| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elpwinss | Structured version Visualization version GIF version | ||
| Description: An element of the powerset of 𝐵 intersected with anything, is a subset of 𝐵. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| elpwinss | ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ 𝐶) → 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elinel1 4167 | . 2 ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ 𝐶) → 𝐴 ∈ 𝒫 𝐵) | |
| 2 | 1 | elpwid 4575 | 1 ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ 𝐶) → 𝐴 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∩ cin 3916 ⊆ wss 3917 𝒫 cpw 4566 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-in 3924 df-ss 3934 df-pw 4568 |
| This theorem is referenced by: sge0z 46380 sge0revalmpt 46383 sge0f1o 46387 sge0rnbnd 46398 sge0pnffigt 46401 sge0lefi 46403 sge0ltfirp 46405 sge0gerpmpt 46407 sge0le 46412 sge0ltfirpmpt 46413 sge0iunmptlemre 46420 sge0rpcpnf 46426 sge0lefimpt 46428 sge0ltfirpmpt2 46431 sge0isum 46432 sge0xaddlem1 46438 sge0xaddlem2 46439 sge0pnffigtmpt 46445 sge0pnffsumgt 46447 sge0gtfsumgt 46448 sge0uzfsumgt 46449 sge0seq 46451 sge0reuz 46452 omeiunltfirp 46524 carageniuncllem2 46527 caratheodorylem2 46532 |
| Copyright terms: Public domain | W3C validator |