| Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ssrecnpr | Structured version Visualization version GIF version | ||
| Description: ℝ is a subset of both ℝ and ℂ. (Contributed by Steve Rodriguez, 22-Nov-2015.) |
| Ref | Expression |
|---|---|
| ssrecnpr | ⊢ (𝑆 ∈ {ℝ, ℂ} → ℝ ⊆ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpri 4613 | . 2 ⊢ (𝑆 ∈ {ℝ, ℂ} → (𝑆 = ℝ ∨ 𝑆 = ℂ)) | |
| 2 | eqimss2 4006 | . . 3 ⊢ (𝑆 = ℝ → ℝ ⊆ 𝑆) | |
| 3 | ax-resscn 11125 | . . . 4 ⊢ ℝ ⊆ ℂ | |
| 4 | sseq2 3973 | . . . 4 ⊢ (𝑆 = ℂ → (ℝ ⊆ 𝑆 ↔ ℝ ⊆ ℂ)) | |
| 5 | 3, 4 | mpbiri 258 | . . 3 ⊢ (𝑆 = ℂ → ℝ ⊆ 𝑆) |
| 6 | 2, 5 | jaoi 857 | . 2 ⊢ ((𝑆 = ℝ ∨ 𝑆 = ℂ) → ℝ ⊆ 𝑆) |
| 7 | 1, 6 | syl 17 | 1 ⊢ (𝑆 ∈ {ℝ, ℂ} → ℝ ⊆ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ⊆ wss 3914 {cpr 4591 ℂcc 11066 ℝcr 11067 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-resscn 11125 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-un 3919 df-ss 3931 df-sn 4590 df-pr 4592 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |