Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ssrecnpr | Structured version Visualization version GIF version |
Description: ℝ is a subset of both ℝ and ℂ. (Contributed by Steve Rodriguez, 22-Nov-2015.) |
Ref | Expression |
---|---|
ssrecnpr | ⊢ (𝑆 ∈ {ℝ, ℂ} → ℝ ⊆ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpri 4583 | . 2 ⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 = ℝ ∨ 𝑆 = ℂ)) | |
2 | eqimss2 3978 | . . 3 ⊢ (𝑆 = ℝ → ℝ ⊆ 𝑆) | |
3 | ax-resscn 10928 | . . . 4 ⊢ ℝ ⊆ ℂ | |
4 | sseq2 3947 | . . . 4 ⊢ (𝑆 = ℂ → (ℝ ⊆ 𝑆 ↔ ℝ ⊆ ℂ)) | |
5 | 3, 4 | mpbiri 257 | . . 3 ⊢ (𝑆 = ℂ → ℝ ⊆ 𝑆) |
6 | 2, 5 | jaoi 854 | . 2 ⊢ ((𝑆 = ℝ ∨ 𝑆 = ℂ) → ℝ ⊆ 𝑆) |
7 | 1, 6 | syl 17 | 1 ⊢ (𝑆 ∈ {ℝ, ℂ} → ℝ ⊆ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 844 = wceq 1539 ∈ wcel 2106 ⊆ wss 3887 {cpr 4563 ℂcc 10869 ℝcr 10870 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-resscn 10928 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-un 3892 df-in 3894 df-ss 3904 df-sn 4562 df-pr 4564 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |