Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovolsplit Structured version   Visualization version   GIF version

Theorem ovolsplit 42150
Description: The Lebesgue outer measure function is finitely sub-additive: application to a set split in two parts, using addition for extended reals. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypothesis
Ref Expression
ovolsplit.1 (𝜑𝐴 ⊆ ℝ)
Assertion
Ref Expression
ovolsplit (𝜑 → (vol*‘𝐴) ≤ ((vol*‘(𝐴𝐵)) +𝑒 (vol*‘(𝐴𝐵))))

Proof of Theorem ovolsplit
StepHypRef Expression
1 inundif 4423 . . . . 5 ((𝐴𝐵) ∪ (𝐴𝐵)) = 𝐴
21eqcomi 2827 . . . 4 𝐴 = ((𝐴𝐵) ∪ (𝐴𝐵))
32a1i 11 . . 3 (𝜑𝐴 = ((𝐴𝐵) ∪ (𝐴𝐵)))
43fveq2d 6667 . 2 (𝜑 → (vol*‘𝐴) = (vol*‘((𝐴𝐵) ∪ (𝐴𝐵))))
5 ovolsplit.1 . . . . . . . . 9 (𝜑𝐴 ⊆ ℝ)
65ssinss1d 41187 . . . . . . . 8 (𝜑 → (𝐴𝐵) ⊆ ℝ)
75ssdifssd 4116 . . . . . . . 8 (𝜑 → (𝐴𝐵) ⊆ ℝ)
86, 7unssd 4159 . . . . . . 7 (𝜑 → ((𝐴𝐵) ∪ (𝐴𝐵)) ⊆ ℝ)
9 ovolcl 24006 . . . . . . 7 (((𝐴𝐵) ∪ (𝐴𝐵)) ⊆ ℝ → (vol*‘((𝐴𝐵) ∪ (𝐴𝐵))) ∈ ℝ*)
108, 9syl 17 . . . . . 6 (𝜑 → (vol*‘((𝐴𝐵) ∪ (𝐴𝐵))) ∈ ℝ*)
11 pnfge 12513 . . . . . 6 ((vol*‘((𝐴𝐵) ∪ (𝐴𝐵))) ∈ ℝ* → (vol*‘((𝐴𝐵) ∪ (𝐴𝐵))) ≤ +∞)
1210, 11syl 17 . . . . 5 (𝜑 → (vol*‘((𝐴𝐵) ∪ (𝐴𝐵))) ≤ +∞)
1312adantr 481 . . . 4 ((𝜑 ∧ (vol*‘(𝐴𝐵)) = +∞) → (vol*‘((𝐴𝐵) ∪ (𝐴𝐵))) ≤ +∞)
14 oveq1 7152 . . . . . 6 ((vol*‘(𝐴𝐵)) = +∞ → ((vol*‘(𝐴𝐵)) +𝑒 (vol*‘(𝐴𝐵))) = (+∞ +𝑒 (vol*‘(𝐴𝐵))))
1514adantl 482 . . . . 5 ((𝜑 ∧ (vol*‘(𝐴𝐵)) = +∞) → ((vol*‘(𝐴𝐵)) +𝑒 (vol*‘(𝐴𝐵))) = (+∞ +𝑒 (vol*‘(𝐴𝐵))))
16 ovolcl 24006 . . . . . . . 8 ((𝐴𝐵) ⊆ ℝ → (vol*‘(𝐴𝐵)) ∈ ℝ*)
177, 16syl 17 . . . . . . 7 (𝜑 → (vol*‘(𝐴𝐵)) ∈ ℝ*)
1817adantr 481 . . . . . 6 ((𝜑 ∧ (vol*‘(𝐴𝐵)) = +∞) → (vol*‘(𝐴𝐵)) ∈ ℝ*)
19 reex 10616 . . . . . . . . . . . . . 14 ℝ ∈ V
2019a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℝ ∈ V)
2120, 5ssexd 5219 . . . . . . . . . . . 12 (𝜑𝐴 ∈ V)
22 difexg 5222 . . . . . . . . . . . 12 (𝐴 ∈ V → (𝐴𝐵) ∈ V)
2321, 22syl 17 . . . . . . . . . . 11 (𝜑 → (𝐴𝐵) ∈ V)
24 elpwg 4541 . . . . . . . . . . 11 ((𝐴𝐵) ∈ V → ((𝐴𝐵) ∈ 𝒫 ℝ ↔ (𝐴𝐵) ⊆ ℝ))
2523, 24syl 17 . . . . . . . . . 10 (𝜑 → ((𝐴𝐵) ∈ 𝒫 ℝ ↔ (𝐴𝐵) ⊆ ℝ))
267, 25mpbird 258 . . . . . . . . 9 (𝜑 → (𝐴𝐵) ∈ 𝒫 ℝ)
27 ovolf 24010 . . . . . . . . . 10 vol*:𝒫 ℝ⟶(0[,]+∞)
2827ffvelrni 6842 . . . . . . . . 9 ((𝐴𝐵) ∈ 𝒫 ℝ → (vol*‘(𝐴𝐵)) ∈ (0[,]+∞))
2926, 28syl 17 . . . . . . . 8 (𝜑 → (vol*‘(𝐴𝐵)) ∈ (0[,]+∞))
3029xrge0nemnfd 41476 . . . . . . 7 (𝜑 → (vol*‘(𝐴𝐵)) ≠ -∞)
3130adantr 481 . . . . . 6 ((𝜑 ∧ (vol*‘(𝐴𝐵)) = +∞) → (vol*‘(𝐴𝐵)) ≠ -∞)
32 xaddpnf2 12608 . . . . . 6 (((vol*‘(𝐴𝐵)) ∈ ℝ* ∧ (vol*‘(𝐴𝐵)) ≠ -∞) → (+∞ +𝑒 (vol*‘(𝐴𝐵))) = +∞)
3318, 31, 32syl2anc 584 . . . . 5 ((𝜑 ∧ (vol*‘(𝐴𝐵)) = +∞) → (+∞ +𝑒 (vol*‘(𝐴𝐵))) = +∞)
3415, 33eqtr2d 2854 . . . 4 ((𝜑 ∧ (vol*‘(𝐴𝐵)) = +∞) → +∞ = ((vol*‘(𝐴𝐵)) +𝑒 (vol*‘(𝐴𝐵))))
3513, 34breqtrd 5083 . . 3 ((𝜑 ∧ (vol*‘(𝐴𝐵)) = +∞) → (vol*‘((𝐴𝐵) ∪ (𝐴𝐵))) ≤ ((vol*‘(𝐴𝐵)) +𝑒 (vol*‘(𝐴𝐵))))
36 simpl 483 . . . 4 ((𝜑 ∧ ¬ (vol*‘(𝐴𝐵)) = +∞) → 𝜑)
3720, 6sselpwd 5221 . . . . . . 7 (𝜑 → (𝐴𝐵) ∈ 𝒫 ℝ)
3827ffvelrni 6842 . . . . . . 7 ((𝐴𝐵) ∈ 𝒫 ℝ → (vol*‘(𝐴𝐵)) ∈ (0[,]+∞))
3937, 38syl 17 . . . . . 6 (𝜑 → (vol*‘(𝐴𝐵)) ∈ (0[,]+∞))
4039adantr 481 . . . . 5 ((𝜑 ∧ ¬ (vol*‘(𝐴𝐵)) = +∞) → (vol*‘(𝐴𝐵)) ∈ (0[,]+∞))
41 neqne 3021 . . . . . 6 (¬ (vol*‘(𝐴𝐵)) = +∞ → (vol*‘(𝐴𝐵)) ≠ +∞)
4241adantl 482 . . . . 5 ((𝜑 ∧ ¬ (vol*‘(𝐴𝐵)) = +∞) → (vol*‘(𝐴𝐵)) ≠ +∞)
43 ge0xrre 41683 . . . . 5 (((vol*‘(𝐴𝐵)) ∈ (0[,]+∞) ∧ (vol*‘(𝐴𝐵)) ≠ +∞) → (vol*‘(𝐴𝐵)) ∈ ℝ)
4440, 42, 43syl2anc 584 . . . 4 ((𝜑 ∧ ¬ (vol*‘(𝐴𝐵)) = +∞) → (vol*‘(𝐴𝐵)) ∈ ℝ)
4512adantr 481 . . . . . . 7 ((𝜑 ∧ (vol*‘(𝐴𝐵)) = +∞) → (vol*‘((𝐴𝐵) ∪ (𝐴𝐵))) ≤ +∞)
46 oveq2 7153 . . . . . . . . 9 ((vol*‘(𝐴𝐵)) = +∞ → ((vol*‘(𝐴𝐵)) +𝑒 (vol*‘(𝐴𝐵))) = ((vol*‘(𝐴𝐵)) +𝑒 +∞))
4746adantl 482 . . . . . . . 8 ((𝜑 ∧ (vol*‘(𝐴𝐵)) = +∞) → ((vol*‘(𝐴𝐵)) +𝑒 (vol*‘(𝐴𝐵))) = ((vol*‘(𝐴𝐵)) +𝑒 +∞))
48 ovolcl 24006 . . . . . . . . . . 11 ((𝐴𝐵) ⊆ ℝ → (vol*‘(𝐴𝐵)) ∈ ℝ*)
496, 48syl 17 . . . . . . . . . 10 (𝜑 → (vol*‘(𝐴𝐵)) ∈ ℝ*)
5039xrge0nemnfd 41476 . . . . . . . . . 10 (𝜑 → (vol*‘(𝐴𝐵)) ≠ -∞)
51 xaddpnf1 12607 . . . . . . . . . 10 (((vol*‘(𝐴𝐵)) ∈ ℝ* ∧ (vol*‘(𝐴𝐵)) ≠ -∞) → ((vol*‘(𝐴𝐵)) +𝑒 +∞) = +∞)
5249, 50, 51syl2anc 584 . . . . . . . . 9 (𝜑 → ((vol*‘(𝐴𝐵)) +𝑒 +∞) = +∞)
5352adantr 481 . . . . . . . 8 ((𝜑 ∧ (vol*‘(𝐴𝐵)) = +∞) → ((vol*‘(𝐴𝐵)) +𝑒 +∞) = +∞)
5447, 53eqtr2d 2854 . . . . . . 7 ((𝜑 ∧ (vol*‘(𝐴𝐵)) = +∞) → +∞ = ((vol*‘(𝐴𝐵)) +𝑒 (vol*‘(𝐴𝐵))))
5545, 54breqtrd 5083 . . . . . 6 ((𝜑 ∧ (vol*‘(𝐴𝐵)) = +∞) → (vol*‘((𝐴𝐵) ∪ (𝐴𝐵))) ≤ ((vol*‘(𝐴𝐵)) +𝑒 (vol*‘(𝐴𝐵))))
5655adantlr 711 . . . . 5 (((𝜑 ∧ (vol*‘(𝐴𝐵)) ∈ ℝ) ∧ (vol*‘(𝐴𝐵)) = +∞) → (vol*‘((𝐴𝐵) ∪ (𝐴𝐵))) ≤ ((vol*‘(𝐴𝐵)) +𝑒 (vol*‘(𝐴𝐵))))
57 simpll 763 . . . . . 6 (((𝜑 ∧ (vol*‘(𝐴𝐵)) ∈ ℝ) ∧ ¬ (vol*‘(𝐴𝐵)) = +∞) → 𝜑)
58 simplr 765 . . . . . 6 (((𝜑 ∧ (vol*‘(𝐴𝐵)) ∈ ℝ) ∧ ¬ (vol*‘(𝐴𝐵)) = +∞) → (vol*‘(𝐴𝐵)) ∈ ℝ)
5929adantr 481 . . . . . . . 8 ((𝜑 ∧ ¬ (vol*‘(𝐴𝐵)) = +∞) → (vol*‘(𝐴𝐵)) ∈ (0[,]+∞))
60 neqne 3021 . . . . . . . . 9 (¬ (vol*‘(𝐴𝐵)) = +∞ → (vol*‘(𝐴𝐵)) ≠ +∞)
6160adantl 482 . . . . . . . 8 ((𝜑 ∧ ¬ (vol*‘(𝐴𝐵)) = +∞) → (vol*‘(𝐴𝐵)) ≠ +∞)
62 ge0xrre 41683 . . . . . . . 8 (((vol*‘(𝐴𝐵)) ∈ (0[,]+∞) ∧ (vol*‘(𝐴𝐵)) ≠ +∞) → (vol*‘(𝐴𝐵)) ∈ ℝ)
6359, 61, 62syl2anc 584 . . . . . . 7 ((𝜑 ∧ ¬ (vol*‘(𝐴𝐵)) = +∞) → (vol*‘(𝐴𝐵)) ∈ ℝ)
6463adantlr 711 . . . . . 6 (((𝜑 ∧ (vol*‘(𝐴𝐵)) ∈ ℝ) ∧ ¬ (vol*‘(𝐴𝐵)) = +∞) → (vol*‘(𝐴𝐵)) ∈ ℝ)
6563ad2ant1 1125 . . . . . . . 8 ((𝜑 ∧ (vol*‘(𝐴𝐵)) ∈ ℝ ∧ (vol*‘(𝐴𝐵)) ∈ ℝ) → (𝐴𝐵) ⊆ ℝ)
66 simp2 1129 . . . . . . . 8 ((𝜑 ∧ (vol*‘(𝐴𝐵)) ∈ ℝ ∧ (vol*‘(𝐴𝐵)) ∈ ℝ) → (vol*‘(𝐴𝐵)) ∈ ℝ)
6773ad2ant1 1125 . . . . . . . 8 ((𝜑 ∧ (vol*‘(𝐴𝐵)) ∈ ℝ ∧ (vol*‘(𝐴𝐵)) ∈ ℝ) → (𝐴𝐵) ⊆ ℝ)
68 simp3 1130 . . . . . . . 8 ((𝜑 ∧ (vol*‘(𝐴𝐵)) ∈ ℝ ∧ (vol*‘(𝐴𝐵)) ∈ ℝ) → (vol*‘(𝐴𝐵)) ∈ ℝ)
69 ovolun 24027 . . . . . . . 8 ((((𝐴𝐵) ⊆ ℝ ∧ (vol*‘(𝐴𝐵)) ∈ ℝ) ∧ ((𝐴𝐵) ⊆ ℝ ∧ (vol*‘(𝐴𝐵)) ∈ ℝ)) → (vol*‘((𝐴𝐵) ∪ (𝐴𝐵))) ≤ ((vol*‘(𝐴𝐵)) + (vol*‘(𝐴𝐵))))
7065, 66, 67, 68, 69syl22anc 834 . . . . . . 7 ((𝜑 ∧ (vol*‘(𝐴𝐵)) ∈ ℝ ∧ (vol*‘(𝐴𝐵)) ∈ ℝ) → (vol*‘((𝐴𝐵) ∪ (𝐴𝐵))) ≤ ((vol*‘(𝐴𝐵)) + (vol*‘(𝐴𝐵))))
71 rexadd 12613 . . . . . . . . 9 (((vol*‘(𝐴𝐵)) ∈ ℝ ∧ (vol*‘(𝐴𝐵)) ∈ ℝ) → ((vol*‘(𝐴𝐵)) +𝑒 (vol*‘(𝐴𝐵))) = ((vol*‘(𝐴𝐵)) + (vol*‘(𝐴𝐵))))
7271eqcomd 2824 . . . . . . . 8 (((vol*‘(𝐴𝐵)) ∈ ℝ ∧ (vol*‘(𝐴𝐵)) ∈ ℝ) → ((vol*‘(𝐴𝐵)) + (vol*‘(𝐴𝐵))) = ((vol*‘(𝐴𝐵)) +𝑒 (vol*‘(𝐴𝐵))))
73723adant1 1122 . . . . . . 7 ((𝜑 ∧ (vol*‘(𝐴𝐵)) ∈ ℝ ∧ (vol*‘(𝐴𝐵)) ∈ ℝ) → ((vol*‘(𝐴𝐵)) + (vol*‘(𝐴𝐵))) = ((vol*‘(𝐴𝐵)) +𝑒 (vol*‘(𝐴𝐵))))
7470, 73breqtrd 5083 . . . . . 6 ((𝜑 ∧ (vol*‘(𝐴𝐵)) ∈ ℝ ∧ (vol*‘(𝐴𝐵)) ∈ ℝ) → (vol*‘((𝐴𝐵) ∪ (𝐴𝐵))) ≤ ((vol*‘(𝐴𝐵)) +𝑒 (vol*‘(𝐴𝐵))))
7557, 58, 64, 74syl3anc 1363 . . . . 5 (((𝜑 ∧ (vol*‘(𝐴𝐵)) ∈ ℝ) ∧ ¬ (vol*‘(𝐴𝐵)) = +∞) → (vol*‘((𝐴𝐵) ∪ (𝐴𝐵))) ≤ ((vol*‘(𝐴𝐵)) +𝑒 (vol*‘(𝐴𝐵))))
7656, 75pm2.61dan 809 . . . 4 ((𝜑 ∧ (vol*‘(𝐴𝐵)) ∈ ℝ) → (vol*‘((𝐴𝐵) ∪ (𝐴𝐵))) ≤ ((vol*‘(𝐴𝐵)) +𝑒 (vol*‘(𝐴𝐵))))
7736, 44, 76syl2anc 584 . . 3 ((𝜑 ∧ ¬ (vol*‘(𝐴𝐵)) = +∞) → (vol*‘((𝐴𝐵) ∪ (𝐴𝐵))) ≤ ((vol*‘(𝐴𝐵)) +𝑒 (vol*‘(𝐴𝐵))))
7835, 77pm2.61dan 809 . 2 (𝜑 → (vol*‘((𝐴𝐵) ∪ (𝐴𝐵))) ≤ ((vol*‘(𝐴𝐵)) +𝑒 (vol*‘(𝐴𝐵))))
794, 78eqbrtrd 5079 1 (𝜑 → (vol*‘𝐴) ≤ ((vol*‘(𝐴𝐵)) +𝑒 (vol*‘(𝐴𝐵))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  wne 3013  Vcvv 3492  cdif 3930  cun 3931  cin 3932  wss 3933  𝒫 cpw 4535   class class class wbr 5057  cfv 6348  (class class class)co 7145  cr 10524  0cc0 10525   + caddc 10528  +∞cpnf 10660  -∞cmnf 10661  *cxr 10662  cle 10664   +𝑒 cxad 12493  [,]cicc 12729  vol*covol 23990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-map 8397  df-en 8498  df-dom 8499  df-sdom 8500  df-sup 8894  df-inf 8895  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-xadd 12496  df-ioo 12730  df-ico 12732  df-icc 12733  df-fz 12881  df-fl 13150  df-seq 13358  df-exp 13418  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-ovol 23992
This theorem is referenced by:  ismbl4  42155
  Copyright terms: Public domain W3C validator