| Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iso0 | Structured version Visualization version GIF version | ||
| Description: The empty set is an 𝑅, 𝑆 isomorphism from the empty set to the empty set. (Contributed by Steve Rodriguez, 24-Oct-2015.) |
| Ref | Expression |
|---|---|
| iso0 | ⊢ ∅ Isom 𝑅, 𝑆 (∅, ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1o0 6837 | . 2 ⊢ ∅:∅–1-1-onto→∅ | |
| 2 | ral0 4476 | . 2 ⊢ ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ (𝑥𝑅𝑦 ↔ (∅‘𝑥)𝑆(∅‘𝑦)) | |
| 3 | df-isom 6520 | . 2 ⊢ (∅ Isom 𝑅, 𝑆 (∅, ∅) ↔ (∅:∅–1-1-onto→∅ ∧ ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ (𝑥𝑅𝑦 ↔ (∅‘𝑥)𝑆(∅‘𝑦)))) | |
| 4 | 1, 2, 3 | mpbir2an 711 | 1 ⊢ ∅ Isom 𝑅, 𝑆 (∅, ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wral 3044 ∅c0 4296 class class class wbr 5107 –1-1-onto→wf1o 6510 ‘cfv 6511 Isom wiso 6512 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-isom 6520 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |