|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > ssopab2 | Structured version Visualization version GIF version | ||
| Description: Equivalence of ordered pair abstraction subclass and implication. (Contributed by NM, 27-Dec-1996.) (Revised by Mario Carneiro, 19-May-2013.) | 
| Ref | Expression | 
|---|---|
| ssopab2 | ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) → {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓}) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | id 22 | . . . . . 6 ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜓)) | |
| 2 | 1 | anim2d 612 | . . . . 5 ⊢ ((𝜑 → 𝜓) → ((𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) → (𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓))) | 
| 3 | 2 | aleximi 1832 | . . . 4 ⊢ (∀𝑦(𝜑 → 𝜓) → (∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) → ∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓))) | 
| 4 | 3 | aleximi 1832 | . . 3 ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) → (∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) → ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓))) | 
| 5 | 4 | ss2abdv 4066 | . 2 ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) → {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} ⊆ {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓)}) | 
| 6 | df-opab 5206 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | |
| 7 | df-opab 5206 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜓} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓)} | |
| 8 | 5, 6, 7 | 3sstr4g 4037 | 1 ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) → {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓}) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 = wceq 1540 ∃wex 1779 {cab 2714 ⊆ wss 3951 〈cop 4632 {copab 5205 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-ss 3968 df-opab 5206 | 
| This theorem is referenced by: ssopab2bw 5552 ssopab2b 5554 ssopab2i 5555 ssopab2dv 5556 opabbrex 7484 | 
| Copyright terms: Public domain | W3C validator |