Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unipwr Structured version   Visualization version   GIF version

Theorem unipwr 44873
Description: A class is a subclass of the union of its power class. This theorem is the right-to-left subclass lemma of unipw 5389. The proof of this theorem was automatically generated from unipwrVD 44872 using a tools command file , translateMWO.cmd , by translating the proof into its non-virtual deduction form and minimizing it. (Contributed by Alan Sare, 25-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
unipwr 𝐴 𝒫 𝐴

Proof of Theorem unipwr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 3440 . . . 4 𝑥 ∈ V
21snid 4612 . . 3 𝑥 ∈ {𝑥}
3 snelpwi 5383 . . 3 (𝑥𝐴 → {𝑥} ∈ 𝒫 𝐴)
4 elunii 4861 . . 3 ((𝑥 ∈ {𝑥} ∧ {𝑥} ∈ 𝒫 𝐴) → 𝑥 𝒫 𝐴)
52, 3, 4sylancr 587 . 2 (𝑥𝐴𝑥 𝒫 𝐴)
65ssriv 3933 1 𝐴 𝒫 𝐴
Colors of variables: wff setvar class
Syntax hints:  wcel 2111  wss 3897  𝒫 cpw 4547  {csn 4573   cuni 4856
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-un 3902  df-ss 3914  df-pw 4549  df-sn 4574  df-pr 4576  df-uni 4857
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator