Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unipwr Structured version   Visualization version   GIF version

Theorem unipwr 44546
Description: A class is a subclass of the union of its power class. This theorem is the right-to-left subclass lemma of unipw 5448. The proof of this theorem was automatically generated from unipwrVD 44545 using a tools command file , translateMWO.cmd , by translating the proof into its non-virtual deduction form and minimizing it. (Contributed by Alan Sare, 25-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
unipwr 𝐴 𝒫 𝐴

Proof of Theorem unipwr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 3466 . . . 4 𝑥 ∈ V
21snid 4659 . . 3 𝑥 ∈ {𝑥}
3 snelpwi 5441 . . 3 (𝑥𝐴 → {𝑥} ∈ 𝒫 𝐴)
4 elunii 4910 . . 3 ((𝑥 ∈ {𝑥} ∧ {𝑥} ∈ 𝒫 𝐴) → 𝑥 𝒫 𝐴)
52, 3, 4sylancr 585 . 2 (𝑥𝐴𝑥 𝒫 𝐴)
65ssriv 3982 1 𝐴 𝒫 𝐴
Colors of variables: wff setvar class
Syntax hints:  wcel 2099  wss 3946  𝒫 cpw 4597  {csn 4623   cuni 4905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2697  ax-sep 5296  ax-pr 5425
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2704  df-cleq 2718  df-clel 2803  df-v 3464  df-un 3951  df-ss 3963  df-pw 4599  df-sn 4624  df-pr 4626  df-uni 4906
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator