![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elpwinss | Structured version Visualization version GIF version |
Description: An element of the powerset of 𝐵 intersected with anything, is a subset of 𝐵. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
elpwinss | ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ 𝐶) → 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elinel1 4224 | . 2 ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ 𝐶) → 𝐴 ∈ 𝒫 𝐵) | |
2 | 1 | elpwid 4631 | 1 ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ 𝐶) → 𝐴 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∩ cin 3975 ⊆ wss 3976 𝒫 cpw 4622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-in 3983 df-ss 3993 df-pw 4624 |
This theorem is referenced by: sge0z 46296 sge0revalmpt 46299 sge0f1o 46303 sge0rnbnd 46314 sge0pnffigt 46317 sge0lefi 46319 sge0ltfirp 46321 sge0gerpmpt 46323 sge0le 46328 sge0ltfirpmpt 46329 sge0iunmptlemre 46336 sge0rpcpnf 46342 sge0lefimpt 46344 sge0ltfirpmpt2 46347 sge0isum 46348 sge0xaddlem1 46354 sge0xaddlem2 46355 sge0pnffigtmpt 46361 sge0pnffsumgt 46363 sge0gtfsumgt 46364 sge0uzfsumgt 46365 sge0seq 46367 sge0reuz 46368 omeiunltfirp 46440 carageniuncllem2 46443 caratheodorylem2 46448 |
Copyright terms: Public domain | W3C validator |