| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elpwinss | Structured version Visualization version GIF version | ||
| Description: An element of the powerset of 𝐵 intersected with anything, is a subset of 𝐵. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| elpwinss | ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ 𝐶) → 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elinel1 4150 | . 2 ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ 𝐶) → 𝐴 ∈ 𝒫 𝐵) | |
| 2 | 1 | elpwid 4558 | 1 ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ 𝐶) → 𝐴 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 ∩ cin 3897 ⊆ wss 3898 𝒫 cpw 4549 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-in 3905 df-ss 3915 df-pw 4551 |
| This theorem is referenced by: sge0z 46498 sge0revalmpt 46501 sge0f1o 46505 sge0rnbnd 46516 sge0pnffigt 46519 sge0lefi 46521 sge0ltfirp 46523 sge0gerpmpt 46525 sge0le 46530 sge0ltfirpmpt 46531 sge0iunmptlemre 46538 sge0rpcpnf 46544 sge0lefimpt 46546 sge0ltfirpmpt2 46549 sge0isum 46550 sge0xaddlem1 46556 sge0xaddlem2 46557 sge0pnffigtmpt 46563 sge0pnffsumgt 46565 sge0gtfsumgt 46566 sge0uzfsumgt 46567 sge0seq 46569 sge0reuz 46570 omeiunltfirp 46642 carageniuncllem2 46645 caratheodorylem2 46650 |
| Copyright terms: Public domain | W3C validator |