![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ovnsplit | Structured version Visualization version GIF version |
Description: The n-dimensional Lebesgue outer measure function is finitely sub-additive: application to a set split in two parts. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
ovnsplit.x | ⊢ (𝜑 → 𝑋 ∈ Fin) |
ovnsplit.a | ⊢ (𝜑 → 𝐴 ⊆ (ℝ ↑𝑚 𝑋)) |
Ref | Expression |
---|---|
ovnsplit | ⊢ (𝜑 → ((voln*‘𝑋)‘𝐴) ≤ (((voln*‘𝑋)‘(𝐴 ∩ 𝐵)) +𝑒 ((voln*‘𝑋)‘(𝐴 ∖ 𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inundif 4347 | . . . . 5 ⊢ ((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵)) = 𝐴 | |
2 | 1 | eqcomi 2806 | . . . 4 ⊢ 𝐴 = ((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵)) |
3 | 2 | fveq2i 6548 | . . 3 ⊢ ((voln*‘𝑋)‘𝐴) = ((voln*‘𝑋)‘((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵))) |
4 | 3 | a1i 11 | . 2 ⊢ (𝜑 → ((voln*‘𝑋)‘𝐴) = ((voln*‘𝑋)‘((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵)))) |
5 | ovnsplit.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ Fin) | |
6 | ovnsplit.a | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ (ℝ ↑𝑚 𝑋)) | |
7 | 6 | ssinss1d 40870 | . . 3 ⊢ (𝜑 → (𝐴 ∩ 𝐵) ⊆ (ℝ ↑𝑚 𝑋)) |
8 | 6 | ssdifssd 4046 | . . 3 ⊢ (𝜑 → (𝐴 ∖ 𝐵) ⊆ (ℝ ↑𝑚 𝑋)) |
9 | 5, 7, 8 | ovnsubadd2 42492 | . 2 ⊢ (𝜑 → ((voln*‘𝑋)‘((𝐴 ∩ 𝐵) ∪ (𝐴 ∖ 𝐵))) ≤ (((voln*‘𝑋)‘(𝐴 ∩ 𝐵)) +𝑒 ((voln*‘𝑋)‘(𝐴 ∖ 𝐵)))) |
10 | 4, 9 | eqbrtrd 4990 | 1 ⊢ (𝜑 → ((voln*‘𝑋)‘𝐴) ≤ (((voln*‘𝑋)‘(𝐴 ∩ 𝐵)) +𝑒 ((voln*‘𝑋)‘(𝐴 ∖ 𝐵)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1525 ∈ wcel 2083 ∖ cdif 3862 ∪ cun 3863 ∩ cin 3864 ⊆ wss 3865 class class class wbr 4968 ‘cfv 6232 (class class class)co 7023 ↑𝑚 cmap 8263 Fincfn 8364 ℝcr 10389 ≤ cle 10529 +𝑒 cxad 12359 voln*covoln 42382 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-rep 5088 ax-sep 5101 ax-nul 5108 ax-pow 5164 ax-pr 5228 ax-un 7326 ax-inf2 8957 ax-cc 9710 ax-ac2 9738 ax-cnex 10446 ax-resscn 10447 ax-1cn 10448 ax-icn 10449 ax-addcl 10450 ax-addrcl 10451 ax-mulcl 10452 ax-mulrcl 10453 ax-mulcom 10454 ax-addass 10455 ax-mulass 10456 ax-distr 10457 ax-i2m1 10458 ax-1ne0 10459 ax-1rid 10460 ax-rnegex 10461 ax-rrecex 10462 ax-cnre 10463 ax-pre-lttri 10464 ax-pre-lttrn 10465 ax-pre-ltadd 10466 ax-pre-mulgt0 10467 ax-pre-sup 10468 ax-addf 10469 ax-mulf 10470 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1528 df-fal 1538 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ne 2987 df-nel 3093 df-ral 3112 df-rex 3113 df-reu 3114 df-rmo 3115 df-rab 3116 df-v 3442 df-sbc 3712 df-csb 3818 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-pss 3882 df-nul 4218 df-if 4388 df-pw 4461 df-sn 4479 df-pr 4481 df-tp 4483 df-op 4485 df-uni 4752 df-int 4789 df-iun 4833 df-disj 4937 df-br 4969 df-opab 5031 df-mpt 5048 df-tr 5071 df-id 5355 df-eprel 5360 df-po 5369 df-so 5370 df-fr 5409 df-se 5410 df-we 5411 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-rn 5461 df-res 5462 df-ima 5463 df-pred 6030 df-ord 6076 df-on 6077 df-lim 6078 df-suc 6079 df-iota 6196 df-fun 6234 df-fn 6235 df-f 6236 df-f1 6237 df-fo 6238 df-f1o 6239 df-fv 6240 df-isom 6241 df-riota 6984 df-ov 7026 df-oprab 7027 df-mpo 7028 df-of 7274 df-om 7444 df-1st 7552 df-2nd 7553 df-tpos 7750 df-wrecs 7805 df-recs 7867 df-rdg 7905 df-1o 7960 df-2o 7961 df-oadd 7964 df-er 8146 df-map 8265 df-pm 8266 df-ixp 8318 df-en 8365 df-dom 8366 df-sdom 8367 df-fin 8368 df-fi 8728 df-sup 8759 df-inf 8760 df-oi 8827 df-dju 9183 df-card 9221 df-acn 9224 df-ac 9395 df-pnf 10530 df-mnf 10531 df-xr 10532 df-ltxr 10533 df-le 10534 df-sub 10725 df-neg 10726 df-div 11152 df-nn 11493 df-2 11554 df-3 11555 df-4 11556 df-5 11557 df-6 11558 df-7 11559 df-8 11560 df-9 11561 df-n0 11752 df-z 11836 df-dec 11953 df-uz 12098 df-q 12202 df-rp 12244 df-xneg 12361 df-xadd 12362 df-xmul 12363 df-ioo 12596 df-ico 12598 df-icc 12599 df-fz 12747 df-fzo 12888 df-fl 13016 df-seq 13224 df-exp 13284 df-hash 13545 df-cj 14296 df-re 14297 df-im 14298 df-sqrt 14432 df-abs 14433 df-clim 14683 df-rlim 14684 df-sum 14881 df-prod 15097 df-struct 16318 df-ndx 16319 df-slot 16320 df-base 16322 df-sets 16323 df-ress 16324 df-plusg 16411 df-mulr 16412 df-starv 16413 df-tset 16417 df-ple 16418 df-ds 16420 df-unif 16421 df-rest 16529 df-0g 16548 df-topgen 16550 df-mgm 17685 df-sgrp 17727 df-mnd 17738 df-grp 17868 df-minusg 17869 df-subg 18034 df-cmn 18639 df-abl 18640 df-mgp 18934 df-ur 18946 df-ring 18993 df-cring 18994 df-oppr 19067 df-dvdsr 19085 df-unit 19086 df-invr 19116 df-dvr 19127 df-drng 19198 df-psmet 20223 df-xmet 20224 df-met 20225 df-bl 20226 df-mopn 20227 df-cnfld 20232 df-top 21190 df-topon 21207 df-bases 21242 df-cmp 21683 df-ovol 23752 df-vol 23753 df-sumge0 42209 df-ovoln 42383 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |