Proof of Theorem ovolsplit
Step | Hyp | Ref
| Expression |
1 | | inundif 4271 |
. . . . 5
⊢ ((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵)) = 𝐴 |
2 | 1 | eqcomi 2834 |
. . . 4
⊢ 𝐴 = ((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵)) |
3 | 2 | a1i 11 |
. . 3
⊢ (𝜑 → 𝐴 = ((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵))) |
4 | 3 | fveq2d 6441 |
. 2
⊢ (𝜑 → (vol*‘𝐴) = (vol*‘((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵)))) |
5 | | ovolsplit.1 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
6 | 5 | ssinss1d 40026 |
. . . . . . . 8
⊢ (𝜑 → (𝐴 ∩ 𝐵) ⊆ ℝ) |
7 | 5 | ssdifssd 3977 |
. . . . . . . 8
⊢ (𝜑 → (𝐴 ∖ 𝐵) ⊆ ℝ) |
8 | 6, 7 | unssd 4018 |
. . . . . . 7
⊢ (𝜑 → ((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵)) ⊆ ℝ) |
9 | | ovolcl 23651 |
. . . . . . 7
⊢ (((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵)) ⊆ ℝ →
(vol*‘((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵))) ∈
ℝ*) |
10 | 8, 9 | syl 17 |
. . . . . 6
⊢ (𝜑 → (vol*‘((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵))) ∈
ℝ*) |
11 | | pnfge 12257 |
. . . . . 6
⊢
((vol*‘((𝐴
∩ 𝐵) ∪ (𝐴 ∖ 𝐵))) ∈ ℝ* →
(vol*‘((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵))) ≤ +∞) |
12 | 10, 11 | syl 17 |
. . . . 5
⊢ (𝜑 → (vol*‘((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵))) ≤ +∞) |
13 | 12 | adantr 474 |
. . . 4
⊢ ((𝜑 ∧ (vol*‘(𝐴 ∩ 𝐵)) = +∞) → (vol*‘((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵))) ≤ +∞) |
14 | | oveq1 6917 |
. . . . . 6
⊢
((vol*‘(𝐴
∩ 𝐵)) = +∞ →
((vol*‘(𝐴 ∩ 𝐵)) +𝑒
(vol*‘(𝐴 ∖
𝐵))) = (+∞
+𝑒 (vol*‘(𝐴 ∖ 𝐵)))) |
15 | 14 | adantl 475 |
. . . . 5
⊢ ((𝜑 ∧ (vol*‘(𝐴 ∩ 𝐵)) = +∞) → ((vol*‘(𝐴 ∩ 𝐵)) +𝑒 (vol*‘(𝐴 ∖ 𝐵))) = (+∞ +𝑒
(vol*‘(𝐴 ∖
𝐵)))) |
16 | | ovolcl 23651 |
. . . . . . . 8
⊢ ((𝐴 ∖ 𝐵) ⊆ ℝ → (vol*‘(𝐴 ∖ 𝐵)) ∈
ℝ*) |
17 | 7, 16 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (vol*‘(𝐴 ∖ 𝐵)) ∈
ℝ*) |
18 | 17 | adantr 474 |
. . . . . 6
⊢ ((𝜑 ∧ (vol*‘(𝐴 ∩ 𝐵)) = +∞) → (vol*‘(𝐴 ∖ 𝐵)) ∈
ℝ*) |
19 | | reex 10350 |
. . . . . . . . . . . . . 14
⊢ ℝ
∈ V |
20 | 19 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ℝ ∈
V) |
21 | 20, 5 | ssexd 5032 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 ∈ V) |
22 | | difexg 5035 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ V → (𝐴 ∖ 𝐵) ∈ V) |
23 | 21, 22 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴 ∖ 𝐵) ∈ V) |
24 | | elpwg 4388 |
. . . . . . . . . . 11
⊢ ((𝐴 ∖ 𝐵) ∈ V → ((𝐴 ∖ 𝐵) ∈ 𝒫 ℝ ↔ (𝐴 ∖ 𝐵) ⊆ ℝ)) |
25 | 23, 24 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐴 ∖ 𝐵) ∈ 𝒫 ℝ ↔ (𝐴 ∖ 𝐵) ⊆ ℝ)) |
26 | 7, 25 | mpbird 249 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴 ∖ 𝐵) ∈ 𝒫 ℝ) |
27 | | ovolf 23655 |
. . . . . . . . . 10
⊢
vol*:𝒫 ℝ⟶(0[,]+∞) |
28 | 27 | ffvelrni 6612 |
. . . . . . . . 9
⊢ ((𝐴 ∖ 𝐵) ∈ 𝒫 ℝ →
(vol*‘(𝐴 ∖
𝐵)) ∈
(0[,]+∞)) |
29 | 26, 28 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (vol*‘(𝐴 ∖ 𝐵)) ∈ (0[,]+∞)) |
30 | 29 | xrge0nemnfd 40339 |
. . . . . . 7
⊢ (𝜑 → (vol*‘(𝐴 ∖ 𝐵)) ≠ -∞) |
31 | 30 | adantr 474 |
. . . . . 6
⊢ ((𝜑 ∧ (vol*‘(𝐴 ∩ 𝐵)) = +∞) → (vol*‘(𝐴 ∖ 𝐵)) ≠ -∞) |
32 | | xaddpnf2 12353 |
. . . . . 6
⊢
(((vol*‘(𝐴
∖ 𝐵)) ∈
ℝ* ∧ (vol*‘(𝐴 ∖ 𝐵)) ≠ -∞) → (+∞
+𝑒 (vol*‘(𝐴 ∖ 𝐵))) = +∞) |
33 | 18, 31, 32 | syl2anc 579 |
. . . . 5
⊢ ((𝜑 ∧ (vol*‘(𝐴 ∩ 𝐵)) = +∞) → (+∞
+𝑒 (vol*‘(𝐴 ∖ 𝐵))) = +∞) |
34 | 15, 33 | eqtr2d 2862 |
. . . 4
⊢ ((𝜑 ∧ (vol*‘(𝐴 ∩ 𝐵)) = +∞) → +∞ =
((vol*‘(𝐴 ∩ 𝐵)) +𝑒
(vol*‘(𝐴 ∖
𝐵)))) |
35 | 13, 34 | breqtrd 4901 |
. . 3
⊢ ((𝜑 ∧ (vol*‘(𝐴 ∩ 𝐵)) = +∞) → (vol*‘((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵))) ≤ ((vol*‘(𝐴 ∩ 𝐵)) +𝑒 (vol*‘(𝐴 ∖ 𝐵)))) |
36 | | simpl 476 |
. . . 4
⊢ ((𝜑 ∧ ¬ (vol*‘(𝐴 ∩ 𝐵)) = +∞) → 𝜑) |
37 | 20, 6 | sselpwd 5034 |
. . . . . . 7
⊢ (𝜑 → (𝐴 ∩ 𝐵) ∈ 𝒫 ℝ) |
38 | 27 | ffvelrni 6612 |
. . . . . . 7
⊢ ((𝐴 ∩ 𝐵) ∈ 𝒫 ℝ →
(vol*‘(𝐴 ∩ 𝐵)) ∈
(0[,]+∞)) |
39 | 37, 38 | syl 17 |
. . . . . 6
⊢ (𝜑 → (vol*‘(𝐴 ∩ 𝐵)) ∈ (0[,]+∞)) |
40 | 39 | adantr 474 |
. . . . 5
⊢ ((𝜑 ∧ ¬ (vol*‘(𝐴 ∩ 𝐵)) = +∞) → (vol*‘(𝐴 ∩ 𝐵)) ∈ (0[,]+∞)) |
41 | | neqne 3007 |
. . . . . 6
⊢ (¬
(vol*‘(𝐴 ∩ 𝐵)) = +∞ →
(vol*‘(𝐴 ∩ 𝐵)) ≠
+∞) |
42 | 41 | adantl 475 |
. . . . 5
⊢ ((𝜑 ∧ ¬ (vol*‘(𝐴 ∩ 𝐵)) = +∞) → (vol*‘(𝐴 ∩ 𝐵)) ≠ +∞) |
43 | | ge0xrre 40547 |
. . . . 5
⊢
(((vol*‘(𝐴
∩ 𝐵)) ∈
(0[,]+∞) ∧ (vol*‘(𝐴 ∩ 𝐵)) ≠ +∞) → (vol*‘(𝐴 ∩ 𝐵)) ∈ ℝ) |
44 | 40, 42, 43 | syl2anc 579 |
. . . 4
⊢ ((𝜑 ∧ ¬ (vol*‘(𝐴 ∩ 𝐵)) = +∞) → (vol*‘(𝐴 ∩ 𝐵)) ∈ ℝ) |
45 | 12 | adantr 474 |
. . . . . . 7
⊢ ((𝜑 ∧ (vol*‘(𝐴 ∖ 𝐵)) = +∞) → (vol*‘((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵))) ≤ +∞) |
46 | | oveq2 6918 |
. . . . . . . . 9
⊢
((vol*‘(𝐴
∖ 𝐵)) = +∞
→ ((vol*‘(𝐴
∩ 𝐵))
+𝑒 (vol*‘(𝐴 ∖ 𝐵))) = ((vol*‘(𝐴 ∩ 𝐵)) +𝑒
+∞)) |
47 | 46 | adantl 475 |
. . . . . . . 8
⊢ ((𝜑 ∧ (vol*‘(𝐴 ∖ 𝐵)) = +∞) → ((vol*‘(𝐴 ∩ 𝐵)) +𝑒 (vol*‘(𝐴 ∖ 𝐵))) = ((vol*‘(𝐴 ∩ 𝐵)) +𝑒
+∞)) |
48 | | ovolcl 23651 |
. . . . . . . . . . 11
⊢ ((𝐴 ∩ 𝐵) ⊆ ℝ → (vol*‘(𝐴 ∩ 𝐵)) ∈
ℝ*) |
49 | 6, 48 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (vol*‘(𝐴 ∩ 𝐵)) ∈
ℝ*) |
50 | 39 | xrge0nemnfd 40339 |
. . . . . . . . . 10
⊢ (𝜑 → (vol*‘(𝐴 ∩ 𝐵)) ≠ -∞) |
51 | | xaddpnf1 12352 |
. . . . . . . . . 10
⊢
(((vol*‘(𝐴
∩ 𝐵)) ∈
ℝ* ∧ (vol*‘(𝐴 ∩ 𝐵)) ≠ -∞) → ((vol*‘(𝐴 ∩ 𝐵)) +𝑒 +∞) =
+∞) |
52 | 49, 50, 51 | syl2anc 579 |
. . . . . . . . 9
⊢ (𝜑 → ((vol*‘(𝐴 ∩ 𝐵)) +𝑒 +∞) =
+∞) |
53 | 52 | adantr 474 |
. . . . . . . 8
⊢ ((𝜑 ∧ (vol*‘(𝐴 ∖ 𝐵)) = +∞) → ((vol*‘(𝐴 ∩ 𝐵)) +𝑒 +∞) =
+∞) |
54 | 47, 53 | eqtr2d 2862 |
. . . . . . 7
⊢ ((𝜑 ∧ (vol*‘(𝐴 ∖ 𝐵)) = +∞) → +∞ =
((vol*‘(𝐴 ∩ 𝐵)) +𝑒
(vol*‘(𝐴 ∖
𝐵)))) |
55 | 45, 54 | breqtrd 4901 |
. . . . . 6
⊢ ((𝜑 ∧ (vol*‘(𝐴 ∖ 𝐵)) = +∞) → (vol*‘((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵))) ≤ ((vol*‘(𝐴 ∩ 𝐵)) +𝑒 (vol*‘(𝐴 ∖ 𝐵)))) |
56 | 55 | adantlr 706 |
. . . . 5
⊢ (((𝜑 ∧ (vol*‘(𝐴 ∩ 𝐵)) ∈ ℝ) ∧ (vol*‘(𝐴 ∖ 𝐵)) = +∞) → (vol*‘((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵))) ≤ ((vol*‘(𝐴 ∩ 𝐵)) +𝑒 (vol*‘(𝐴 ∖ 𝐵)))) |
57 | | simpll 783 |
. . . . . 6
⊢ (((𝜑 ∧ (vol*‘(𝐴 ∩ 𝐵)) ∈ ℝ) ∧ ¬
(vol*‘(𝐴 ∖
𝐵)) = +∞) →
𝜑) |
58 | | simplr 785 |
. . . . . 6
⊢ (((𝜑 ∧ (vol*‘(𝐴 ∩ 𝐵)) ∈ ℝ) ∧ ¬
(vol*‘(𝐴 ∖
𝐵)) = +∞) →
(vol*‘(𝐴 ∩ 𝐵)) ∈
ℝ) |
59 | 29 | adantr 474 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ (vol*‘(𝐴 ∖ 𝐵)) = +∞) → (vol*‘(𝐴 ∖ 𝐵)) ∈ (0[,]+∞)) |
60 | | neqne 3007 |
. . . . . . . . 9
⊢ (¬
(vol*‘(𝐴 ∖
𝐵)) = +∞ →
(vol*‘(𝐴 ∖
𝐵)) ≠
+∞) |
61 | 60 | adantl 475 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ (vol*‘(𝐴 ∖ 𝐵)) = +∞) → (vol*‘(𝐴 ∖ 𝐵)) ≠ +∞) |
62 | | ge0xrre 40547 |
. . . . . . . 8
⊢
(((vol*‘(𝐴
∖ 𝐵)) ∈
(0[,]+∞) ∧ (vol*‘(𝐴 ∖ 𝐵)) ≠ +∞) → (vol*‘(𝐴 ∖ 𝐵)) ∈ ℝ) |
63 | 59, 61, 62 | syl2anc 579 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ (vol*‘(𝐴 ∖ 𝐵)) = +∞) → (vol*‘(𝐴 ∖ 𝐵)) ∈ ℝ) |
64 | 63 | adantlr 706 |
. . . . . 6
⊢ (((𝜑 ∧ (vol*‘(𝐴 ∩ 𝐵)) ∈ ℝ) ∧ ¬
(vol*‘(𝐴 ∖
𝐵)) = +∞) →
(vol*‘(𝐴 ∖
𝐵)) ∈
ℝ) |
65 | 6 | 3ad2ant1 1167 |
. . . . . . . 8
⊢ ((𝜑 ∧ (vol*‘(𝐴 ∩ 𝐵)) ∈ ℝ ∧ (vol*‘(𝐴 ∖ 𝐵)) ∈ ℝ) → (𝐴 ∩ 𝐵) ⊆ ℝ) |
66 | | simp2 1171 |
. . . . . . . 8
⊢ ((𝜑 ∧ (vol*‘(𝐴 ∩ 𝐵)) ∈ ℝ ∧ (vol*‘(𝐴 ∖ 𝐵)) ∈ ℝ) → (vol*‘(𝐴 ∩ 𝐵)) ∈ ℝ) |
67 | 7 | 3ad2ant1 1167 |
. . . . . . . 8
⊢ ((𝜑 ∧ (vol*‘(𝐴 ∩ 𝐵)) ∈ ℝ ∧ (vol*‘(𝐴 ∖ 𝐵)) ∈ ℝ) → (𝐴 ∖ 𝐵) ⊆ ℝ) |
68 | | simp3 1172 |
. . . . . . . 8
⊢ ((𝜑 ∧ (vol*‘(𝐴 ∩ 𝐵)) ∈ ℝ ∧ (vol*‘(𝐴 ∖ 𝐵)) ∈ ℝ) → (vol*‘(𝐴 ∖ 𝐵)) ∈ ℝ) |
69 | | ovolun 23672 |
. . . . . . . 8
⊢ ((((𝐴 ∩ 𝐵) ⊆ ℝ ∧ (vol*‘(𝐴 ∩ 𝐵)) ∈ ℝ) ∧ ((𝐴 ∖ 𝐵) ⊆ ℝ ∧ (vol*‘(𝐴 ∖ 𝐵)) ∈ ℝ)) →
(vol*‘((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵))) ≤ ((vol*‘(𝐴 ∩ 𝐵)) + (vol*‘(𝐴 ∖ 𝐵)))) |
70 | 65, 66, 67, 68, 69 | syl22anc 872 |
. . . . . . 7
⊢ ((𝜑 ∧ (vol*‘(𝐴 ∩ 𝐵)) ∈ ℝ ∧ (vol*‘(𝐴 ∖ 𝐵)) ∈ ℝ) →
(vol*‘((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵))) ≤ ((vol*‘(𝐴 ∩ 𝐵)) + (vol*‘(𝐴 ∖ 𝐵)))) |
71 | | rexadd 12358 |
. . . . . . . . 9
⊢
(((vol*‘(𝐴
∩ 𝐵)) ∈ ℝ
∧ (vol*‘(𝐴
∖ 𝐵)) ∈ ℝ)
→ ((vol*‘(𝐴
∩ 𝐵))
+𝑒 (vol*‘(𝐴 ∖ 𝐵))) = ((vol*‘(𝐴 ∩ 𝐵)) + (vol*‘(𝐴 ∖ 𝐵)))) |
72 | 71 | eqcomd 2831 |
. . . . . . . 8
⊢
(((vol*‘(𝐴
∩ 𝐵)) ∈ ℝ
∧ (vol*‘(𝐴
∖ 𝐵)) ∈ ℝ)
→ ((vol*‘(𝐴
∩ 𝐵)) +
(vol*‘(𝐴 ∖
𝐵))) = ((vol*‘(𝐴 ∩ 𝐵)) +𝑒 (vol*‘(𝐴 ∖ 𝐵)))) |
73 | 72 | 3adant1 1164 |
. . . . . . 7
⊢ ((𝜑 ∧ (vol*‘(𝐴 ∩ 𝐵)) ∈ ℝ ∧ (vol*‘(𝐴 ∖ 𝐵)) ∈ ℝ) →
((vol*‘(𝐴 ∩ 𝐵)) + (vol*‘(𝐴 ∖ 𝐵))) = ((vol*‘(𝐴 ∩ 𝐵)) +𝑒 (vol*‘(𝐴 ∖ 𝐵)))) |
74 | 70, 73 | breqtrd 4901 |
. . . . . 6
⊢ ((𝜑 ∧ (vol*‘(𝐴 ∩ 𝐵)) ∈ ℝ ∧ (vol*‘(𝐴 ∖ 𝐵)) ∈ ℝ) →
(vol*‘((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵))) ≤ ((vol*‘(𝐴 ∩ 𝐵)) +𝑒 (vol*‘(𝐴 ∖ 𝐵)))) |
75 | 57, 58, 64, 74 | syl3anc 1494 |
. . . . 5
⊢ (((𝜑 ∧ (vol*‘(𝐴 ∩ 𝐵)) ∈ ℝ) ∧ ¬
(vol*‘(𝐴 ∖
𝐵)) = +∞) →
(vol*‘((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵))) ≤ ((vol*‘(𝐴 ∩ 𝐵)) +𝑒 (vol*‘(𝐴 ∖ 𝐵)))) |
76 | 56, 75 | pm2.61dan 847 |
. . . 4
⊢ ((𝜑 ∧ (vol*‘(𝐴 ∩ 𝐵)) ∈ ℝ) →
(vol*‘((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵))) ≤ ((vol*‘(𝐴 ∩ 𝐵)) +𝑒 (vol*‘(𝐴 ∖ 𝐵)))) |
77 | 36, 44, 76 | syl2anc 579 |
. . 3
⊢ ((𝜑 ∧ ¬ (vol*‘(𝐴 ∩ 𝐵)) = +∞) → (vol*‘((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵))) ≤ ((vol*‘(𝐴 ∩ 𝐵)) +𝑒 (vol*‘(𝐴 ∖ 𝐵)))) |
78 | 35, 77 | pm2.61dan 847 |
. 2
⊢ (𝜑 → (vol*‘((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵))) ≤ ((vol*‘(𝐴 ∩ 𝐵)) +𝑒 (vol*‘(𝐴 ∖ 𝐵)))) |
79 | 4, 78 | eqbrtrd 4897 |
1
⊢ (𝜑 → (vol*‘𝐴) ≤ ((vol*‘(𝐴 ∩ 𝐵)) +𝑒 (vol*‘(𝐴 ∖ 𝐵)))) |