![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ovnsplit | Structured version Visualization version GIF version |
Description: The n-dimensional Lebesgue outer measure function is finitely sub-additive: application to a set split in two parts. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
ovnsplit.x | ⊢ (𝜑 → 𝑋 ∈ Fin) |
ovnsplit.a | ⊢ (𝜑 → 𝐴 ⊆ (ℝ ↑m 𝑋)) |
Ref | Expression |
---|---|
ovnsplit | ⊢ (𝜑 → ((voln*‘𝑋)‘𝐴) ≤ (((voln*‘𝑋)‘(𝐴 ∩ 𝐵)) +𝑒 ((voln*‘𝑋)‘(𝐴 ∖ 𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inundif 4488 | . . . . 5 ⊢ ((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵)) = 𝐴 | |
2 | 1 | eqcomi 2746 | . . . 4 ⊢ 𝐴 = ((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵)) |
3 | 2 | fveq2i 6917 | . . 3 ⊢ ((voln*‘𝑋)‘𝐴) = ((voln*‘𝑋)‘((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵))) |
4 | 3 | a1i 11 | . 2 ⊢ (𝜑 → ((voln*‘𝑋)‘𝐴) = ((voln*‘𝑋)‘((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵)))) |
5 | ovnsplit.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
6 | ovnsplit.a | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ (ℝ ↑m 𝑋)) | |
7 | 6 | ssinss1d 45018 | . . 3 ⊢ (𝜑 → (𝐴 ∩ 𝐵) ⊆ (ℝ ↑m 𝑋)) |
8 | 6 | ssdifssd 4160 | . . 3 ⊢ (𝜑 → (𝐴 ∖ 𝐵) ⊆ (ℝ ↑m 𝑋)) |
9 | 5, 7, 8 | ovnsubadd2 46630 | . 2 ⊢ (𝜑 → ((voln*‘𝑋)‘((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵))) ≤ (((voln*‘𝑋)‘(𝐴 ∩ 𝐵)) +𝑒 ((voln*‘𝑋)‘(𝐴 ∖ 𝐵)))) |
10 | 4, 9 | eqbrtrd 5173 | 1 ⊢ (𝜑 → ((voln*‘𝑋)‘𝐴) ≤ (((voln*‘𝑋)‘(𝐴 ∩ 𝐵)) +𝑒 ((voln*‘𝑋)‘(𝐴 ∖ 𝐵)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ∖ cdif 3963 ∪ cun 3964 ∩ cin 3965 ⊆ wss 3966 class class class wbr 5151 ‘cfv 6569 (class class class)co 7438 ↑m cmap 8874 Fincfn 8993 ℝcr 11161 ≤ cle 11303 +𝑒 cxad 13159 voln*covoln 46520 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-inf2 9688 ax-cc 10482 ax-ac2 10510 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 ax-pre-sup 11240 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-int 4955 df-iun 5001 df-disj 5119 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-se 5646 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-isom 6578 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-of 7704 df-om 7895 df-1st 8022 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-1o 8514 df-2o 8515 df-er 8753 df-map 8876 df-pm 8877 df-ixp 8946 df-en 8994 df-dom 8995 df-sdom 8996 df-fin 8997 df-fi 9458 df-sup 9489 df-inf 9490 df-oi 9557 df-dju 9948 df-card 9986 df-acn 9989 df-ac 10163 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-div 11928 df-nn 12274 df-2 12336 df-3 12337 df-n0 12534 df-z 12621 df-uz 12886 df-q 12998 df-rp 13042 df-xneg 13161 df-xadd 13162 df-xmul 13163 df-ioo 13397 df-ico 13399 df-icc 13400 df-fz 13554 df-fzo 13701 df-fl 13838 df-seq 14049 df-exp 14109 df-hash 14376 df-cj 15144 df-re 15145 df-im 15146 df-sqrt 15280 df-abs 15281 df-clim 15530 df-rlim 15531 df-sum 15729 df-prod 15946 df-rest 17478 df-topgen 17499 df-psmet 21383 df-xmet 21384 df-met 21385 df-bl 21386 df-mopn 21387 df-top 22925 df-topon 22942 df-bases 22978 df-cmp 23420 df-ovol 25524 df-vol 25525 df-sumge0 46347 df-ovoln 46521 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |