![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elpwinss | Structured version Visualization version GIF version |
Description: An element of the powerset of 𝐵 intersected with anything, is a subset of 𝐵. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
elpwinss | ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ 𝐶) → 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elinel1 4196 | . 2 ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ 𝐶) → 𝐴 ∈ 𝒫 𝐵) | |
2 | 1 | elpwid 4612 | 1 ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ 𝐶) → 𝐴 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 ∩ cin 3948 ⊆ wss 3949 𝒫 cpw 4603 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-v 3475 df-in 3956 df-ss 3966 df-pw 4605 |
This theorem is referenced by: sge0z 45391 sge0revalmpt 45394 sge0f1o 45398 sge0rnbnd 45409 sge0pnffigt 45412 sge0lefi 45414 sge0ltfirp 45416 sge0gerpmpt 45418 sge0le 45423 sge0ltfirpmpt 45424 sge0iunmptlemre 45431 sge0rpcpnf 45437 sge0lefimpt 45439 sge0ltfirpmpt2 45442 sge0isum 45443 sge0xaddlem1 45449 sge0xaddlem2 45450 sge0pnffigtmpt 45456 sge0pnffsumgt 45458 sge0gtfsumgt 45459 sge0uzfsumgt 45460 sge0seq 45462 sge0reuz 45463 omeiunltfirp 45535 carageniuncllem2 45538 caratheodorylem2 45543 |
Copyright terms: Public domain | W3C validator |