Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unipwr Structured version   Visualization version   GIF version

Theorem unipwr 39721
Description: A class is a subclass of the union of its power class. This theorem is the right-to-left subclass lemma of unipw 5074. The proof of this theorem was automatically generated from unipwrVD 39720 using a tools command file , translateMWO.cmd , by translating the proof into its non-virtual deduction form and minimizing it. (Contributed by Alan Sare, 25-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
unipwr 𝐴 𝒫 𝐴

Proof of Theorem unipwr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 3353 . . . 4 𝑥 ∈ V
21snid 4366 . . 3 𝑥 ∈ {𝑥}
3 snelpwi 5068 . . 3 (𝑥𝐴 → {𝑥} ∈ 𝒫 𝐴)
4 elunii 4599 . . 3 ((𝑥 ∈ {𝑥} ∧ {𝑥} ∈ 𝒫 𝐴) → 𝑥 𝒫 𝐴)
52, 3, 4sylancr 581 . 2 (𝑥𝐴𝑥 𝒫 𝐴)
65ssriv 3765 1 𝐴 𝒫 𝐴
Colors of variables: wff setvar class
Syntax hints:  wcel 2155  wss 3732  𝒫 cpw 4315  {csn 4334   cuni 4594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pr 5062
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-v 3352  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-pw 4317  df-sn 4335  df-pr 4337  df-uni 4595
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator