Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elpwinss | Structured version Visualization version GIF version |
Description: An element of the powerset of 𝐵 intersected with anything, is a subset of 𝐵. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
elpwinss | ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ 𝐶) → 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elinel1 4125 | . 2 ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ 𝐶) → 𝐴 ∈ 𝒫 𝐵) | |
2 | 1 | elpwid 4541 | 1 ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ 𝐶) → 𝐴 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∩ cin 3882 ⊆ wss 3883 𝒫 cpw 4530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-pw 4532 |
This theorem is referenced by: sge0z 43803 sge0revalmpt 43806 sge0f1o 43810 sge0rnbnd 43821 sge0pnffigt 43824 sge0lefi 43826 sge0ltfirp 43828 sge0gerpmpt 43830 sge0le 43835 sge0ltfirpmpt 43836 sge0iunmptlemre 43843 sge0rpcpnf 43849 sge0lefimpt 43851 sge0ltfirpmpt2 43854 sge0isum 43855 sge0xaddlem1 43861 sge0xaddlem2 43862 sge0pnffigtmpt 43868 sge0pnffsumgt 43870 sge0gtfsumgt 43871 sge0uzfsumgt 43872 sge0seq 43874 sge0reuz 43875 omeiunltfirp 43947 carageniuncllem2 43950 caratheodorylem2 43955 |
Copyright terms: Public domain | W3C validator |