| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elpwinss | Structured version Visualization version GIF version | ||
| Description: An element of the powerset of 𝐵 intersected with anything, is a subset of 𝐵. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| elpwinss | ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ 𝐶) → 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elinel1 4164 | . 2 ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ 𝐶) → 𝐴 ∈ 𝒫 𝐵) | |
| 2 | 1 | elpwid 4572 | 1 ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ 𝐶) → 𝐴 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∩ cin 3913 ⊆ wss 3914 𝒫 cpw 4563 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-in 3921 df-ss 3931 df-pw 4565 |
| This theorem is referenced by: sge0z 46373 sge0revalmpt 46376 sge0f1o 46380 sge0rnbnd 46391 sge0pnffigt 46394 sge0lefi 46396 sge0ltfirp 46398 sge0gerpmpt 46400 sge0le 46405 sge0ltfirpmpt 46406 sge0iunmptlemre 46413 sge0rpcpnf 46419 sge0lefimpt 46421 sge0ltfirpmpt2 46424 sge0isum 46425 sge0xaddlem1 46431 sge0xaddlem2 46432 sge0pnffigtmpt 46438 sge0pnffsumgt 46440 sge0gtfsumgt 46441 sge0uzfsumgt 46442 sge0seq 46444 sge0reuz 46445 omeiunltfirp 46517 carageniuncllem2 46520 caratheodorylem2 46525 |
| Copyright terms: Public domain | W3C validator |