Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovolsplit Structured version   Visualization version   GIF version

Theorem ovolsplit 43529
Description: The Lebesgue outer measure function is finitely sub-additive: application to a set split in two parts, using addition for extended reals. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypothesis
Ref Expression
ovolsplit.1 (𝜑𝐴 ⊆ ℝ)
Assertion
Ref Expression
ovolsplit (𝜑 → (vol*‘𝐴) ≤ ((vol*‘(𝐴𝐵)) +𝑒 (vol*‘(𝐴𝐵))))

Proof of Theorem ovolsplit
StepHypRef Expression
1 inundif 4412 . . . . 5 ((𝐴𝐵) ∪ (𝐴𝐵)) = 𝐴
21eqcomi 2747 . . . 4 𝐴 = ((𝐴𝐵) ∪ (𝐴𝐵))
32a1i 11 . . 3 (𝜑𝐴 = ((𝐴𝐵) ∪ (𝐴𝐵)))
43fveq2d 6778 . 2 (𝜑 → (vol*‘𝐴) = (vol*‘((𝐴𝐵) ∪ (𝐴𝐵))))
5 ovolsplit.1 . . . . . . . . 9 (𝜑𝐴 ⊆ ℝ)
65ssinss1d 42596 . . . . . . . 8 (𝜑 → (𝐴𝐵) ⊆ ℝ)
75ssdifssd 4077 . . . . . . . 8 (𝜑 → (𝐴𝐵) ⊆ ℝ)
86, 7unssd 4120 . . . . . . 7 (𝜑 → ((𝐴𝐵) ∪ (𝐴𝐵)) ⊆ ℝ)
9 ovolcl 24642 . . . . . . 7 (((𝐴𝐵) ∪ (𝐴𝐵)) ⊆ ℝ → (vol*‘((𝐴𝐵) ∪ (𝐴𝐵))) ∈ ℝ*)
108, 9syl 17 . . . . . 6 (𝜑 → (vol*‘((𝐴𝐵) ∪ (𝐴𝐵))) ∈ ℝ*)
11 pnfge 12866 . . . . . 6 ((vol*‘((𝐴𝐵) ∪ (𝐴𝐵))) ∈ ℝ* → (vol*‘((𝐴𝐵) ∪ (𝐴𝐵))) ≤ +∞)
1210, 11syl 17 . . . . 5 (𝜑 → (vol*‘((𝐴𝐵) ∪ (𝐴𝐵))) ≤ +∞)
1312adantr 481 . . . 4 ((𝜑 ∧ (vol*‘(𝐴𝐵)) = +∞) → (vol*‘((𝐴𝐵) ∪ (𝐴𝐵))) ≤ +∞)
14 oveq1 7282 . . . . . 6 ((vol*‘(𝐴𝐵)) = +∞ → ((vol*‘(𝐴𝐵)) +𝑒 (vol*‘(𝐴𝐵))) = (+∞ +𝑒 (vol*‘(𝐴𝐵))))
1514adantl 482 . . . . 5 ((𝜑 ∧ (vol*‘(𝐴𝐵)) = +∞) → ((vol*‘(𝐴𝐵)) +𝑒 (vol*‘(𝐴𝐵))) = (+∞ +𝑒 (vol*‘(𝐴𝐵))))
16 ovolcl 24642 . . . . . . . 8 ((𝐴𝐵) ⊆ ℝ → (vol*‘(𝐴𝐵)) ∈ ℝ*)
177, 16syl 17 . . . . . . 7 (𝜑 → (vol*‘(𝐴𝐵)) ∈ ℝ*)
1817adantr 481 . . . . . 6 ((𝜑 ∧ (vol*‘(𝐴𝐵)) = +∞) → (vol*‘(𝐴𝐵)) ∈ ℝ*)
19 reex 10962 . . . . . . . . . . . . . 14 ℝ ∈ V
2019a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℝ ∈ V)
2120, 5ssexd 5248 . . . . . . . . . . . 12 (𝜑𝐴 ∈ V)
2221difexd 5253 . . . . . . . . . . 11 (𝜑 → (𝐴𝐵) ∈ V)
23 elpwg 4536 . . . . . . . . . . 11 ((𝐴𝐵) ∈ V → ((𝐴𝐵) ∈ 𝒫 ℝ ↔ (𝐴𝐵) ⊆ ℝ))
2422, 23syl 17 . . . . . . . . . 10 (𝜑 → ((𝐴𝐵) ∈ 𝒫 ℝ ↔ (𝐴𝐵) ⊆ ℝ))
257, 24mpbird 256 . . . . . . . . 9 (𝜑 → (𝐴𝐵) ∈ 𝒫 ℝ)
26 ovolf 24646 . . . . . . . . . 10 vol*:𝒫 ℝ⟶(0[,]+∞)
2726ffvelrni 6960 . . . . . . . . 9 ((𝐴𝐵) ∈ 𝒫 ℝ → (vol*‘(𝐴𝐵)) ∈ (0[,]+∞))
2825, 27syl 17 . . . . . . . 8 (𝜑 → (vol*‘(𝐴𝐵)) ∈ (0[,]+∞))
2928xrge0nemnfd 42871 . . . . . . 7 (𝜑 → (vol*‘(𝐴𝐵)) ≠ -∞)
3029adantr 481 . . . . . 6 ((𝜑 ∧ (vol*‘(𝐴𝐵)) = +∞) → (vol*‘(𝐴𝐵)) ≠ -∞)
31 xaddpnf2 12961 . . . . . 6 (((vol*‘(𝐴𝐵)) ∈ ℝ* ∧ (vol*‘(𝐴𝐵)) ≠ -∞) → (+∞ +𝑒 (vol*‘(𝐴𝐵))) = +∞)
3218, 30, 31syl2anc 584 . . . . 5 ((𝜑 ∧ (vol*‘(𝐴𝐵)) = +∞) → (+∞ +𝑒 (vol*‘(𝐴𝐵))) = +∞)
3315, 32eqtr2d 2779 . . . 4 ((𝜑 ∧ (vol*‘(𝐴𝐵)) = +∞) → +∞ = ((vol*‘(𝐴𝐵)) +𝑒 (vol*‘(𝐴𝐵))))
3413, 33breqtrd 5100 . . 3 ((𝜑 ∧ (vol*‘(𝐴𝐵)) = +∞) → (vol*‘((𝐴𝐵) ∪ (𝐴𝐵))) ≤ ((vol*‘(𝐴𝐵)) +𝑒 (vol*‘(𝐴𝐵))))
35 simpl 483 . . . 4 ((𝜑 ∧ ¬ (vol*‘(𝐴𝐵)) = +∞) → 𝜑)
3620, 6sselpwd 5250 . . . . . . 7 (𝜑 → (𝐴𝐵) ∈ 𝒫 ℝ)
3726ffvelrni 6960 . . . . . . 7 ((𝐴𝐵) ∈ 𝒫 ℝ → (vol*‘(𝐴𝐵)) ∈ (0[,]+∞))
3836, 37syl 17 . . . . . 6 (𝜑 → (vol*‘(𝐴𝐵)) ∈ (0[,]+∞))
3938adantr 481 . . . . 5 ((𝜑 ∧ ¬ (vol*‘(𝐴𝐵)) = +∞) → (vol*‘(𝐴𝐵)) ∈ (0[,]+∞))
40 neqne 2951 . . . . . 6 (¬ (vol*‘(𝐴𝐵)) = +∞ → (vol*‘(𝐴𝐵)) ≠ +∞)
4140adantl 482 . . . . 5 ((𝜑 ∧ ¬ (vol*‘(𝐴𝐵)) = +∞) → (vol*‘(𝐴𝐵)) ≠ +∞)
42 ge0xrre 43069 . . . . 5 (((vol*‘(𝐴𝐵)) ∈ (0[,]+∞) ∧ (vol*‘(𝐴𝐵)) ≠ +∞) → (vol*‘(𝐴𝐵)) ∈ ℝ)
4339, 41, 42syl2anc 584 . . . 4 ((𝜑 ∧ ¬ (vol*‘(𝐴𝐵)) = +∞) → (vol*‘(𝐴𝐵)) ∈ ℝ)
4412adantr 481 . . . . . . 7 ((𝜑 ∧ (vol*‘(𝐴𝐵)) = +∞) → (vol*‘((𝐴𝐵) ∪ (𝐴𝐵))) ≤ +∞)
45 oveq2 7283 . . . . . . . . 9 ((vol*‘(𝐴𝐵)) = +∞ → ((vol*‘(𝐴𝐵)) +𝑒 (vol*‘(𝐴𝐵))) = ((vol*‘(𝐴𝐵)) +𝑒 +∞))
4645adantl 482 . . . . . . . 8 ((𝜑 ∧ (vol*‘(𝐴𝐵)) = +∞) → ((vol*‘(𝐴𝐵)) +𝑒 (vol*‘(𝐴𝐵))) = ((vol*‘(𝐴𝐵)) +𝑒 +∞))
47 ovolcl 24642 . . . . . . . . . . 11 ((𝐴𝐵) ⊆ ℝ → (vol*‘(𝐴𝐵)) ∈ ℝ*)
486, 47syl 17 . . . . . . . . . 10 (𝜑 → (vol*‘(𝐴𝐵)) ∈ ℝ*)
4938xrge0nemnfd 42871 . . . . . . . . . 10 (𝜑 → (vol*‘(𝐴𝐵)) ≠ -∞)
50 xaddpnf1 12960 . . . . . . . . . 10 (((vol*‘(𝐴𝐵)) ∈ ℝ* ∧ (vol*‘(𝐴𝐵)) ≠ -∞) → ((vol*‘(𝐴𝐵)) +𝑒 +∞) = +∞)
5148, 49, 50syl2anc 584 . . . . . . . . 9 (𝜑 → ((vol*‘(𝐴𝐵)) +𝑒 +∞) = +∞)
5251adantr 481 . . . . . . . 8 ((𝜑 ∧ (vol*‘(𝐴𝐵)) = +∞) → ((vol*‘(𝐴𝐵)) +𝑒 +∞) = +∞)
5346, 52eqtr2d 2779 . . . . . . 7 ((𝜑 ∧ (vol*‘(𝐴𝐵)) = +∞) → +∞ = ((vol*‘(𝐴𝐵)) +𝑒 (vol*‘(𝐴𝐵))))
5444, 53breqtrd 5100 . . . . . 6 ((𝜑 ∧ (vol*‘(𝐴𝐵)) = +∞) → (vol*‘((𝐴𝐵) ∪ (𝐴𝐵))) ≤ ((vol*‘(𝐴𝐵)) +𝑒 (vol*‘(𝐴𝐵))))
5554adantlr 712 . . . . 5 (((𝜑 ∧ (vol*‘(𝐴𝐵)) ∈ ℝ) ∧ (vol*‘(𝐴𝐵)) = +∞) → (vol*‘((𝐴𝐵) ∪ (𝐴𝐵))) ≤ ((vol*‘(𝐴𝐵)) +𝑒 (vol*‘(𝐴𝐵))))
56 simpll 764 . . . . . 6 (((𝜑 ∧ (vol*‘(𝐴𝐵)) ∈ ℝ) ∧ ¬ (vol*‘(𝐴𝐵)) = +∞) → 𝜑)
57 simplr 766 . . . . . 6 (((𝜑 ∧ (vol*‘(𝐴𝐵)) ∈ ℝ) ∧ ¬ (vol*‘(𝐴𝐵)) = +∞) → (vol*‘(𝐴𝐵)) ∈ ℝ)
5828adantr 481 . . . . . . . 8 ((𝜑 ∧ ¬ (vol*‘(𝐴𝐵)) = +∞) → (vol*‘(𝐴𝐵)) ∈ (0[,]+∞))
59 neqne 2951 . . . . . . . . 9 (¬ (vol*‘(𝐴𝐵)) = +∞ → (vol*‘(𝐴𝐵)) ≠ +∞)
6059adantl 482 . . . . . . . 8 ((𝜑 ∧ ¬ (vol*‘(𝐴𝐵)) = +∞) → (vol*‘(𝐴𝐵)) ≠ +∞)
61 ge0xrre 43069 . . . . . . . 8 (((vol*‘(𝐴𝐵)) ∈ (0[,]+∞) ∧ (vol*‘(𝐴𝐵)) ≠ +∞) → (vol*‘(𝐴𝐵)) ∈ ℝ)
6258, 60, 61syl2anc 584 . . . . . . 7 ((𝜑 ∧ ¬ (vol*‘(𝐴𝐵)) = +∞) → (vol*‘(𝐴𝐵)) ∈ ℝ)
6362adantlr 712 . . . . . 6 (((𝜑 ∧ (vol*‘(𝐴𝐵)) ∈ ℝ) ∧ ¬ (vol*‘(𝐴𝐵)) = +∞) → (vol*‘(𝐴𝐵)) ∈ ℝ)
6463ad2ant1 1132 . . . . . . . 8 ((𝜑 ∧ (vol*‘(𝐴𝐵)) ∈ ℝ ∧ (vol*‘(𝐴𝐵)) ∈ ℝ) → (𝐴𝐵) ⊆ ℝ)
65 simp2 1136 . . . . . . . 8 ((𝜑 ∧ (vol*‘(𝐴𝐵)) ∈ ℝ ∧ (vol*‘(𝐴𝐵)) ∈ ℝ) → (vol*‘(𝐴𝐵)) ∈ ℝ)
6673ad2ant1 1132 . . . . . . . 8 ((𝜑 ∧ (vol*‘(𝐴𝐵)) ∈ ℝ ∧ (vol*‘(𝐴𝐵)) ∈ ℝ) → (𝐴𝐵) ⊆ ℝ)
67 simp3 1137 . . . . . . . 8 ((𝜑 ∧ (vol*‘(𝐴𝐵)) ∈ ℝ ∧ (vol*‘(𝐴𝐵)) ∈ ℝ) → (vol*‘(𝐴𝐵)) ∈ ℝ)
68 ovolun 24663 . . . . . . . 8 ((((𝐴𝐵) ⊆ ℝ ∧ (vol*‘(𝐴𝐵)) ∈ ℝ) ∧ ((𝐴𝐵) ⊆ ℝ ∧ (vol*‘(𝐴𝐵)) ∈ ℝ)) → (vol*‘((𝐴𝐵) ∪ (𝐴𝐵))) ≤ ((vol*‘(𝐴𝐵)) + (vol*‘(𝐴𝐵))))
6964, 65, 66, 67, 68syl22anc 836 . . . . . . 7 ((𝜑 ∧ (vol*‘(𝐴𝐵)) ∈ ℝ ∧ (vol*‘(𝐴𝐵)) ∈ ℝ) → (vol*‘((𝐴𝐵) ∪ (𝐴𝐵))) ≤ ((vol*‘(𝐴𝐵)) + (vol*‘(𝐴𝐵))))
70 rexadd 12966 . . . . . . . . 9 (((vol*‘(𝐴𝐵)) ∈ ℝ ∧ (vol*‘(𝐴𝐵)) ∈ ℝ) → ((vol*‘(𝐴𝐵)) +𝑒 (vol*‘(𝐴𝐵))) = ((vol*‘(𝐴𝐵)) + (vol*‘(𝐴𝐵))))
7170eqcomd 2744 . . . . . . . 8 (((vol*‘(𝐴𝐵)) ∈ ℝ ∧ (vol*‘(𝐴𝐵)) ∈ ℝ) → ((vol*‘(𝐴𝐵)) + (vol*‘(𝐴𝐵))) = ((vol*‘(𝐴𝐵)) +𝑒 (vol*‘(𝐴𝐵))))
72713adant1 1129 . . . . . . 7 ((𝜑 ∧ (vol*‘(𝐴𝐵)) ∈ ℝ ∧ (vol*‘(𝐴𝐵)) ∈ ℝ) → ((vol*‘(𝐴𝐵)) + (vol*‘(𝐴𝐵))) = ((vol*‘(𝐴𝐵)) +𝑒 (vol*‘(𝐴𝐵))))
7369, 72breqtrd 5100 . . . . . 6 ((𝜑 ∧ (vol*‘(𝐴𝐵)) ∈ ℝ ∧ (vol*‘(𝐴𝐵)) ∈ ℝ) → (vol*‘((𝐴𝐵) ∪ (𝐴𝐵))) ≤ ((vol*‘(𝐴𝐵)) +𝑒 (vol*‘(𝐴𝐵))))
7456, 57, 63, 73syl3anc 1370 . . . . 5 (((𝜑 ∧ (vol*‘(𝐴𝐵)) ∈ ℝ) ∧ ¬ (vol*‘(𝐴𝐵)) = +∞) → (vol*‘((𝐴𝐵) ∪ (𝐴𝐵))) ≤ ((vol*‘(𝐴𝐵)) +𝑒 (vol*‘(𝐴𝐵))))
7555, 74pm2.61dan 810 . . . 4 ((𝜑 ∧ (vol*‘(𝐴𝐵)) ∈ ℝ) → (vol*‘((𝐴𝐵) ∪ (𝐴𝐵))) ≤ ((vol*‘(𝐴𝐵)) +𝑒 (vol*‘(𝐴𝐵))))
7635, 43, 75syl2anc 584 . . 3 ((𝜑 ∧ ¬ (vol*‘(𝐴𝐵)) = +∞) → (vol*‘((𝐴𝐵) ∪ (𝐴𝐵))) ≤ ((vol*‘(𝐴𝐵)) +𝑒 (vol*‘(𝐴𝐵))))
7734, 76pm2.61dan 810 . 2 (𝜑 → (vol*‘((𝐴𝐵) ∪ (𝐴𝐵))) ≤ ((vol*‘(𝐴𝐵)) +𝑒 (vol*‘(𝐴𝐵))))
784, 77eqbrtrd 5096 1 (𝜑 → (vol*‘𝐴) ≤ ((vol*‘(𝐴𝐵)) +𝑒 (vol*‘(𝐴𝐵))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  Vcvv 3432  cdif 3884  cun 3885  cin 3886  wss 3887  𝒫 cpw 4533   class class class wbr 5074  cfv 6433  (class class class)co 7275  cr 10870  0cc0 10871   + caddc 10874  +∞cpnf 11006  -∞cmnf 11007  *cxr 11008  cle 11010   +𝑒 cxad 12846  [,]cicc 13082  vol*covol 24626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-q 12689  df-rp 12731  df-xadd 12849  df-ioo 13083  df-ico 13085  df-icc 13086  df-fz 13240  df-fl 13512  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-ovol 24628
This theorem is referenced by:  ismbl4  43534
  Copyright terms: Public domain W3C validator