Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iso0 Structured version   Visualization version   GIF version

Theorem iso0 41925
Description: The empty set is an 𝑅, 𝑆 isomorphism from the empty set to the empty set. (Contributed by Steve Rodriguez, 24-Oct-2015.)
Assertion
Ref Expression
iso0 ∅ Isom 𝑅, 𝑆 (∅, ∅)

Proof of Theorem iso0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1o0 6753 . 2 ∅:∅–1-1-onto→∅
2 ral0 4443 . 2 𝑥 ∈ ∅ ∀𝑦 ∈ ∅ (𝑥𝑅𝑦 ↔ (∅‘𝑥)𝑆(∅‘𝑦))
3 df-isom 6442 . 2 (∅ Isom 𝑅, 𝑆 (∅, ∅) ↔ (∅:∅–1-1-onto→∅ ∧ ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ (𝑥𝑅𝑦 ↔ (∅‘𝑥)𝑆(∅‘𝑦))))
41, 2, 3mpbir2an 708 1 ∅ Isom 𝑅, 𝑆 (∅, ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wral 3064  c0 4256   class class class wbr 5074  1-1-ontowf1o 6432  cfv 6433   Isom wiso 6434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-isom 6442
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator