![]() |
Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ssrecnpr | Structured version Visualization version GIF version |
Description: ℝ is a subset of both ℝ and ℂ. (Contributed by Steve Rodriguez, 22-Nov-2015.) |
Ref | Expression |
---|---|
ssrecnpr | ⊢ (𝑆 ∈ {ℝ, ℂ} → ℝ ⊆ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpri 4657 | . 2 ⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 = ℝ ∨ 𝑆 = ℂ)) | |
2 | eqimss2 4058 | . . 3 ⊢ (𝑆 = ℝ → ℝ ⊆ 𝑆) | |
3 | ax-resscn 11219 | . . . 4 ⊢ ℝ ⊆ ℂ | |
4 | sseq2 4025 | . . . 4 ⊢ (𝑆 = ℂ → (ℝ ⊆ 𝑆 ↔ ℝ ⊆ ℂ)) | |
5 | 3, 4 | mpbiri 258 | . . 3 ⊢ (𝑆 = ℂ → ℝ ⊆ 𝑆) |
6 | 2, 5 | jaoi 858 | . 2 ⊢ ((𝑆 = ℝ ∨ 𝑆 = ℂ) → ℝ ⊆ 𝑆) |
7 | 1, 6 | syl 17 | 1 ⊢ (𝑆 ∈ {ℝ, ℂ} → ℝ ⊆ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 848 = wceq 1539 ∈ wcel 2108 ⊆ wss 3966 {cpr 4636 ℂcc 11160 ℝcr 11161 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-resscn 11219 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1542 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-v 3483 df-un 3971 df-ss 3983 df-sn 4635 df-pr 4637 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |