Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssrecnpr Structured version   Visualization version   GIF version

Theorem ssrecnpr 41599
Description: is a subset of both and . (Contributed by Steve Rodriguez, 22-Nov-2015.)
Assertion
Ref Expression
ssrecnpr (𝑆 ∈ {ℝ, ℂ} → ℝ ⊆ 𝑆)

Proof of Theorem ssrecnpr
StepHypRef Expression
1 elpri 4563 . 2 (𝑆 ∈ {ℝ, ℂ} → (𝑆 = ℝ ∨ 𝑆 = ℂ))
2 eqimss2 3958 . . 3 (𝑆 = ℝ → ℝ ⊆ 𝑆)
3 ax-resscn 10786 . . . 4 ℝ ⊆ ℂ
4 sseq2 3927 . . . 4 (𝑆 = ℂ → (ℝ ⊆ 𝑆 ↔ ℝ ⊆ ℂ))
53, 4mpbiri 261 . . 3 (𝑆 = ℂ → ℝ ⊆ 𝑆)
62, 5jaoi 857 . 2 ((𝑆 = ℝ ∨ 𝑆 = ℂ) → ℝ ⊆ 𝑆)
71, 6syl 17 1 (𝑆 ∈ {ℝ, ℂ} → ℝ ⊆ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847   = wceq 1543  wcel 2110  wss 3866  {cpr 4543  cc 10727  cr 10728
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-ext 2708  ax-resscn 10786
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-tru 1546  df-ex 1788  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-v 3410  df-un 3871  df-in 3873  df-ss 3883  df-sn 4542  df-pr 4544
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator