Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elpwinss | Structured version Visualization version GIF version |
Description: An element of the powerset of 𝐵 intersected with anything, is a subset of 𝐵. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
elpwinss | ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ 𝐶) → 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elinel1 4100 | . 2 ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ 𝐶) → 𝐴 ∈ 𝒫 𝐵) | |
2 | 1 | elpwid 4505 | 1 ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ 𝐶) → 𝐴 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2111 ∩ cin 3857 ⊆ wss 3858 𝒫 cpw 4494 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-v 3411 df-in 3865 df-ss 3875 df-pw 4496 |
This theorem is referenced by: sge0z 43380 sge0revalmpt 43383 sge0f1o 43387 sge0rnbnd 43398 sge0pnffigt 43401 sge0lefi 43403 sge0ltfirp 43405 sge0gerpmpt 43407 sge0le 43412 sge0ltfirpmpt 43413 sge0iunmptlemre 43420 sge0rpcpnf 43426 sge0lefimpt 43428 sge0ltfirpmpt2 43431 sge0isum 43432 sge0xaddlem1 43438 sge0xaddlem2 43439 sge0pnffigtmpt 43445 sge0pnffsumgt 43447 sge0gtfsumgt 43448 sge0uzfsumgt 43449 sge0seq 43451 sge0reuz 43452 omeiunltfirp 43524 carageniuncllem2 43527 caratheodorylem2 43532 |
Copyright terms: Public domain | W3C validator |