| Mathbox for Steve Rodriguez |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iso0 | Structured version Visualization version GIF version | ||
| Description: The empty set is an 𝑅, 𝑆 isomorphism from the empty set to the empty set. (Contributed by Steve Rodriguez, 24-Oct-2015.) |
| Ref | Expression |
|---|---|
| iso0 | ⊢ ∅ Isom 𝑅, 𝑆 (∅, ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1o0 6839 | . 2 ⊢ ∅:∅–1-1-onto→∅ | |
| 2 | ral0 4478 | . 2 ⊢ ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ (𝑥𝑅𝑦 ↔ (∅‘𝑥)𝑆(∅‘𝑦)) | |
| 3 | df-isom 6522 | . 2 ⊢ (∅ Isom 𝑅, 𝑆 (∅, ∅) ↔ (∅:∅–1-1-onto→∅ ∧ ∀𝑥 ∈ ∅ ∀𝑦 ∈ ∅ (𝑥𝑅𝑦 ↔ (∅‘𝑥)𝑆(∅‘𝑦)))) | |
| 4 | 1, 2, 3 | mpbir2an 711 | 1 ⊢ ∅ Isom 𝑅, 𝑆 (∅, ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∀wral 3045 ∅c0 4298 class class class wbr 5109 –1-1-onto→wf1o 6512 ‘cfv 6513 Isom wiso 6514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2534 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-br 5110 df-opab 5172 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-isom 6522 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |