MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssopab2 Structured version   Visualization version   GIF version

Theorem ssopab2 5459
Description: Equivalence of ordered pair abstraction subclass and implication. (Contributed by NM, 27-Dec-1996.) (Revised by Mario Carneiro, 19-May-2013.)
Assertion
Ref Expression
ssopab2 (∀𝑥𝑦(𝜑𝜓) → {⟨𝑥, 𝑦⟩ ∣ 𝜑} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝜓})

Proof of Theorem ssopab2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . . 6 ((𝜑𝜓) → (𝜑𝜓))
21anim2d 612 . . . . 5 ((𝜑𝜓) → ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)))
32aleximi 1834 . . . 4 (∀𝑦(𝜑𝜓) → (∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)))
43aleximi 1834 . . 3 (∀𝑥𝑦(𝜑𝜓) → (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)))
54ss2abdv 3997 . 2 (∀𝑥𝑦(𝜑𝜓) → {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} ⊆ {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)})
6 df-opab 5137 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
7 df-opab 5137 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝜓} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)}
85, 6, 73sstr4g 3966 1 (∀𝑥𝑦(𝜑𝜓) → {⟨𝑥, 𝑦⟩ ∣ 𝜑} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝜓})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wal 1537   = wceq 1539  wex 1782  {cab 2715  wss 3887  cop 4567  {copab 5136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-in 3894  df-ss 3904  df-opab 5137
This theorem is referenced by:  ssopab2bw  5460  ssopab2b  5462  ssopab2i  5463  ssopab2dv  5464  opabbrex  7326
  Copyright terms: Public domain W3C validator