Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssoprab2b Structured version   Visualization version   GIF version

Theorem ssoprab2b 7218
 Description: Equivalence of ordered pair abstraction subclass and implication. Compare ssopab2b 5407. Usage of this theorem is discouraged because it depends on ax-13 2380. (Contributed by FL, 6-Nov-2013.) (Proof shortened by Mario Carneiro, 11-Dec-2016.) (New usage is discouraged.)
Assertion
Ref Expression
ssoprab2b ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} ↔ ∀𝑥𝑦𝑧(𝜑𝜓))

Proof of Theorem ssoprab2b
StepHypRef Expression
1 nfoprab1 7210 . . . 4 𝑥{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
2 nfoprab1 7210 . . . 4 𝑥{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓}
31, 2nfss 3885 . . 3 𝑥{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓}
4 nfoprab2 7211 . . . . 5 𝑦{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
5 nfoprab2 7211 . . . . 5 𝑦{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓}
64, 5nfss 3885 . . . 4 𝑦{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓}
7 nfoprab3 7212 . . . . . 6 𝑧{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
8 nfoprab3 7212 . . . . . 6 𝑧{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓}
97, 8nfss 3885 . . . . 5 𝑧{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓}
10 ssel 3886 . . . . . 6 ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} → (⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} → ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓}))
11 oprabid 7183 . . . . . 6 (⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↔ 𝜑)
12 oprabid 7183 . . . . . 6 (⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} ↔ 𝜓)
1310, 11, 123imtr3g 299 . . . . 5 ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} → (𝜑𝜓))
149, 13alrimi 2212 . . . 4 ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} → ∀𝑧(𝜑𝜓))
156, 14alrimi 2212 . . 3 ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} → ∀𝑦𝑧(𝜑𝜓))
163, 15alrimi 2212 . 2 ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} → ∀𝑥𝑦𝑧(𝜑𝜓))
17 ssoprab2 7217 . 2 (∀𝑥𝑦𝑧(𝜑𝜓) → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓})
1816, 17impbii 212 1 ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} ↔ ∀𝑥𝑦𝑧(𝜑𝜓))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209  ∀wal 1537   ∈ wcel 2112   ⊆ wss 3859  ⟨cop 4529  {coprab 7152 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-13 2380  ax-ext 2730  ax-sep 5170  ax-nul 5177  ax-pr 5299 This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ral 3076  df-v 3412  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-nul 4227  df-if 4422  df-sn 4524  df-pr 4526  df-op 4530  df-oprab 7155 This theorem is referenced by:  eqoprab2b  7220
 Copyright terms: Public domain W3C validator