Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  vonvolmbl Structured version   Visualization version   GIF version

Theorem vonvolmbl 45364
Description: A subset of Real numbers is Lebesgue measurable if and only if its corresponding 1-dimensional set is measurable w.r.t. the 1-dimensional Lebesgue measure. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
vonvolmbl.a (𝜑𝐴𝑉)
vonvolmbl.b (𝜑𝐵 ⊆ ℝ)
Assertion
Ref Expression
vonvolmbl (𝜑 → ((𝐵m {𝐴}) ∈ dom (voln‘{𝐴}) ↔ 𝐵 ∈ dom vol))

Proof of Theorem vonvolmbl
Dummy variables 𝑓 𝑥 𝑦 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3479 . . . . . . . . . . . . . 14 𝑦 ∈ V
21a1i 11 . . . . . . . . . . . . 13 (𝜑𝑦 ∈ V)
3 reex 11198 . . . . . . . . . . . . . . 15 ℝ ∈ V
43a1i 11 . . . . . . . . . . . . . 14 (𝜑 → ℝ ∈ V)
5 vonvolmbl.b . . . . . . . . . . . . . 14 (𝜑𝐵 ⊆ ℝ)
64, 5ssexd 5324 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ V)
7 snfi 9041 . . . . . . . . . . . . . . 15 {𝐴} ∈ Fin
87a1i 11 . . . . . . . . . . . . . 14 (𝜑 → {𝐴} ∈ Fin)
98elexd 3495 . . . . . . . . . . . . 13 (𝜑 → {𝐴} ∈ V)
102, 6, 9inmap 43894 . . . . . . . . . . . 12 (𝜑 → ((𝑦m {𝐴}) ∩ (𝐵m {𝐴})) = ((𝑦𝐵) ↑m {𝐴}))
1110eqcomd 2739 . . . . . . . . . . 11 (𝜑 → ((𝑦𝐵) ↑m {𝐴}) = ((𝑦m {𝐴}) ∩ (𝐵m {𝐴})))
1211fveq2d 6893 . . . . . . . . . 10 (𝜑 → ((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴})) = ((voln*‘{𝐴})‘((𝑦m {𝐴}) ∩ (𝐵m {𝐴}))))
13 vonvolmbl.a . . . . . . . . . . . . 13 (𝜑𝐴𝑉)
142, 6, 13difmapsn 43897 . . . . . . . . . . . 12 (𝜑 → ((𝑦m {𝐴}) ∖ (𝐵m {𝐴})) = ((𝑦𝐵) ↑m {𝐴}))
1514eqcomd 2739 . . . . . . . . . . 11 (𝜑 → ((𝑦𝐵) ↑m {𝐴}) = ((𝑦m {𝐴}) ∖ (𝐵m {𝐴})))
1615fveq2d 6893 . . . . . . . . . 10 (𝜑 → ((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴})) = ((voln*‘{𝐴})‘((𝑦m {𝐴}) ∖ (𝐵m {𝐴}))))
1712, 16oveq12d 7424 . . . . . . . . 9 (𝜑 → (((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴})) +𝑒 ((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴}))) = (((voln*‘{𝐴})‘((𝑦m {𝐴}) ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘((𝑦m {𝐴}) ∖ (𝐵m {𝐴})))))
1817ad2antrr 725 . . . . . . . 8 (((𝜑 ∧ ∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥)) ∧ 𝑦 ∈ 𝒫 ℝ) → (((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴})) +𝑒 ((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴}))) = (((voln*‘{𝐴})‘((𝑦m {𝐴}) ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘((𝑦m {𝐴}) ∖ (𝐵m {𝐴})))))
19 ovexd 7441 . . . . . . . . . . . 12 (𝑦 ∈ 𝒫 ℝ → (𝑦m {𝐴}) ∈ V)
203a1i 11 . . . . . . . . . . . . 13 (𝑦 ∈ 𝒫 ℝ → ℝ ∈ V)
21 elpwi 4609 . . . . . . . . . . . . 13 (𝑦 ∈ 𝒫 ℝ → 𝑦 ⊆ ℝ)
22 mapss 8880 . . . . . . . . . . . . 13 ((ℝ ∈ V ∧ 𝑦 ⊆ ℝ) → (𝑦m {𝐴}) ⊆ (ℝ ↑m {𝐴}))
2320, 21, 22syl2anc 585 . . . . . . . . . . . 12 (𝑦 ∈ 𝒫 ℝ → (𝑦m {𝐴}) ⊆ (ℝ ↑m {𝐴}))
2419, 23elpwd 4608 . . . . . . . . . . 11 (𝑦 ∈ 𝒫 ℝ → (𝑦m {𝐴}) ∈ 𝒫 (ℝ ↑m {𝐴}))
2524adantl 483 . . . . . . . . . 10 ((∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥) ∧ 𝑦 ∈ 𝒫 ℝ) → (𝑦m {𝐴}) ∈ 𝒫 (ℝ ↑m {𝐴}))
26 simpl 484 . . . . . . . . . 10 ((∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥) ∧ 𝑦 ∈ 𝒫 ℝ) → ∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥))
27 ineq1 4205 . . . . . . . . . . . . . 14 (𝑥 = (𝑦m {𝐴}) → (𝑥 ∩ (𝐵m {𝐴})) = ((𝑦m {𝐴}) ∩ (𝐵m {𝐴})))
2827fveq2d 6893 . . . . . . . . . . . . 13 (𝑥 = (𝑦m {𝐴}) → ((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) = ((voln*‘{𝐴})‘((𝑦m {𝐴}) ∩ (𝐵m {𝐴}))))
29 difeq1 4115 . . . . . . . . . . . . . 14 (𝑥 = (𝑦m {𝐴}) → (𝑥 ∖ (𝐵m {𝐴})) = ((𝑦m {𝐴}) ∖ (𝐵m {𝐴})))
3029fveq2d 6893 . . . . . . . . . . . . 13 (𝑥 = (𝑦m {𝐴}) → ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴}))) = ((voln*‘{𝐴})‘((𝑦m {𝐴}) ∖ (𝐵m {𝐴}))))
3128, 30oveq12d 7424 . . . . . . . . . . . 12 (𝑥 = (𝑦m {𝐴}) → (((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = (((voln*‘{𝐴})‘((𝑦m {𝐴}) ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘((𝑦m {𝐴}) ∖ (𝐵m {𝐴})))))
32 fveq2 6889 . . . . . . . . . . . 12 (𝑥 = (𝑦m {𝐴}) → ((voln*‘{𝐴})‘𝑥) = ((voln*‘{𝐴})‘(𝑦m {𝐴})))
3331, 32eqeq12d 2749 . . . . . . . . . . 11 (𝑥 = (𝑦m {𝐴}) → ((((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥) ↔ (((voln*‘{𝐴})‘((𝑦m {𝐴}) ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘((𝑦m {𝐴}) ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘(𝑦m {𝐴}))))
3433rspcva 3611 . . . . . . . . . 10 (((𝑦m {𝐴}) ∈ 𝒫 (ℝ ↑m {𝐴}) ∧ ∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥)) → (((voln*‘{𝐴})‘((𝑦m {𝐴}) ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘((𝑦m {𝐴}) ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘(𝑦m {𝐴})))
3525, 26, 34syl2anc 585 . . . . . . . . 9 ((∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥) ∧ 𝑦 ∈ 𝒫 ℝ) → (((voln*‘{𝐴})‘((𝑦m {𝐴}) ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘((𝑦m {𝐴}) ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘(𝑦m {𝐴})))
3635adantll 713 . . . . . . . 8 (((𝜑 ∧ ∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥)) ∧ 𝑦 ∈ 𝒫 ℝ) → (((voln*‘{𝐴})‘((𝑦m {𝐴}) ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘((𝑦m {𝐴}) ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘(𝑦m {𝐴})))
37 eqidd 2734 . . . . . . . 8 (((𝜑 ∧ ∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥)) ∧ 𝑦 ∈ 𝒫 ℝ) → ((voln*‘{𝐴})‘(𝑦m {𝐴})) = ((voln*‘{𝐴})‘(𝑦m {𝐴})))
3818, 36, 373eqtrd 2777 . . . . . . 7 (((𝜑 ∧ ∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥)) ∧ 𝑦 ∈ 𝒫 ℝ) → (((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴})) +𝑒 ((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴}))) = ((voln*‘{𝐴})‘(𝑦m {𝐴})))
3938eqcomd 2739 . . . . . 6 (((𝜑 ∧ ∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥)) ∧ 𝑦 ∈ 𝒫 ℝ) → ((voln*‘{𝐴})‘(𝑦m {𝐴})) = (((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴})) +𝑒 ((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴}))))
4013adantr 482 . . . . . . . 8 ((𝜑𝑦 ∈ 𝒫 ℝ) → 𝐴𝑉)
4121adantl 483 . . . . . . . 8 ((𝜑𝑦 ∈ 𝒫 ℝ) → 𝑦 ⊆ ℝ)
4240, 41ovnovol 45362 . . . . . . 7 ((𝜑𝑦 ∈ 𝒫 ℝ) → ((voln*‘{𝐴})‘(𝑦m {𝐴})) = (vol*‘𝑦))
4342adantlr 714 . . . . . 6 (((𝜑 ∧ ∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥)) ∧ 𝑦 ∈ 𝒫 ℝ) → ((voln*‘{𝐴})‘(𝑦m {𝐴})) = (vol*‘𝑦))
4441ssinss1d 43721 . . . . . . . . 9 ((𝜑𝑦 ∈ 𝒫 ℝ) → (𝑦𝐵) ⊆ ℝ)
4540, 44ovnovol 45362 . . . . . . . 8 ((𝜑𝑦 ∈ 𝒫 ℝ) → ((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴})) = (vol*‘(𝑦𝐵)))
4641ssdifssd 4142 . . . . . . . . 9 ((𝜑𝑦 ∈ 𝒫 ℝ) → (𝑦𝐵) ⊆ ℝ)
4740, 46ovnovol 45362 . . . . . . . 8 ((𝜑𝑦 ∈ 𝒫 ℝ) → ((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴})) = (vol*‘(𝑦𝐵)))
4845, 47oveq12d 7424 . . . . . . 7 ((𝜑𝑦 ∈ 𝒫 ℝ) → (((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴})) +𝑒 ((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴}))) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵))))
4948adantlr 714 . . . . . 6 (((𝜑 ∧ ∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥)) ∧ 𝑦 ∈ 𝒫 ℝ) → (((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴})) +𝑒 ((voln*‘{𝐴})‘((𝑦𝐵) ↑m {𝐴}))) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵))))
5039, 43, 493eqtr3d 2781 . . . . 5 (((𝜑 ∧ ∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥)) ∧ 𝑦 ∈ 𝒫 ℝ) → (vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵))))
5150ralrimiva 3147 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥)) → ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵))))
5251ex 414 . . 3 (𝜑 → (∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥) → ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵)))))
5313ad2antrr 725 . . . . . 6 (((𝜑 ∧ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵)))) ∧ 𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})) → 𝐴𝑉)
545ad2antrr 725 . . . . . 6 (((𝜑 ∧ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵)))) ∧ 𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})) → 𝐵 ⊆ ℝ)
55 simplr 768 . . . . . 6 (((𝜑 ∧ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵)))) ∧ 𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})) → ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵))))
56 elpwi 4609 . . . . . . 7 (𝑥 ∈ 𝒫 (ℝ ↑m {𝐴}) → 𝑥 ⊆ (ℝ ↑m {𝐴}))
5756adantl 483 . . . . . 6 (((𝜑 ∧ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵)))) ∧ 𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})) → 𝑥 ⊆ (ℝ ↑m {𝐴}))
58 rneq 5934 . . . . . . 7 (𝑔 = 𝑓 → ran 𝑔 = ran 𝑓)
5958cbviunv 5043 . . . . . 6 𝑔𝑥 ran 𝑔 = 𝑓𝑥 ran 𝑓
6053, 54, 55, 57, 59vonvolmbllem 45363 . . . . 5 (((𝜑 ∧ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵)))) ∧ 𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})) → (((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥))
6160ralrimiva 3147 . . . 4 ((𝜑 ∧ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵)))) → ∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥))
6261ex 414 . . 3 (𝜑 → (∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵))) → ∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥)))
6352, 62impbid 211 . 2 (𝜑 → (∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥) ↔ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵)))))
64 mapss 8880 . . . 4 ((ℝ ∈ V ∧ 𝐵 ⊆ ℝ) → (𝐵m {𝐴}) ⊆ (ℝ ↑m {𝐴}))
654, 5, 64syl2anc 585 . . 3 (𝜑 → (𝐵m {𝐴}) ⊆ (ℝ ↑m {𝐴}))
668isvonmbl 45341 . . 3 (𝜑 → ((𝐵m {𝐴}) ∈ dom (voln‘{𝐴}) ↔ ((𝐵m {𝐴}) ⊆ (ℝ ↑m {𝐴}) ∧ ∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥))))
6765, 66mpbirand 706 . 2 (𝜑 → ((𝐵m {𝐴}) ∈ dom (voln‘{𝐴}) ↔ ∀𝑥 ∈ 𝒫 (ℝ ↑m {𝐴})(((voln*‘{𝐴})‘(𝑥 ∩ (𝐵m {𝐴}))) +𝑒 ((voln*‘{𝐴})‘(𝑥 ∖ (𝐵m {𝐴})))) = ((voln*‘{𝐴})‘𝑥)))
68 ismbl4 44696 . . . 4 (𝐵 ∈ dom vol ↔ (𝐵 ⊆ ℝ ∧ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵)))))
6968a1i 11 . . 3 (𝜑 → (𝐵 ∈ dom vol ↔ (𝐵 ⊆ ℝ ∧ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵))))))
705, 69mpbirand 706 . 2 (𝜑 → (𝐵 ∈ dom vol ↔ ∀𝑦 ∈ 𝒫 ℝ(vol*‘𝑦) = ((vol*‘(𝑦𝐵)) +𝑒 (vol*‘(𝑦𝐵)))))
7163, 67, 703bitr4d 311 1 (𝜑 → ((𝐵m {𝐴}) ∈ dom (voln‘{𝐴}) ↔ 𝐵 ∈ dom vol))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wral 3062  Vcvv 3475  cdif 3945  cin 3947  wss 3948  𝒫 cpw 4602  {csn 4628   ciun 4997  dom cdm 5676  ran crn 5677  cfv 6541  (class class class)co 7406  m cmap 8817  Fincfn 8936  cr 11106   +𝑒 cxad 13087  vol*covol 24971  volcvol 24972  voln*covoln 45239  volncvoln 45241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722  ax-inf2 9633  ax-cc 10427  ax-ac2 10455  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184  ax-pre-sup 11185  ax-addf 11186  ax-mulf 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-disj 5114  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7362  df-ov 7409  df-oprab 7410  df-mpo 7411  df-of 7667  df-om 7853  df-1st 7972  df-2nd 7973  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8368  df-rdg 8407  df-1o 8463  df-2o 8464  df-er 8700  df-map 8819  df-pm 8820  df-ixp 8889  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-fi 9403  df-sup 9434  df-inf 9435  df-oi 9502  df-dju 9893  df-card 9931  df-acn 9934  df-ac 10108  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-div 11869  df-nn 12210  df-2 12272  df-3 12273  df-4 12274  df-5 12275  df-6 12276  df-7 12277  df-8 12278  df-9 12279  df-n0 12470  df-z 12556  df-dec 12675  df-uz 12820  df-q 12930  df-rp 12972  df-xneg 13089  df-xadd 13090  df-xmul 13091  df-ioo 13325  df-ico 13327  df-icc 13328  df-fz 13482  df-fzo 13625  df-fl 13754  df-seq 13964  df-exp 14025  df-hash 14288  df-cj 15043  df-re 15044  df-im 15045  df-sqrt 15179  df-abs 15180  df-clim 15429  df-rlim 15430  df-sum 15630  df-prod 15847  df-struct 17077  df-sets 17094  df-slot 17112  df-ndx 17124  df-base 17142  df-ress 17171  df-plusg 17207  df-mulr 17208  df-starv 17209  df-tset 17213  df-ple 17214  df-ds 17216  df-unif 17217  df-rest 17365  df-0g 17384  df-topgen 17386  df-mgm 18558  df-sgrp 18607  df-mnd 18623  df-grp 18819  df-minusg 18820  df-subg 18998  df-cmn 19645  df-abl 19646  df-mgp 19983  df-ur 20000  df-ring 20052  df-cring 20053  df-oppr 20143  df-dvdsr 20164  df-unit 20165  df-invr 20195  df-dvr 20208  df-drng 20310  df-psmet 20929  df-xmet 20930  df-met 20931  df-bl 20932  df-mopn 20933  df-cnfld 20938  df-top 22388  df-topon 22405  df-bases 22441  df-cmp 22883  df-ovol 24973  df-vol 24974  df-sumge0 45066  df-ome 45193  df-caragen 45195  df-ovoln 45240  df-voln 45242
This theorem is referenced by:  vonvol  45365  vonvolmbl2  45366  vonvol2  45367
  Copyright terms: Public domain W3C validator