| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elpwinss | Structured version Visualization version GIF version | ||
| Description: An element of the powerset of 𝐵 intersected with anything, is a subset of 𝐵. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| elpwinss | ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ 𝐶) → 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elinel1 4176 | . 2 ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ 𝐶) → 𝐴 ∈ 𝒫 𝐵) | |
| 2 | 1 | elpwid 4584 | 1 ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ 𝐶) → 𝐴 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 ∩ cin 3925 ⊆ wss 3926 𝒫 cpw 4575 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-in 3933 df-ss 3943 df-pw 4577 |
| This theorem is referenced by: sge0z 46404 sge0revalmpt 46407 sge0f1o 46411 sge0rnbnd 46422 sge0pnffigt 46425 sge0lefi 46427 sge0ltfirp 46429 sge0gerpmpt 46431 sge0le 46436 sge0ltfirpmpt 46437 sge0iunmptlemre 46444 sge0rpcpnf 46450 sge0lefimpt 46452 sge0ltfirpmpt2 46455 sge0isum 46456 sge0xaddlem1 46462 sge0xaddlem2 46463 sge0pnffigtmpt 46469 sge0pnffsumgt 46471 sge0gtfsumgt 46472 sge0uzfsumgt 46473 sge0seq 46475 sge0reuz 46476 omeiunltfirp 46548 carageniuncllem2 46551 caratheodorylem2 46556 |
| Copyright terms: Public domain | W3C validator |