Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovolsplit Structured version   Visualization version   GIF version

Theorem ovolsplit 45993
Description: The Lebesgue outer measure function is finitely sub-additive: application to a set split in two parts, using addition for extended reals. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypothesis
Ref Expression
ovolsplit.1 (𝜑𝐴 ⊆ ℝ)
Assertion
Ref Expression
ovolsplit (𝜑 → (vol*‘𝐴) ≤ ((vol*‘(𝐴𝐵)) +𝑒 (vol*‘(𝐴𝐵))))

Proof of Theorem ovolsplit
StepHypRef Expression
1 inundif 4445 . . . . 5 ((𝐴𝐵) ∪ (𝐴𝐵)) = 𝐴
21eqcomi 2739 . . . 4 𝐴 = ((𝐴𝐵) ∪ (𝐴𝐵))
32a1i 11 . . 3 (𝜑𝐴 = ((𝐴𝐵) ∪ (𝐴𝐵)))
43fveq2d 6865 . 2 (𝜑 → (vol*‘𝐴) = (vol*‘((𝐴𝐵) ∪ (𝐴𝐵))))
5 ovolsplit.1 . . . . . . . . 9 (𝜑𝐴 ⊆ ℝ)
65ssinss1d 4213 . . . . . . . 8 (𝜑 → (𝐴𝐵) ⊆ ℝ)
75ssdifssd 4113 . . . . . . . 8 (𝜑 → (𝐴𝐵) ⊆ ℝ)
86, 7unssd 4158 . . . . . . 7 (𝜑 → ((𝐴𝐵) ∪ (𝐴𝐵)) ⊆ ℝ)
9 ovolcl 25386 . . . . . . 7 (((𝐴𝐵) ∪ (𝐴𝐵)) ⊆ ℝ → (vol*‘((𝐴𝐵) ∪ (𝐴𝐵))) ∈ ℝ*)
108, 9syl 17 . . . . . 6 (𝜑 → (vol*‘((𝐴𝐵) ∪ (𝐴𝐵))) ∈ ℝ*)
11 pnfge 13097 . . . . . 6 ((vol*‘((𝐴𝐵) ∪ (𝐴𝐵))) ∈ ℝ* → (vol*‘((𝐴𝐵) ∪ (𝐴𝐵))) ≤ +∞)
1210, 11syl 17 . . . . 5 (𝜑 → (vol*‘((𝐴𝐵) ∪ (𝐴𝐵))) ≤ +∞)
1312adantr 480 . . . 4 ((𝜑 ∧ (vol*‘(𝐴𝐵)) = +∞) → (vol*‘((𝐴𝐵) ∪ (𝐴𝐵))) ≤ +∞)
14 oveq1 7397 . . . . . 6 ((vol*‘(𝐴𝐵)) = +∞ → ((vol*‘(𝐴𝐵)) +𝑒 (vol*‘(𝐴𝐵))) = (+∞ +𝑒 (vol*‘(𝐴𝐵))))
1514adantl 481 . . . . 5 ((𝜑 ∧ (vol*‘(𝐴𝐵)) = +∞) → ((vol*‘(𝐴𝐵)) +𝑒 (vol*‘(𝐴𝐵))) = (+∞ +𝑒 (vol*‘(𝐴𝐵))))
16 ovolcl 25386 . . . . . . . 8 ((𝐴𝐵) ⊆ ℝ → (vol*‘(𝐴𝐵)) ∈ ℝ*)
177, 16syl 17 . . . . . . 7 (𝜑 → (vol*‘(𝐴𝐵)) ∈ ℝ*)
1817adantr 480 . . . . . 6 ((𝜑 ∧ (vol*‘(𝐴𝐵)) = +∞) → (vol*‘(𝐴𝐵)) ∈ ℝ*)
19 reex 11166 . . . . . . . . . . . . . 14 ℝ ∈ V
2019a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℝ ∈ V)
2120, 5ssexd 5282 . . . . . . . . . . . 12 (𝜑𝐴 ∈ V)
2221difexd 5289 . . . . . . . . . . 11 (𝜑 → (𝐴𝐵) ∈ V)
23 elpwg 4569 . . . . . . . . . . 11 ((𝐴𝐵) ∈ V → ((𝐴𝐵) ∈ 𝒫 ℝ ↔ (𝐴𝐵) ⊆ ℝ))
2422, 23syl 17 . . . . . . . . . 10 (𝜑 → ((𝐴𝐵) ∈ 𝒫 ℝ ↔ (𝐴𝐵) ⊆ ℝ))
257, 24mpbird 257 . . . . . . . . 9 (𝜑 → (𝐴𝐵) ∈ 𝒫 ℝ)
26 ovolf 25390 . . . . . . . . . 10 vol*:𝒫 ℝ⟶(0[,]+∞)
2726ffvelcdmi 7058 . . . . . . . . 9 ((𝐴𝐵) ∈ 𝒫 ℝ → (vol*‘(𝐴𝐵)) ∈ (0[,]+∞))
2825, 27syl 17 . . . . . . . 8 (𝜑 → (vol*‘(𝐴𝐵)) ∈ (0[,]+∞))
2928xrge0nemnfd 45335 . . . . . . 7 (𝜑 → (vol*‘(𝐴𝐵)) ≠ -∞)
3029adantr 480 . . . . . 6 ((𝜑 ∧ (vol*‘(𝐴𝐵)) = +∞) → (vol*‘(𝐴𝐵)) ≠ -∞)
31 xaddpnf2 13194 . . . . . 6 (((vol*‘(𝐴𝐵)) ∈ ℝ* ∧ (vol*‘(𝐴𝐵)) ≠ -∞) → (+∞ +𝑒 (vol*‘(𝐴𝐵))) = +∞)
3218, 30, 31syl2anc 584 . . . . 5 ((𝜑 ∧ (vol*‘(𝐴𝐵)) = +∞) → (+∞ +𝑒 (vol*‘(𝐴𝐵))) = +∞)
3315, 32eqtr2d 2766 . . . 4 ((𝜑 ∧ (vol*‘(𝐴𝐵)) = +∞) → +∞ = ((vol*‘(𝐴𝐵)) +𝑒 (vol*‘(𝐴𝐵))))
3413, 33breqtrd 5136 . . 3 ((𝜑 ∧ (vol*‘(𝐴𝐵)) = +∞) → (vol*‘((𝐴𝐵) ∪ (𝐴𝐵))) ≤ ((vol*‘(𝐴𝐵)) +𝑒 (vol*‘(𝐴𝐵))))
35 simpl 482 . . . 4 ((𝜑 ∧ ¬ (vol*‘(𝐴𝐵)) = +∞) → 𝜑)
3620, 6sselpwd 5286 . . . . . . 7 (𝜑 → (𝐴𝐵) ∈ 𝒫 ℝ)
3726ffvelcdmi 7058 . . . . . . 7 ((𝐴𝐵) ∈ 𝒫 ℝ → (vol*‘(𝐴𝐵)) ∈ (0[,]+∞))
3836, 37syl 17 . . . . . 6 (𝜑 → (vol*‘(𝐴𝐵)) ∈ (0[,]+∞))
3938adantr 480 . . . . 5 ((𝜑 ∧ ¬ (vol*‘(𝐴𝐵)) = +∞) → (vol*‘(𝐴𝐵)) ∈ (0[,]+∞))
40 neqne 2934 . . . . . 6 (¬ (vol*‘(𝐴𝐵)) = +∞ → (vol*‘(𝐴𝐵)) ≠ +∞)
4140adantl 481 . . . . 5 ((𝜑 ∧ ¬ (vol*‘(𝐴𝐵)) = +∞) → (vol*‘(𝐴𝐵)) ≠ +∞)
42 ge0xrre 45536 . . . . 5 (((vol*‘(𝐴𝐵)) ∈ (0[,]+∞) ∧ (vol*‘(𝐴𝐵)) ≠ +∞) → (vol*‘(𝐴𝐵)) ∈ ℝ)
4339, 41, 42syl2anc 584 . . . 4 ((𝜑 ∧ ¬ (vol*‘(𝐴𝐵)) = +∞) → (vol*‘(𝐴𝐵)) ∈ ℝ)
4412adantr 480 . . . . . . 7 ((𝜑 ∧ (vol*‘(𝐴𝐵)) = +∞) → (vol*‘((𝐴𝐵) ∪ (𝐴𝐵))) ≤ +∞)
45 oveq2 7398 . . . . . . . . 9 ((vol*‘(𝐴𝐵)) = +∞ → ((vol*‘(𝐴𝐵)) +𝑒 (vol*‘(𝐴𝐵))) = ((vol*‘(𝐴𝐵)) +𝑒 +∞))
4645adantl 481 . . . . . . . 8 ((𝜑 ∧ (vol*‘(𝐴𝐵)) = +∞) → ((vol*‘(𝐴𝐵)) +𝑒 (vol*‘(𝐴𝐵))) = ((vol*‘(𝐴𝐵)) +𝑒 +∞))
47 ovolcl 25386 . . . . . . . . . . 11 ((𝐴𝐵) ⊆ ℝ → (vol*‘(𝐴𝐵)) ∈ ℝ*)
486, 47syl 17 . . . . . . . . . 10 (𝜑 → (vol*‘(𝐴𝐵)) ∈ ℝ*)
4938xrge0nemnfd 45335 . . . . . . . . . 10 (𝜑 → (vol*‘(𝐴𝐵)) ≠ -∞)
50 xaddpnf1 13193 . . . . . . . . . 10 (((vol*‘(𝐴𝐵)) ∈ ℝ* ∧ (vol*‘(𝐴𝐵)) ≠ -∞) → ((vol*‘(𝐴𝐵)) +𝑒 +∞) = +∞)
5148, 49, 50syl2anc 584 . . . . . . . . 9 (𝜑 → ((vol*‘(𝐴𝐵)) +𝑒 +∞) = +∞)
5251adantr 480 . . . . . . . 8 ((𝜑 ∧ (vol*‘(𝐴𝐵)) = +∞) → ((vol*‘(𝐴𝐵)) +𝑒 +∞) = +∞)
5346, 52eqtr2d 2766 . . . . . . 7 ((𝜑 ∧ (vol*‘(𝐴𝐵)) = +∞) → +∞ = ((vol*‘(𝐴𝐵)) +𝑒 (vol*‘(𝐴𝐵))))
5444, 53breqtrd 5136 . . . . . 6 ((𝜑 ∧ (vol*‘(𝐴𝐵)) = +∞) → (vol*‘((𝐴𝐵) ∪ (𝐴𝐵))) ≤ ((vol*‘(𝐴𝐵)) +𝑒 (vol*‘(𝐴𝐵))))
5554adantlr 715 . . . . 5 (((𝜑 ∧ (vol*‘(𝐴𝐵)) ∈ ℝ) ∧ (vol*‘(𝐴𝐵)) = +∞) → (vol*‘((𝐴𝐵) ∪ (𝐴𝐵))) ≤ ((vol*‘(𝐴𝐵)) +𝑒 (vol*‘(𝐴𝐵))))
56 simpll 766 . . . . . 6 (((𝜑 ∧ (vol*‘(𝐴𝐵)) ∈ ℝ) ∧ ¬ (vol*‘(𝐴𝐵)) = +∞) → 𝜑)
57 simplr 768 . . . . . 6 (((𝜑 ∧ (vol*‘(𝐴𝐵)) ∈ ℝ) ∧ ¬ (vol*‘(𝐴𝐵)) = +∞) → (vol*‘(𝐴𝐵)) ∈ ℝ)
5828adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ (vol*‘(𝐴𝐵)) = +∞) → (vol*‘(𝐴𝐵)) ∈ (0[,]+∞))
59 neqne 2934 . . . . . . . . 9 (¬ (vol*‘(𝐴𝐵)) = +∞ → (vol*‘(𝐴𝐵)) ≠ +∞)
6059adantl 481 . . . . . . . 8 ((𝜑 ∧ ¬ (vol*‘(𝐴𝐵)) = +∞) → (vol*‘(𝐴𝐵)) ≠ +∞)
61 ge0xrre 45536 . . . . . . . 8 (((vol*‘(𝐴𝐵)) ∈ (0[,]+∞) ∧ (vol*‘(𝐴𝐵)) ≠ +∞) → (vol*‘(𝐴𝐵)) ∈ ℝ)
6258, 60, 61syl2anc 584 . . . . . . 7 ((𝜑 ∧ ¬ (vol*‘(𝐴𝐵)) = +∞) → (vol*‘(𝐴𝐵)) ∈ ℝ)
6362adantlr 715 . . . . . 6 (((𝜑 ∧ (vol*‘(𝐴𝐵)) ∈ ℝ) ∧ ¬ (vol*‘(𝐴𝐵)) = +∞) → (vol*‘(𝐴𝐵)) ∈ ℝ)
6463ad2ant1 1133 . . . . . . . 8 ((𝜑 ∧ (vol*‘(𝐴𝐵)) ∈ ℝ ∧ (vol*‘(𝐴𝐵)) ∈ ℝ) → (𝐴𝐵) ⊆ ℝ)
65 simp2 1137 . . . . . . . 8 ((𝜑 ∧ (vol*‘(𝐴𝐵)) ∈ ℝ ∧ (vol*‘(𝐴𝐵)) ∈ ℝ) → (vol*‘(𝐴𝐵)) ∈ ℝ)
6673ad2ant1 1133 . . . . . . . 8 ((𝜑 ∧ (vol*‘(𝐴𝐵)) ∈ ℝ ∧ (vol*‘(𝐴𝐵)) ∈ ℝ) → (𝐴𝐵) ⊆ ℝ)
67 simp3 1138 . . . . . . . 8 ((𝜑 ∧ (vol*‘(𝐴𝐵)) ∈ ℝ ∧ (vol*‘(𝐴𝐵)) ∈ ℝ) → (vol*‘(𝐴𝐵)) ∈ ℝ)
68 ovolun 25407 . . . . . . . 8 ((((𝐴𝐵) ⊆ ℝ ∧ (vol*‘(𝐴𝐵)) ∈ ℝ) ∧ ((𝐴𝐵) ⊆ ℝ ∧ (vol*‘(𝐴𝐵)) ∈ ℝ)) → (vol*‘((𝐴𝐵) ∪ (𝐴𝐵))) ≤ ((vol*‘(𝐴𝐵)) + (vol*‘(𝐴𝐵))))
6964, 65, 66, 67, 68syl22anc 838 . . . . . . 7 ((𝜑 ∧ (vol*‘(𝐴𝐵)) ∈ ℝ ∧ (vol*‘(𝐴𝐵)) ∈ ℝ) → (vol*‘((𝐴𝐵) ∪ (𝐴𝐵))) ≤ ((vol*‘(𝐴𝐵)) + (vol*‘(𝐴𝐵))))
70 rexadd 13199 . . . . . . . . 9 (((vol*‘(𝐴𝐵)) ∈ ℝ ∧ (vol*‘(𝐴𝐵)) ∈ ℝ) → ((vol*‘(𝐴𝐵)) +𝑒 (vol*‘(𝐴𝐵))) = ((vol*‘(𝐴𝐵)) + (vol*‘(𝐴𝐵))))
7170eqcomd 2736 . . . . . . . 8 (((vol*‘(𝐴𝐵)) ∈ ℝ ∧ (vol*‘(𝐴𝐵)) ∈ ℝ) → ((vol*‘(𝐴𝐵)) + (vol*‘(𝐴𝐵))) = ((vol*‘(𝐴𝐵)) +𝑒 (vol*‘(𝐴𝐵))))
72713adant1 1130 . . . . . . 7 ((𝜑 ∧ (vol*‘(𝐴𝐵)) ∈ ℝ ∧ (vol*‘(𝐴𝐵)) ∈ ℝ) → ((vol*‘(𝐴𝐵)) + (vol*‘(𝐴𝐵))) = ((vol*‘(𝐴𝐵)) +𝑒 (vol*‘(𝐴𝐵))))
7369, 72breqtrd 5136 . . . . . 6 ((𝜑 ∧ (vol*‘(𝐴𝐵)) ∈ ℝ ∧ (vol*‘(𝐴𝐵)) ∈ ℝ) → (vol*‘((𝐴𝐵) ∪ (𝐴𝐵))) ≤ ((vol*‘(𝐴𝐵)) +𝑒 (vol*‘(𝐴𝐵))))
7456, 57, 63, 73syl3anc 1373 . . . . 5 (((𝜑 ∧ (vol*‘(𝐴𝐵)) ∈ ℝ) ∧ ¬ (vol*‘(𝐴𝐵)) = +∞) → (vol*‘((𝐴𝐵) ∪ (𝐴𝐵))) ≤ ((vol*‘(𝐴𝐵)) +𝑒 (vol*‘(𝐴𝐵))))
7555, 74pm2.61dan 812 . . . 4 ((𝜑 ∧ (vol*‘(𝐴𝐵)) ∈ ℝ) → (vol*‘((𝐴𝐵) ∪ (𝐴𝐵))) ≤ ((vol*‘(𝐴𝐵)) +𝑒 (vol*‘(𝐴𝐵))))
7635, 43, 75syl2anc 584 . . 3 ((𝜑 ∧ ¬ (vol*‘(𝐴𝐵)) = +∞) → (vol*‘((𝐴𝐵) ∪ (𝐴𝐵))) ≤ ((vol*‘(𝐴𝐵)) +𝑒 (vol*‘(𝐴𝐵))))
7734, 76pm2.61dan 812 . 2 (𝜑 → (vol*‘((𝐴𝐵) ∪ (𝐴𝐵))) ≤ ((vol*‘(𝐴𝐵)) +𝑒 (vol*‘(𝐴𝐵))))
784, 77eqbrtrd 5132 1 (𝜑 → (vol*‘𝐴) ≤ ((vol*‘(𝐴𝐵)) +𝑒 (vol*‘(𝐴𝐵))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  Vcvv 3450  cdif 3914  cun 3915  cin 3916  wss 3917  𝒫 cpw 4566   class class class wbr 5110  cfv 6514  (class class class)co 7390  cr 11074  0cc0 11075   + caddc 11078  +∞cpnf 11212  -∞cmnf 11213  *cxr 11214  cle 11216   +𝑒 cxad 13077  [,]cicc 13316  vol*covol 25370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-q 12915  df-rp 12959  df-xadd 13080  df-ioo 13317  df-ico 13319  df-icc 13320  df-fz 13476  df-fl 13761  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-ovol 25372
This theorem is referenced by:  ismbl4  45998
  Copyright terms: Public domain W3C validator