Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elpwinss | Structured version Visualization version GIF version |
Description: An element of the powerset of 𝐵 intersected with anything, is a subset of 𝐵. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
elpwinss | ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ 𝐶) → 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elinel1 4129 | . 2 ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ 𝐶) → 𝐴 ∈ 𝒫 𝐵) | |
2 | 1 | elpwid 4544 | 1 ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ 𝐶) → 𝐴 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ∩ cin 3886 ⊆ wss 3887 𝒫 cpw 4533 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 df-pw 4535 |
This theorem is referenced by: sge0z 43913 sge0revalmpt 43916 sge0f1o 43920 sge0rnbnd 43931 sge0pnffigt 43934 sge0lefi 43936 sge0ltfirp 43938 sge0gerpmpt 43940 sge0le 43945 sge0ltfirpmpt 43946 sge0iunmptlemre 43953 sge0rpcpnf 43959 sge0lefimpt 43961 sge0ltfirpmpt2 43964 sge0isum 43965 sge0xaddlem1 43971 sge0xaddlem2 43972 sge0pnffigtmpt 43978 sge0pnffsumgt 43980 sge0gtfsumgt 43981 sge0uzfsumgt 43982 sge0seq 43984 sge0reuz 43985 omeiunltfirp 44057 carageniuncllem2 44060 caratheodorylem2 44065 |
Copyright terms: Public domain | W3C validator |