| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elpwinss | Structured version Visualization version GIF version | ||
| Description: An element of the powerset of 𝐵 intersected with anything, is a subset of 𝐵. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| elpwinss | ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ 𝐶) → 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elinel1 4154 | . 2 ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ 𝐶) → 𝐴 ∈ 𝒫 𝐵) | |
| 2 | 1 | elpwid 4562 | 1 ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ 𝐶) → 𝐴 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∩ cin 3904 ⊆ wss 3905 𝒫 cpw 4553 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-in 3912 df-ss 3922 df-pw 4555 |
| This theorem is referenced by: sge0z 46357 sge0revalmpt 46360 sge0f1o 46364 sge0rnbnd 46375 sge0pnffigt 46378 sge0lefi 46380 sge0ltfirp 46382 sge0gerpmpt 46384 sge0le 46389 sge0ltfirpmpt 46390 sge0iunmptlemre 46397 sge0rpcpnf 46403 sge0lefimpt 46405 sge0ltfirpmpt2 46408 sge0isum 46409 sge0xaddlem1 46415 sge0xaddlem2 46416 sge0pnffigtmpt 46422 sge0pnffsumgt 46424 sge0gtfsumgt 46425 sge0uzfsumgt 46426 sge0seq 46428 sge0reuz 46429 omeiunltfirp 46501 carageniuncllem2 46504 caratheodorylem2 46509 |
| Copyright terms: Public domain | W3C validator |