![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elpwinss | Structured version Visualization version GIF version |
Description: An element of the powerset of 𝐵 intersected with anything, is a subset of 𝐵. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
elpwinss | ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ 𝐶) → 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elinel1 4210 | . 2 ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ 𝐶) → 𝐴 ∈ 𝒫 𝐵) | |
2 | 1 | elpwid 4613 | 1 ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ 𝐶) → 𝐴 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 ∩ cin 3961 ⊆ wss 3962 𝒫 cpw 4604 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-v 3479 df-in 3969 df-ss 3979 df-pw 4606 |
This theorem is referenced by: sge0z 46330 sge0revalmpt 46333 sge0f1o 46337 sge0rnbnd 46348 sge0pnffigt 46351 sge0lefi 46353 sge0ltfirp 46355 sge0gerpmpt 46357 sge0le 46362 sge0ltfirpmpt 46363 sge0iunmptlemre 46370 sge0rpcpnf 46376 sge0lefimpt 46378 sge0ltfirpmpt2 46381 sge0isum 46382 sge0xaddlem1 46388 sge0xaddlem2 46389 sge0pnffigtmpt 46395 sge0pnffsumgt 46397 sge0gtfsumgt 46398 sge0uzfsumgt 46399 sge0seq 46401 sge0reuz 46402 omeiunltfirp 46474 carageniuncllem2 46477 caratheodorylem2 46482 |
Copyright terms: Public domain | W3C validator |