| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elpwinss | Structured version Visualization version GIF version | ||
| Description: An element of the powerset of 𝐵 intersected with anything, is a subset of 𝐵. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| elpwinss | ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ 𝐶) → 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elinel1 4201 | . 2 ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ 𝐶) → 𝐴 ∈ 𝒫 𝐵) | |
| 2 | 1 | elpwid 4609 | 1 ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ 𝐶) → 𝐴 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 ∩ cin 3950 ⊆ wss 3951 𝒫 cpw 4600 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-v 3482 df-in 3958 df-ss 3968 df-pw 4602 |
| This theorem is referenced by: sge0z 46390 sge0revalmpt 46393 sge0f1o 46397 sge0rnbnd 46408 sge0pnffigt 46411 sge0lefi 46413 sge0ltfirp 46415 sge0gerpmpt 46417 sge0le 46422 sge0ltfirpmpt 46423 sge0iunmptlemre 46430 sge0rpcpnf 46436 sge0lefimpt 46438 sge0ltfirpmpt2 46441 sge0isum 46442 sge0xaddlem1 46448 sge0xaddlem2 46449 sge0pnffigtmpt 46455 sge0pnffsumgt 46457 sge0gtfsumgt 46458 sge0uzfsumgt 46459 sge0seq 46461 sge0reuz 46462 omeiunltfirp 46534 carageniuncllem2 46537 caratheodorylem2 46542 |
| Copyright terms: Public domain | W3C validator |