![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssopab2 | Structured version Visualization version GIF version |
Description: Equivalence of ordered pair abstraction subclass and implication. (Contributed by NM, 27-Dec-1996.) (Revised by Mario Carneiro, 19-May-2013.) |
Ref | Expression |
---|---|
ssopab2 | ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) → {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . . . 6 ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜓)) | |
2 | 1 | anim2d 612 | . . . . 5 ⊢ ((𝜑 → 𝜓) → ((𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) → (𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓))) |
3 | 2 | aleximi 1829 | . . . 4 ⊢ (∀𝑦(𝜑 → 𝜓) → (∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) → ∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓))) |
4 | 3 | aleximi 1829 | . . 3 ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) → (∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) → ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓))) |
5 | 4 | ss2abdv 4076 | . 2 ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) → {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} ⊆ {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓)}) |
6 | df-opab 5211 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | |
7 | df-opab 5211 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜓} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓)} | |
8 | 5, 6, 7 | 3sstr4g 4041 | 1 ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) → {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1535 = wceq 1537 ∃wex 1776 {cab 2712 ⊆ wss 3963 〈cop 4637 {copab 5210 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-ss 3980 df-opab 5211 |
This theorem is referenced by: ssopab2bw 5557 ssopab2b 5559 ssopab2i 5560 ssopab2dv 5561 opabbrex 7484 |
Copyright terms: Public domain | W3C validator |