‘𝑥)) → (((voln*‘{𝐴})‘((𝑦𝑚 {𝐴}) ∩ (𝐵𝑚 {𝐴}))) +𝑒 ((voln*‘{𝐴})‘((𝑦𝑚 {𝐴}) ∖ (𝐵𝑚 {𝐴})))) = ((voln*‘{𝐴})‘(𝑦𝑚 {𝐴})))
3525, 26, 34syl2anc 584 . . . . . . . . 9 ((∀𝑥 ∈ 𝒫 (ℝ ↑𝑚 {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵𝑚 {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵𝑚 {𝐴})))) = ((voln*‘{𝐴})‘𝑥) ∧ 𝑦 ∈ 𝒫 ℝ) → (((voln*‘{𝐴})‘((𝑦𝑚 {𝐴}) ∩ (𝐵𝑚 {𝐴}))) +𝑒 ((voln*‘{𝐴})‘((𝑦𝑚 {𝐴}) ∖ (𝐵𝑚 {𝐴})))) = ((voln*‘{𝐴})‘(𝑦𝑚 {𝐴})))
3635adantll 710 . . . . . . . 8 (((𝜑 ∧ ∀𝑥 ∈ 𝒫 (ℝ ↑𝑚 {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵𝑚 {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵𝑚 {𝐴})))) = ((voln*‘{𝐴})‘𝑥)) ∧ 𝑦 ∈ 𝒫 ℝ) → (((voln*‘{𝐴})‘((𝑦𝑚 {𝐴}) ∩ (𝐵𝑚 {𝐴}))) +𝑒 ((voln*‘{𝐴})‘((𝑦𝑚 {𝐴}) ∖ (𝐵𝑚 {𝐴})))) = ((voln*‘{𝐴})‘(𝑦𝑚 {𝐴})))
37 eqidd 2796 . . . . . . . 8 (((𝜑 ∧ ∀𝑥 ∈ 𝒫 (ℝ ↑𝑚 {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵𝑚 {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵𝑚 {𝐴})))) = ((voln*‘{𝐴})‘𝑥)) ∧ 𝑦 ∈ 𝒫 ℝ) → ((voln*‘{𝐴})‘(𝑦𝑚 {𝐴})) = ((voln*‘{𝐴})‘(𝑦𝑚 {𝐴})))
3818, 36, 373eqtrd 2835 . . . . . . 7 (((𝜑 ∧ ∀𝑥 ∈ 𝒫 (ℝ ↑𝑚 {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵𝑚 {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵𝑚 {𝐴})))) = ((voln*‘{𝐴})‘𝑥)) ∧ 𝑦 ∈ 𝒫 ℝ) → (((voln*‘{𝐴})‘((𝑦𝐵) ↑𝑚 {𝐴})) +𝑒 ((voln*‘{𝐴})‘((𝑦𝐵) ↑𝑚 {𝐴}))) = ((voln*‘{𝐴})‘(𝑦𝑚 {𝐴})))
3938eqcomd 2801 . . . . . 6 (((𝜑 ∧ ∀𝑥 ∈ 𝒫 (ℝ ↑𝑚 {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵𝑚 {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵𝑚 {𝐴})))) = ((voln*‘{𝐴})‘𝑥)) ∧ 𝑦 ∈ 𝒫 ℝ) → ((voln*‘{𝐴})‘(𝑦𝑚 {𝐴})) = (((voln*‘{𝐴})‘((𝑦𝐵) ↑𝑚 {𝐴})) +𝑒 ((voln*‘{𝐴})‘((𝑦𝐵) ↑𝑚 {𝐴}))))
4013adantr 481 . . . . . . . 8 ((𝜑𝑦 ∈ 𝒫 ℝ) → 𝐴𝑉)
4121adantl 482 . . . . . . . 8 ((𝜑𝑦 ∈ 𝒫 ℝ) → 𝑦 ⊆ ℝ)
4240, 41ovnovol 42503 . . . . . . 7 ((𝜑𝑦 ∈ 𝒫 ℝ) → ((voln*‘{𝐴})‘(𝑦𝑚 {𝐴})) = (vol*‘𝑦))
4342adantlr 711 . . . . . 6 (((𝜑 ∧ ∀𝑥 ∈ 𝒫 (ℝ ↑𝑚 {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵𝑚 {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵𝑚 {𝐴})))) = ((voln*‘{𝐴})‘𝑥)) ∧ 𝑦 ∈ 𝒫 ℝ) → ((voln*‘{𝐴})‘(𝑦𝑚 {𝐴})) = (vol*‘𝑦))
4441ssinss1d 40868 . . . . . . . . 9 ((𝜑𝑦 ∈ 𝒫 ℝ) → (𝑦𝐵) ⊆ ℝ)
4540, 44ovnovol 42503 . . . . . . . 8 ((𝜑𝑦 ∈ 𝒫 ℝ) → ((voln*‘{𝐴})‘((𝑦𝐵) ↑𝑚 {𝐴})) = (vol*‘(𝑦𝐵)))
4641ssdifssd 4040 . . . . . . . . 9 ((𝜑𝑦 ∈ 𝒫 ℝ) → (𝑦𝐵) ⊆ ℝ)
4740, 46ovnovol 42503 . . . . . . . 8 ((𝜑𝑦 ∈ 𝒫 ℝ) → ((voln*‘{𝐴})‘((𝑦𝐵) ↑𝑚 {𝐴})) = (vol*‘(𝑦𝐵)))
4845, 47oveq12d 7034 . . . . . . 7 ((𝜑𝑦 ∈ 𝒫 ℝ) → (((voln*‘{𝐴})‘((𝑦𝐵) ↑𝑚 {𝐴})) +𝑒 ((voln*‘{𝐴})‘((𝑦𝐵) ↑𝑚 {𝐴}))) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵))))
4948adantlr 711 . . . . . 6 (((𝜑 ∧ ∀𝑥 ∈ 𝒫 (ℝ ↑𝑚 {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵𝑚 {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵𝑚 {𝐴})))) = ((voln*‘{𝐴})‘𝑥)) ∧ 𝑦 ∈ 𝒫 ℝ) → (((voln*‘{𝐴})‘((𝑦𝐵) ↑𝑚 {𝐴})) +𝑒 ((voln*‘{𝐴})‘((𝑦𝐵) ↑𝑚 {𝐴}))) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵))))
5039, 43, 493eqtr3d 2839 . . . . 5 (((𝜑 ∧ ∀𝑥 ∈ 𝒫 (ℝ ↑𝑚 {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵𝑚 {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵𝑚 {𝐴})))) = ((voln*‘{𝐴})‘𝑥)) ∧ 𝑦 ∈ 𝒫 ℝ) → (vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵))))
5150ralrimiva 3149 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ 𝒫 (ℝ ↑𝑚 {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵𝑚 {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵𝑚 {𝐴})))) = ((voln*‘{𝐴})‘𝑥)) → ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵))))
5251ex 413 . . 3 (𝜑 → (∀𝑥 ∈ 𝒫 (ℝ ↑𝑚 {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵𝑚 {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵𝑚 {𝐴})))) = ((voln*‘{𝐴})‘𝑥) → ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵)))))
5313ad2antrr 722 . . . . . 6 (((𝜑 ∧ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵)))) ∧ 𝑥 ∈ 𝒫 (ℝ ↑𝑚 {𝐴})) → 𝐴𝑉)
545ad2antrr 722 . . . . . 6 (((𝜑 ∧ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵)))) ∧ 𝑥 ∈ 𝒫 (ℝ ↑𝑚 {𝐴})) → 𝐵 ⊆ ℝ)
55 simplr 765 . . . . . 6 (((𝜑 ∧ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵)))) ∧ 𝑥 ∈ 𝒫 (ℝ ↑𝑚 {𝐴})) → ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵))))
56 elpwi 4463 . . . . . . 7 (𝑥 ∈ 𝒫 (ℝ ↑𝑚 {𝐴}) → 𝑥 ⊆ (ℝ ↑𝑚 {𝐴}))
5756adantl 482 . . . . . 6 (((𝜑 ∧ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵)))) ∧ 𝑥 ∈ 𝒫 (ℝ ↑𝑚 {𝐴})) → 𝑥 ⊆ (ℝ ↑𝑚 {𝐴}))
58 rneq 5688 . . . . . . 7 (𝑔 = 𝑓 → ran 𝑔 = ran 𝑓)
5958cbviunv 4866 . . . . . 6 𝑔𝑥 ran 𝑔 = 𝑓𝑥 ran 𝑓
6053, 54, 55, 57, 59vonvolmbllem 42504 . . . . 5 (((𝜑 ∧ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵)))) ∧ 𝑥 ∈ 𝒫 (ℝ ↑𝑚 {𝐴})) → (((voln*‘{𝐴})‘(𝑥 ∩ (𝐵𝑚 {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵𝑚 {𝐴})))) = ((voln*‘{𝐴})‘𝑥))
6160ralrimiva 3149 . . . 4 ((𝜑 ∧ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵)))) → ∀𝑥 ∈ 𝒫 (ℝ ↑𝑚 {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵𝑚 {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵𝑚 {𝐴})))) = ((voln*‘{𝐴})‘𝑥))
6261ex 413 . . 3 (𝜑 → (∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵))) → ∀𝑥 ∈ 𝒫 (ℝ ↑𝑚 {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵𝑚 {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵𝑚 {𝐴})))) = ((voln*‘{𝐴})‘𝑥)))
6352, 62impbid 213 . 2 (𝜑 → (∀𝑥 ∈ 𝒫 (ℝ ↑𝑚 {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵𝑚 {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵𝑚 {𝐴})))) = ((voln*‘{𝐴})‘𝑥) ↔ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵)))))
64 mapss 8302 . . . 4 ((ℝ ∈ V ∧ 𝐵 ⊆ ℝ) → (𝐵𝑚 {𝐴}) ⊆ (ℝ ↑𝑚 {𝐴}))
654, 5, 64syl2anc 584 . . 3 (𝜑 → (𝐵𝑚 {𝐴}) ⊆ (ℝ ↑𝑚 {𝐴}))
668isvonmbl 42482 . . 3 (𝜑 → ((𝐵𝑚 {𝐴}) ∈ dom (voln‘{𝐴}) ↔ ((𝐵𝑚 {𝐴}) ⊆ (ℝ ↑𝑚 {𝐴}) ∧ ∀𝑥 ∈ 𝒫 (ℝ ↑𝑚 {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵𝑚 {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵𝑚 {𝐴})))) = ((voln*‘{𝐴})‘𝑥))))
6765, 66mpbirand 703 . 2 (𝜑 → ((𝐵𝑚 {𝐴}) ∈ dom (voln‘{𝐴}) ↔ ∀𝑥 ∈ 𝒫 (ℝ ↑𝑚 {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵𝑚 {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵𝑚 {𝐴})))) = ((voln*‘{𝐴})‘𝑥)))
68 ismbl4 41840 . . . 4 (𝐵 ∈ dom vol ↔ (𝐵 ⊆ ℝ ∧ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵)))))
6968a1i 11 . . 3 (𝜑 → (𝐵 ∈ dom vol ↔ (𝐵 ⊆ ℝ ∧ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵))))))
705, 69mpbirand 703 . 2 (𝜑 → (𝐵 ∈ dom vol ↔ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵)))))
7163, 67, 703bitr4d 312 1 (𝜑 → ((𝐵𝑚 {𝐴}) ∈ dom (voln‘{𝐴}) ↔ 𝐵 ∈ dom vol))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1522  wcel 2081  wral 3105  Vcvv 3437  cdif 3856  cin 3858  wss 3859  𝒫 cpw 4453  {csn 4472   ciun 4825  dom cdm 5443  ran crn 5444  cfv 6225  (class class class)co 7016  𝑚 cmap 8256  Fincfn 8357  cr 10382   +𝑒 cxad 12355  vol*covol 23746  volcvol 23747  voln*covoln 42380  volncvoln 42382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-inf2 8950  ax-cc 9703  ax-ac2 9731  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460  ax-pre-sup 10461  ax-addf 10462  ax-mulf 10463
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-fal 1535  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-disj 4931  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-se 5403  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-isom 6234  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-of 7267  df-om 7437  df-1st 7545  df-2nd 7546  df-tpos 7743  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-2o 7954  df-oadd 7957  df-er 8139  df-map 8258  df-pm 8259  df-ixp 8311  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-fi 8721  df-sup 8752  df-inf 8753  df-oi 8820  df-dju 9176  df-card 9214  df-acn 9217  df-ac 9388  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-div 11146  df-nn 11487  df-2 11548  df-3 11549  df-4 11550  df-5 11551  df-6 11552  df-7 11553  df-8 11554  df-9 11555  df-n0 11746  df-z 11830  df-dec 11948  df-uz 12094  df-q 12198  df-rp 12240  df-xneg 12357  df-xadd 12358  df-xmul 12359  df-ioo 12592  df-ico 12594  df-icc 12595  df-fz 12743  df-fzo 12884  df-fl 13012  df-seq 13220  df-exp 13280  df-hash 13541  df-cj 14292  df-re 14293  df-im 14294  df-sqrt 14428  df-abs 14429  df-clim 14679  df-rlim 14680  df-sum 14877  df-prod 15093  df-struct 16314  df-ndx 16315  df-slot 16316  df-base 16318  df-sets 16319  df-ress 16320  df-plusg 16407  df-mulr 16408  df-starv 16409  df-tset 16413  df-ple 16414  df-ds 16416  df-unif 16417  df-rest 16525  df-0g 16544  df-topgen 16546  df-mgm 17681  df-sgrp 17723  df-mnd 17734  df-grp 17864  df-minusg 17865  df-subg 18030  df-cmn 18635  df-abl 18636  df-mgp 18930  df-ur 18942  df-ring 18989  df-cring 18990  df-oppr 19063  df-dvdsr 19081  df-unit 19082  df-invr 19112  df-dvr 19123  df-drng 19194  df-psmet 20219  df-xmet 20220  df-met 20221  df-bl 20222  df-mopn 20223  df-cnfld 20228  df-top 21186  df-topon 21203  df-bases 21238  df-cmp 21679  df-ovol 23748  df-vol 23749  df-sumge0 42207  df-ome 42334  df-caragen 42336  df-ovoln 42381  df-voln 42383
This theorem is referenced by:  vonvol  42506  vonvolmbl2  42507  vonvol2  42508
  Copyright terms: Public domain W3C validator