Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > iso0 | Structured version Visualization version GIF version |
Description: The empty set is an 𝑅, 𝑆 isomorphism from the empty set to the empty set. (Contributed by Steve Rodriguez, 24-Oct-2015.) |
Ref | Expression |
---|---|
iso0 | ⊢ ∅ Isom 𝑅, 𝑆 (∅, ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1o0 6750 | . 2 ⊢ ∅:∅–1-1-onto→∅ | |
2 | ral0 4449 | . 2 ⊢ ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ (𝑥𝑅𝑦 ↔ (∅‘𝑥)𝑆(∅‘𝑦)) | |
3 | df-isom 6441 | . 2 ⊢ (∅ Isom 𝑅, 𝑆 (∅, ∅) ↔ (∅:∅–1-1-onto→∅ ∧ ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ (𝑥𝑅𝑦 ↔ (∅‘𝑥)𝑆(∅‘𝑦)))) | |
4 | 1, 2, 3 | mpbir2an 708 | 1 ⊢ ∅ Isom 𝑅, 𝑆 (∅, ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wral 3066 ∅c0 4262 class class class wbr 5079 –1-1-onto→wf1o 6431 ‘cfv 6432 Isom wiso 6433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-br 5080 df-opab 5142 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-isom 6441 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |