MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssun Structured version   Visualization version   GIF version

Theorem ssun 4079
Description: A condition that implies inclusion in the union of two classes. (Contributed by NM, 23-Nov-2003.)
Assertion
Ref Expression
ssun ((𝐴𝐵𝐴𝐶) → 𝐴 ⊆ (𝐵𝐶))

Proof of Theorem ssun
StepHypRef Expression
1 ssun3 4064 . 2 (𝐴𝐵𝐴 ⊆ (𝐵𝐶))
2 ssun4 4065 . 2 (𝐴𝐶𝐴 ⊆ (𝐵𝐶))
31, 2jaoi 856 1 ((𝐴𝐵𝐴𝐶) → 𝐴 ⊆ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 846  cun 3841  wss 3843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-ext 2710
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-tru 1545  df-ex 1787  df-sb 2075  df-clab 2717  df-cleq 2730  df-clel 2811  df-v 3400  df-un 3848  df-in 3850  df-ss 3860
This theorem is referenced by:  pwunssOLD  5424  pwssun  5425  ordssun  6271  padct  30629
  Copyright terms: Public domain W3C validator