![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssun | Structured version Visualization version GIF version |
Description: A condition that implies inclusion in the union of two classes. (Contributed by NM, 23-Nov-2003.) |
Ref | Expression |
---|---|
ssun | ⊢ ((𝐴 ⊆ 𝐵 ∨ 𝐴 ⊆ 𝐶) → 𝐴 ⊆ (𝐵 ∪ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun3 4175 | . 2 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ⊆ (𝐵 ∪ 𝐶)) | |
2 | ssun4 4176 | . 2 ⊢ (𝐴 ⊆ 𝐶 → 𝐴 ⊆ (𝐵 ∪ 𝐶)) | |
3 | 1, 2 | jaoi 855 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∨ 𝐴 ⊆ 𝐶) → 𝐴 ⊆ (𝐵 ∪ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 845 ∪ cun 3945 ⊆ wss 3947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-v 3464 df-un 3952 df-ss 3964 |
This theorem is referenced by: pwssun 5577 ordssun 6478 padct 32633 |
Copyright terms: Public domain | W3C validator |