Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovolsplit Structured version   Visualization version   GIF version

Theorem ovolsplit 42136
Description: The Lebesgue outer measure function is finitely sub-additive: application to a set split in two parts, using addition for extended reals. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypothesis
Ref Expression
ovolsplit.1 (𝜑𝐴 ⊆ ℝ)
Assertion
Ref Expression
ovolsplit (𝜑 → (vol*‘𝐴) ≤ ((vol*‘(𝐴𝐵)) +𝑒 (vol*‘(𝐴𝐵))))

Proof of Theorem ovolsplit
StepHypRef Expression
1 inundif 4429 . . . . 5 ((𝐴𝐵) ∪ (𝐴𝐵)) = 𝐴
21eqcomi 2833 . . . 4 𝐴 = ((𝐴𝐵) ∪ (𝐴𝐵))
32a1i 11 . . 3 (𝜑𝐴 = ((𝐴𝐵) ∪ (𝐴𝐵)))
43fveq2d 6670 . 2 (𝜑 → (vol*‘𝐴) = (vol*‘((𝐴𝐵) ∪ (𝐴𝐵))))
5 ovolsplit.1 . . . . . . . . 9 (𝜑𝐴 ⊆ ℝ)
65ssinss1d 41172 . . . . . . . 8 (𝜑 → (𝐴𝐵) ⊆ ℝ)
75ssdifssd 4122 . . . . . . . 8 (𝜑 → (𝐴𝐵) ⊆ ℝ)
86, 7unssd 4165 . . . . . . 7 (𝜑 → ((𝐴𝐵) ∪ (𝐴𝐵)) ⊆ ℝ)
9 ovolcl 23994 . . . . . . 7 (((𝐴𝐵) ∪ (𝐴𝐵)) ⊆ ℝ → (vol*‘((𝐴𝐵) ∪ (𝐴𝐵))) ∈ ℝ*)
108, 9syl 17 . . . . . 6 (𝜑 → (vol*‘((𝐴𝐵) ∪ (𝐴𝐵))) ∈ ℝ*)
11 pnfge 12518 . . . . . 6 ((vol*‘((𝐴𝐵) ∪ (𝐴𝐵))) ∈ ℝ* → (vol*‘((𝐴𝐵) ∪ (𝐴𝐵))) ≤ +∞)
1210, 11syl 17 . . . . 5 (𝜑 → (vol*‘((𝐴𝐵) ∪ (𝐴𝐵))) ≤ +∞)
1312adantr 481 . . . 4 ((𝜑 ∧ (vol*‘(𝐴𝐵)) = +∞) → (vol*‘((𝐴𝐵) ∪ (𝐴𝐵))) ≤ +∞)
14 oveq1 7158 . . . . . 6 ((vol*‘(𝐴𝐵)) = +∞ → ((vol*‘(𝐴𝐵)) +𝑒 (vol*‘(𝐴𝐵))) = (+∞ +𝑒 (vol*‘(𝐴𝐵))))
1514adantl 482 . . . . 5 ((𝜑 ∧ (vol*‘(𝐴𝐵)) = +∞) → ((vol*‘(𝐴𝐵)) +𝑒 (vol*‘(𝐴𝐵))) = (+∞ +𝑒 (vol*‘(𝐴𝐵))))
16 ovolcl 23994 . . . . . . . 8 ((𝐴𝐵) ⊆ ℝ → (vol*‘(𝐴𝐵)) ∈ ℝ*)
177, 16syl 17 . . . . . . 7 (𝜑 → (vol*‘(𝐴𝐵)) ∈ ℝ*)
1817adantr 481 . . . . . 6 ((𝜑 ∧ (vol*‘(𝐴𝐵)) = +∞) → (vol*‘(𝐴𝐵)) ∈ ℝ*)
19 reex 10620 . . . . . . . . . . . . . 14 ℝ ∈ V
2019a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℝ ∈ V)
2120, 5ssexd 5224 . . . . . . . . . . . 12 (𝜑𝐴 ∈ V)
22 difexg 5227 . . . . . . . . . . . 12 (𝐴 ∈ V → (𝐴𝐵) ∈ V)
2321, 22syl 17 . . . . . . . . . . 11 (𝜑 → (𝐴𝐵) ∈ V)
24 elpwg 4547 . . . . . . . . . . 11 ((𝐴𝐵) ∈ V → ((𝐴𝐵) ∈ 𝒫 ℝ ↔ (𝐴𝐵) ⊆ ℝ))
2523, 24syl 17 . . . . . . . . . 10 (𝜑 → ((𝐴𝐵) ∈ 𝒫 ℝ ↔ (𝐴𝐵) ⊆ ℝ))
267, 25mpbird 258 . . . . . . . . 9 (𝜑 → (𝐴𝐵) ∈ 𝒫 ℝ)
27 ovolf 23998 . . . . . . . . . 10 vol*:𝒫 ℝ⟶(0[,]+∞)
2827ffvelrni 6845 . . . . . . . . 9 ((𝐴𝐵) ∈ 𝒫 ℝ → (vol*‘(𝐴𝐵)) ∈ (0[,]+∞))
2926, 28syl 17 . . . . . . . 8 (𝜑 → (vol*‘(𝐴𝐵)) ∈ (0[,]+∞))
3029xrge0nemnfd 41462 . . . . . . 7 (𝜑 → (vol*‘(𝐴𝐵)) ≠ -∞)
3130adantr 481 . . . . . 6 ((𝜑 ∧ (vol*‘(𝐴𝐵)) = +∞) → (vol*‘(𝐴𝐵)) ≠ -∞)
32 xaddpnf2 12613 . . . . . 6 (((vol*‘(𝐴𝐵)) ∈ ℝ* ∧ (vol*‘(𝐴𝐵)) ≠ -∞) → (+∞ +𝑒 (vol*‘(𝐴𝐵))) = +∞)
3318, 31, 32syl2anc 584 . . . . 5 ((𝜑 ∧ (vol*‘(𝐴𝐵)) = +∞) → (+∞ +𝑒 (vol*‘(𝐴𝐵))) = +∞)
3415, 33eqtr2d 2861 . . . 4 ((𝜑 ∧ (vol*‘(𝐴𝐵)) = +∞) → +∞ = ((vol*‘(𝐴𝐵)) +𝑒 (vol*‘(𝐴𝐵))))
3513, 34breqtrd 5088 . . 3 ((𝜑 ∧ (vol*‘(𝐴𝐵)) = +∞) → (vol*‘((𝐴𝐵) ∪ (𝐴𝐵))) ≤ ((vol*‘(𝐴𝐵)) +𝑒 (vol*‘(𝐴𝐵))))
36 simpl 483 . . . 4 ((𝜑 ∧ ¬ (vol*‘(𝐴𝐵)) = +∞) → 𝜑)
3720, 6sselpwd 5226 . . . . . . 7 (𝜑 → (𝐴𝐵) ∈ 𝒫 ℝ)
3827ffvelrni 6845 . . . . . . 7 ((𝐴𝐵) ∈ 𝒫 ℝ → (vol*‘(𝐴𝐵)) ∈ (0[,]+∞))
3937, 38syl 17 . . . . . 6 (𝜑 → (vol*‘(𝐴𝐵)) ∈ (0[,]+∞))
4039adantr 481 . . . . 5 ((𝜑 ∧ ¬ (vol*‘(𝐴𝐵)) = +∞) → (vol*‘(𝐴𝐵)) ∈ (0[,]+∞))
41 neqne 3028 . . . . . 6 (¬ (vol*‘(𝐴𝐵)) = +∞ → (vol*‘(𝐴𝐵)) ≠ +∞)
4241adantl 482 . . . . 5 ((𝜑 ∧ ¬ (vol*‘(𝐴𝐵)) = +∞) → (vol*‘(𝐴𝐵)) ≠ +∞)
43 ge0xrre 41669 . . . . 5 (((vol*‘(𝐴𝐵)) ∈ (0[,]+∞) ∧ (vol*‘(𝐴𝐵)) ≠ +∞) → (vol*‘(𝐴𝐵)) ∈ ℝ)
4440, 42, 43syl2anc 584 . . . 4 ((𝜑 ∧ ¬ (vol*‘(𝐴𝐵)) = +∞) → (vol*‘(𝐴𝐵)) ∈ ℝ)
4512adantr 481 . . . . . . 7 ((𝜑 ∧ (vol*‘(𝐴𝐵)) = +∞) → (vol*‘((𝐴𝐵) ∪ (𝐴𝐵))) ≤ +∞)
46 oveq2 7159 . . . . . . . . 9 ((vol*‘(𝐴𝐵)) = +∞ → ((vol*‘(𝐴𝐵)) +𝑒 (vol*‘(𝐴𝐵))) = ((vol*‘(𝐴𝐵)) +𝑒 +∞))
4746adantl 482 . . . . . . . 8 ((𝜑 ∧ (vol*‘(𝐴𝐵)) = +∞) → ((vol*‘(𝐴𝐵)) +𝑒 (vol*‘(𝐴𝐵))) = ((vol*‘(𝐴𝐵)) +𝑒 +∞))
48 ovolcl 23994 . . . . . . . . . . 11 ((𝐴𝐵) ⊆ ℝ → (vol*‘(𝐴𝐵)) ∈ ℝ*)
496, 48syl 17 . . . . . . . . . 10 (𝜑 → (vol*‘(𝐴𝐵)) ∈ ℝ*)
5039xrge0nemnfd 41462 . . . . . . . . . 10 (𝜑 → (vol*‘(𝐴𝐵)) ≠ -∞)
51 xaddpnf1 12612 . . . . . . . . . 10 (((vol*‘(𝐴𝐵)) ∈ ℝ* ∧ (vol*‘(𝐴𝐵)) ≠ -∞) → ((vol*‘(𝐴𝐵)) +𝑒 +∞) = +∞)
5249, 50, 51syl2anc 584 . . . . . . . . 9 (𝜑 → ((vol*‘(𝐴𝐵)) +𝑒 +∞) = +∞)
5352adantr 481 . . . . . . . 8 ((𝜑 ∧ (vol*‘(𝐴𝐵)) = +∞) → ((vol*‘(𝐴𝐵)) +𝑒 +∞) = +∞)
5447, 53eqtr2d 2861 . . . . . . 7 ((𝜑 ∧ (vol*‘(𝐴𝐵)) = +∞) → +∞ = ((vol*‘(𝐴𝐵)) +𝑒 (vol*‘(𝐴𝐵))))
5545, 54breqtrd 5088 . . . . . 6 ((𝜑 ∧ (vol*‘(𝐴𝐵)) = +∞) → (vol*‘((𝐴𝐵) ∪ (𝐴𝐵))) ≤ ((vol*‘(𝐴𝐵)) +𝑒 (vol*‘(𝐴𝐵))))
5655adantlr 711 . . . . 5 (((𝜑 ∧ (vol*‘(𝐴𝐵)) ∈ ℝ) ∧ (vol*‘(𝐴𝐵)) = +∞) → (vol*‘((𝐴𝐵) ∪ (𝐴𝐵))) ≤ ((vol*‘(𝐴𝐵)) +𝑒 (vol*‘(𝐴𝐵))))
57 simpll 763 . . . . . 6 (((𝜑 ∧ (vol*‘(𝐴𝐵)) ∈ ℝ) ∧ ¬ (vol*‘(𝐴𝐵)) = +∞) → 𝜑)
58 simplr 765 . . . . . 6 (((𝜑 ∧ (vol*‘(𝐴𝐵)) ∈ ℝ) ∧ ¬ (vol*‘(𝐴𝐵)) = +∞) → (vol*‘(𝐴𝐵)) ∈ ℝ)
5929adantr 481 . . . . . . . 8 ((𝜑 ∧ ¬ (vol*‘(𝐴𝐵)) = +∞) → (vol*‘(𝐴𝐵)) ∈ (0[,]+∞))
60 neqne 3028 . . . . . . . . 9 (¬ (vol*‘(𝐴𝐵)) = +∞ → (vol*‘(𝐴𝐵)) ≠ +∞)
6160adantl 482 . . . . . . . 8 ((𝜑 ∧ ¬ (vol*‘(𝐴𝐵)) = +∞) → (vol*‘(𝐴𝐵)) ≠ +∞)
62 ge0xrre 41669 . . . . . . . 8 (((vol*‘(𝐴𝐵)) ∈ (0[,]+∞) ∧ (vol*‘(𝐴𝐵)) ≠ +∞) → (vol*‘(𝐴𝐵)) ∈ ℝ)
6359, 61, 62syl2anc 584 . . . . . . 7 ((𝜑 ∧ ¬ (vol*‘(𝐴𝐵)) = +∞) → (vol*‘(𝐴𝐵)) ∈ ℝ)
6463adantlr 711 . . . . . 6 (((𝜑 ∧ (vol*‘(𝐴𝐵)) ∈ ℝ) ∧ ¬ (vol*‘(𝐴𝐵)) = +∞) → (vol*‘(𝐴𝐵)) ∈ ℝ)
6563ad2ant1 1127 . . . . . . . 8 ((𝜑 ∧ (vol*‘(𝐴𝐵)) ∈ ℝ ∧ (vol*‘(𝐴𝐵)) ∈ ℝ) → (𝐴𝐵) ⊆ ℝ)
66 simp2 1131 . . . . . . . 8 ((𝜑 ∧ (vol*‘(𝐴𝐵)) ∈ ℝ ∧ (vol*‘(𝐴𝐵)) ∈ ℝ) → (vol*‘(𝐴𝐵)) ∈ ℝ)
6773ad2ant1 1127 . . . . . . . 8 ((𝜑 ∧ (vol*‘(𝐴𝐵)) ∈ ℝ ∧ (vol*‘(𝐴𝐵)) ∈ ℝ) → (𝐴𝐵) ⊆ ℝ)
68 simp3 1132 . . . . . . . 8 ((𝜑 ∧ (vol*‘(𝐴𝐵)) ∈ ℝ ∧ (vol*‘(𝐴𝐵)) ∈ ℝ) → (vol*‘(𝐴𝐵)) ∈ ℝ)
69 ovolun 24015 . . . . . . . 8 ((((𝐴𝐵) ⊆ ℝ ∧ (vol*‘(𝐴𝐵)) ∈ ℝ) ∧ ((𝐴𝐵) ⊆ ℝ ∧ (vol*‘(𝐴𝐵)) ∈ ℝ)) → (vol*‘((𝐴𝐵) ∪ (𝐴𝐵))) ≤ ((vol*‘(𝐴𝐵)) + (vol*‘(𝐴𝐵))))
7065, 66, 67, 68, 69syl22anc 836 . . . . . . 7 ((𝜑 ∧ (vol*‘(𝐴𝐵)) ∈ ℝ ∧ (vol*‘(𝐴𝐵)) ∈ ℝ) → (vol*‘((𝐴𝐵) ∪ (𝐴𝐵))) ≤ ((vol*‘(𝐴𝐵)) + (vol*‘(𝐴𝐵))))
71 rexadd 12618 . . . . . . . . 9 (((vol*‘(𝐴𝐵)) ∈ ℝ ∧ (vol*‘(𝐴𝐵)) ∈ ℝ) → ((vol*‘(𝐴𝐵)) +𝑒 (vol*‘(𝐴𝐵))) = ((vol*‘(𝐴𝐵)) + (vol*‘(𝐴𝐵))))
7271eqcomd 2830 . . . . . . . 8 (((vol*‘(𝐴𝐵)) ∈ ℝ ∧ (vol*‘(𝐴𝐵)) ∈ ℝ) → ((vol*‘(𝐴𝐵)) + (vol*‘(𝐴𝐵))) = ((vol*‘(𝐴𝐵)) +𝑒 (vol*‘(𝐴𝐵))))
73723adant1 1124 . . . . . . 7 ((𝜑 ∧ (vol*‘(𝐴𝐵)) ∈ ℝ ∧ (vol*‘(𝐴𝐵)) ∈ ℝ) → ((vol*‘(𝐴𝐵)) + (vol*‘(𝐴𝐵))) = ((vol*‘(𝐴𝐵)) +𝑒 (vol*‘(𝐴𝐵))))
7470, 73breqtrd 5088 . . . . . 6 ((𝜑 ∧ (vol*‘(𝐴𝐵)) ∈ ℝ ∧ (vol*‘(𝐴𝐵)) ∈ ℝ) → (vol*‘((𝐴𝐵) ∪ (𝐴𝐵))) ≤ ((vol*‘(𝐴𝐵)) +𝑒 (vol*‘(𝐴𝐵))))
7557, 58, 64, 74syl3anc 1365 . . . . 5 (((𝜑 ∧ (vol*‘(𝐴𝐵)) ∈ ℝ) ∧ ¬ (vol*‘(𝐴𝐵)) = +∞) → (vol*‘((𝐴𝐵) ∪ (𝐴𝐵))) ≤ ((vol*‘(𝐴𝐵)) +𝑒 (vol*‘(𝐴𝐵))))
7656, 75pm2.61dan 809 . . . 4 ((𝜑 ∧ (vol*‘(𝐴𝐵)) ∈ ℝ) → (vol*‘((𝐴𝐵) ∪ (𝐴𝐵))) ≤ ((vol*‘(𝐴𝐵)) +𝑒 (vol*‘(𝐴𝐵))))
7736, 44, 76syl2anc 584 . . 3 ((𝜑 ∧ ¬ (vol*‘(𝐴𝐵)) = +∞) → (vol*‘((𝐴𝐵) ∪ (𝐴𝐵))) ≤ ((vol*‘(𝐴𝐵)) +𝑒 (vol*‘(𝐴𝐵))))
7835, 77pm2.61dan 809 . 2 (𝜑 → (vol*‘((𝐴𝐵) ∪ (𝐴𝐵))) ≤ ((vol*‘(𝐴𝐵)) +𝑒 (vol*‘(𝐴𝐵))))
794, 78eqbrtrd 5084 1 (𝜑 → (vol*‘𝐴) ≤ ((vol*‘(𝐴𝐵)) +𝑒 (vol*‘(𝐴𝐵))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1081   = wceq 1530  wcel 2106  wne 3020  Vcvv 3499  cdif 3936  cun 3937  cin 3938  wss 3939  𝒫 cpw 4541   class class class wbr 5062  cfv 6351  (class class class)co 7151  cr 10528  0cc0 10529   + caddc 10532  +∞cpnf 10664  -∞cmnf 10665  *cxr 10666  cle 10668   +𝑒 cxad 12498  [,]cicc 12734  vol*covol 23978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2152  ax-12 2167  ax-ext 2796  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2615  df-eu 2649  df-clab 2803  df-cleq 2817  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8282  df-map 8401  df-en 8502  df-dom 8503  df-sdom 8504  df-sup 8898  df-inf 8899  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-q 12341  df-rp 12383  df-xadd 12501  df-ioo 12735  df-ico 12737  df-icc 12738  df-fz 12886  df-fl 13155  df-seq 13363  df-exp 13423  df-cj 14451  df-re 14452  df-im 14453  df-sqrt 14587  df-abs 14588  df-ovol 23980
This theorem is referenced by:  ismbl4  42141
  Copyright terms: Public domain W3C validator