| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elpwinss | Structured version Visualization version GIF version | ||
| Description: An element of the powerset of 𝐵 intersected with anything, is a subset of 𝐵. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| elpwinss | ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ 𝐶) → 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elinel1 4151 | . 2 ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ 𝐶) → 𝐴 ∈ 𝒫 𝐵) | |
| 2 | 1 | elpwid 4559 | 1 ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ 𝐶) → 𝐴 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ∩ cin 3901 ⊆ wss 3902 𝒫 cpw 4550 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-in 3909 df-ss 3919 df-pw 4552 |
| This theorem is referenced by: sge0z 46419 sge0revalmpt 46422 sge0f1o 46426 sge0rnbnd 46437 sge0pnffigt 46440 sge0lefi 46442 sge0ltfirp 46444 sge0gerpmpt 46446 sge0le 46451 sge0ltfirpmpt 46452 sge0iunmptlemre 46459 sge0rpcpnf 46465 sge0lefimpt 46467 sge0ltfirpmpt2 46470 sge0isum 46471 sge0xaddlem1 46477 sge0xaddlem2 46478 sge0pnffigtmpt 46484 sge0pnffsumgt 46486 sge0gtfsumgt 46487 sge0uzfsumgt 46488 sge0seq 46490 sge0reuz 46491 omeiunltfirp 46563 carageniuncllem2 46566 caratheodorylem2 46571 |
| Copyright terms: Public domain | W3C validator |