MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssun Structured version   Visualization version   GIF version

Theorem ssun 4186
Description: A condition that implies inclusion in the union of two classes. (Contributed by NM, 23-Nov-2003.)
Assertion
Ref Expression
ssun ((𝐴𝐵𝐴𝐶) → 𝐴 ⊆ (𝐵𝐶))

Proof of Theorem ssun
StepHypRef Expression
1 ssun3 4171 . 2 (𝐴𝐵𝐴 ⊆ (𝐵𝐶))
2 ssun4 4172 . 2 (𝐴𝐶𝐴 ⊆ (𝐵𝐶))
31, 2jaoi 856 1 ((𝐴𝐵𝐴𝐶) → 𝐴 ⊆ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 846  cun 3943  wss 3945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-v 3472  df-un 3950  df-in 3952  df-ss 3962
This theorem is referenced by:  pwssun  5568  ordssun  6466  padct  32496
  Copyright terms: Public domain W3C validator