Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unipwr Structured version   Visualization version   GIF version

Theorem unipwr 43642
Description: A class is a subclass of the union of its power class. This theorem is the right-to-left subclass lemma of unipw 5451. The proof of this theorem was automatically generated from unipwrVD 43641 using a tools command file , translateMWO.cmd , by translating the proof into its non-virtual deduction form and minimizing it. (Contributed by Alan Sare, 25-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
unipwr 𝐴 𝒫 𝐴

Proof of Theorem unipwr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 3479 . . . 4 𝑥 ∈ V
21snid 4665 . . 3 𝑥 ∈ {𝑥}
3 snelpwi 5444 . . 3 (𝑥𝐴 → {𝑥} ∈ 𝒫 𝐴)
4 elunii 4914 . . 3 ((𝑥 ∈ {𝑥} ∧ {𝑥} ∈ 𝒫 𝐴) → 𝑥 𝒫 𝐴)
52, 3, 4sylancr 588 . 2 (𝑥𝐴𝑥 𝒫 𝐴)
65ssriv 3987 1 𝐴 𝒫 𝐴
Colors of variables: wff setvar class
Syntax hints:  wcel 2107  wss 3949  𝒫 cpw 4603  {csn 4629   cuni 4909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-v 3477  df-un 3954  df-in 3956  df-ss 3966  df-pw 4605  df-sn 4630  df-pr 4632  df-uni 4910
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator