Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ovnsplit | Structured version Visualization version GIF version |
Description: The n-dimensional Lebesgue outer measure function is finitely sub-additive: application to a set split in two parts. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
ovnsplit.x | ⊢ (𝜑 → 𝑋 ∈ Fin) |
ovnsplit.a | ⊢ (𝜑 → 𝐴 ⊆ (ℝ ↑m 𝑋)) |
Ref | Expression |
---|---|
ovnsplit | ⊢ (𝜑 → ((voln*‘𝑋)‘𝐴) ≤ (((voln*‘𝑋)‘(𝐴 ∩ 𝐵)) +𝑒 ((voln*‘𝑋)‘(𝐴 ∖ 𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inundif 4378 | . . . . 5 ⊢ ((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵)) = 𝐴 | |
2 | 1 | eqcomi 2767 | . . . 4 ⊢ 𝐴 = ((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵)) |
3 | 2 | fveq2i 6665 | . . 3 ⊢ ((voln*‘𝑋)‘𝐴) = ((voln*‘𝑋)‘((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵))) |
4 | 3 | a1i 11 | . 2 ⊢ (𝜑 → ((voln*‘𝑋)‘𝐴) = ((voln*‘𝑋)‘((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵)))) |
5 | ovnsplit.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
6 | ovnsplit.a | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ (ℝ ↑m 𝑋)) | |
7 | 6 | ssinss1d 42083 | . . 3 ⊢ (𝜑 → (𝐴 ∩ 𝐵) ⊆ (ℝ ↑m 𝑋)) |
8 | 6 | ssdifssd 4050 | . . 3 ⊢ (𝜑 → (𝐴 ∖ 𝐵) ⊆ (ℝ ↑m 𝑋)) |
9 | 5, 7, 8 | ovnsubadd2 43679 | . 2 ⊢ (𝜑 → ((voln*‘𝑋)‘((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵))) ≤ (((voln*‘𝑋)‘(𝐴 ∩ 𝐵)) +𝑒 ((voln*‘𝑋)‘(𝐴 ∖ 𝐵)))) |
10 | 4, 9 | eqbrtrd 5057 | 1 ⊢ (𝜑 → ((voln*‘𝑋)‘𝐴) ≤ (((voln*‘𝑋)‘(𝐴 ∩ 𝐵)) +𝑒 ((voln*‘𝑋)‘(𝐴 ∖ 𝐵)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2111 ∖ cdif 3857 ∪ cun 3858 ∩ cin 3859 ⊆ wss 3860 class class class wbr 5035 ‘cfv 6339 (class class class)co 7155 ↑m cmap 8421 Fincfn 8532 ℝcr 10579 ≤ cle 10719 +𝑒 cxad 12551 voln*covoln 43569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5159 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 ax-inf2 9142 ax-cc 9900 ax-ac2 9928 ax-cnex 10636 ax-resscn 10637 ax-1cn 10638 ax-icn 10639 ax-addcl 10640 ax-addrcl 10641 ax-mulcl 10642 ax-mulrcl 10643 ax-mulcom 10644 ax-addass 10645 ax-mulass 10646 ax-distr 10647 ax-i2m1 10648 ax-1ne0 10649 ax-1rid 10650 ax-rnegex 10651 ax-rrecex 10652 ax-cnre 10653 ax-pre-lttri 10654 ax-pre-lttrn 10655 ax-pre-ltadd 10656 ax-pre-mulgt0 10657 ax-pre-sup 10658 ax-addf 10659 ax-mulf 10660 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-disj 5001 df-br 5036 df-opab 5098 df-mpt 5116 df-tr 5142 df-id 5433 df-eprel 5438 df-po 5446 df-so 5447 df-fr 5486 df-se 5487 df-we 5488 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-isom 6348 df-riota 7113 df-ov 7158 df-oprab 7159 df-mpo 7160 df-of 7410 df-om 7585 df-1st 7698 df-2nd 7699 df-tpos 7907 df-wrecs 7962 df-recs 8023 df-rdg 8061 df-1o 8117 df-2o 8118 df-er 8304 df-map 8423 df-pm 8424 df-ixp 8485 df-en 8533 df-dom 8534 df-sdom 8535 df-fin 8536 df-fi 8913 df-sup 8944 df-inf 8945 df-oi 9012 df-dju 9368 df-card 9406 df-acn 9409 df-ac 9581 df-pnf 10720 df-mnf 10721 df-xr 10722 df-ltxr 10723 df-le 10724 df-sub 10915 df-neg 10916 df-div 11341 df-nn 11680 df-2 11742 df-3 11743 df-4 11744 df-5 11745 df-6 11746 df-7 11747 df-8 11748 df-9 11749 df-n0 11940 df-z 12026 df-dec 12143 df-uz 12288 df-q 12394 df-rp 12436 df-xneg 12553 df-xadd 12554 df-xmul 12555 df-ioo 12788 df-ico 12790 df-icc 12791 df-fz 12945 df-fzo 13088 df-fl 13216 df-seq 13424 df-exp 13485 df-hash 13746 df-cj 14511 df-re 14512 df-im 14513 df-sqrt 14647 df-abs 14648 df-clim 14898 df-rlim 14899 df-sum 15096 df-prod 15313 df-struct 16548 df-ndx 16549 df-slot 16550 df-base 16552 df-sets 16553 df-ress 16554 df-plusg 16641 df-mulr 16642 df-starv 16643 df-tset 16647 df-ple 16648 df-ds 16650 df-unif 16651 df-rest 16759 df-0g 16778 df-topgen 16780 df-mgm 17923 df-sgrp 17972 df-mnd 17983 df-grp 18177 df-minusg 18178 df-subg 18348 df-cmn 18980 df-abl 18981 df-mgp 19313 df-ur 19325 df-ring 19372 df-cring 19373 df-oppr 19449 df-dvdsr 19467 df-unit 19468 df-invr 19498 df-dvr 19509 df-drng 19577 df-psmet 20163 df-xmet 20164 df-met 20165 df-bl 20166 df-mopn 20167 df-cnfld 20172 df-top 21599 df-topon 21616 df-bases 21651 df-cmp 22092 df-ovol 24169 df-vol 24170 df-sumge0 43396 df-ovoln 43570 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |