![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssopab2 | Structured version Visualization version GIF version |
Description: Equivalence of ordered pair abstraction subclass and implication. (Contributed by NM, 27-Dec-1996.) (Revised by Mario Carneiro, 19-May-2013.) |
Ref | Expression |
---|---|
ssopab2 | ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) → {⟨𝑥, 𝑦⟩ ∣ 𝜑} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝜓}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . . . 6 ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜓)) | |
2 | 1 | anim2d 613 | . . . . 5 ⊢ ((𝜑 → 𝜓) → ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓))) |
3 | 2 | aleximi 1835 | . . . 4 ⊢ (∀𝑦(𝜑 → 𝜓) → (∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓))) |
4 | 3 | aleximi 1835 | . . 3 ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) → (∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → ∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓))) |
5 | 4 | ss2abdv 4021 | . 2 ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) → {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} ⊆ {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)}) |
6 | df-opab 5169 | . 2 ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} | |
7 | df-opab 5169 | . 2 ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝜓} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)} | |
8 | 5, 6, 7 | 3sstr4g 3990 | 1 ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) → {⟨𝑥, 𝑦⟩ ∣ 𝜑} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝜓}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∀wal 1540 = wceq 1542 ∃wex 1782 {cab 2714 ⊆ wss 3911 ⟨cop 4593 {copab 5168 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2715 df-cleq 2729 df-clel 2815 df-v 3448 df-in 3918 df-ss 3928 df-opab 5169 |
This theorem is referenced by: ssopab2bw 5505 ssopab2b 5507 ssopab2i 5508 ssopab2dv 5509 opabbrex 7409 |
Copyright terms: Public domain | W3C validator |