Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssun | Structured version Visualization version GIF version |
Description: A condition that implies inclusion in the union of two classes. (Contributed by NM, 23-Nov-2003.) |
Ref | Expression |
---|---|
ssun | ⊢ ((𝐴 ⊆ 𝐵 ∨ 𝐴 ⊆ 𝐶) → 𝐴 ⊆ (𝐵 ∪ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun3 4064 | . 2 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ⊆ (𝐵 ∪ 𝐶)) | |
2 | ssun4 4065 | . 2 ⊢ (𝐴 ⊆ 𝐶 → 𝐴 ⊆ (𝐵 ∪ 𝐶)) | |
3 | 1, 2 | jaoi 856 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∨ 𝐴 ⊆ 𝐶) → 𝐴 ⊆ (𝐵 ∪ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 846 ∪ cun 3841 ⊆ wss 3843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-tru 1545 df-ex 1787 df-sb 2075 df-clab 2717 df-cleq 2730 df-clel 2811 df-v 3400 df-un 3848 df-in 3850 df-ss 3860 |
This theorem is referenced by: pwunssOLD 5424 pwssun 5425 ordssun 6271 padct 30629 |
Copyright terms: Public domain | W3C validator |