![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elpwinss | Structured version Visualization version GIF version |
Description: An element of the powerset of 𝐵 intersected with anything, is a subset of 𝐵. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
elpwinss | ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ 𝐶) → 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elinel1 4194 | . 2 ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ 𝐶) → 𝐴 ∈ 𝒫 𝐵) | |
2 | 1 | elpwid 4610 | 1 ⊢ (𝐴 ∈ (𝒫 𝐵 ∩ 𝐶) → 𝐴 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2104 ∩ cin 3946 ⊆ wss 3947 𝒫 cpw 4601 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-v 3474 df-in 3954 df-ss 3964 df-pw 4603 |
This theorem is referenced by: sge0z 45389 sge0revalmpt 45392 sge0f1o 45396 sge0rnbnd 45407 sge0pnffigt 45410 sge0lefi 45412 sge0ltfirp 45414 sge0gerpmpt 45416 sge0le 45421 sge0ltfirpmpt 45422 sge0iunmptlemre 45429 sge0rpcpnf 45435 sge0lefimpt 45437 sge0ltfirpmpt2 45440 sge0isum 45441 sge0xaddlem1 45447 sge0xaddlem2 45448 sge0pnffigtmpt 45454 sge0pnffsumgt 45456 sge0gtfsumgt 45457 sge0uzfsumgt 45458 sge0seq 45460 sge0reuz 45461 omeiunltfirp 45533 carageniuncllem2 45536 caratheodorylem2 45541 |
Copyright terms: Public domain | W3C validator |