![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexun | Structured version Visualization version GIF version |
Description: Restricted existential quantification over union. (Contributed by Jeff Madsen, 5-Jan-2011.) |
Ref | Expression |
---|---|
rexun | ⊢ (∃𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐵 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 3060 | . 2 ⊢ (∃𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ ∃𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝜑)) | |
2 | 19.43 1877 | . . 3 ⊢ (∃𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ 𝜑)) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∨ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜑))) | |
3 | elun 4145 | . . . . . 6 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) | |
4 | 3 | anbi1i 622 | . . . . 5 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝜑) ↔ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ 𝜑)) |
5 | andir 1006 | . . . . 5 ⊢ (((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ 𝜑) ↔ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ 𝜑))) | |
6 | 4, 5 | bitri 274 | . . . 4 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝜑) ↔ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ 𝜑))) |
7 | 6 | exbii 1842 | . . 3 ⊢ (∃𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝜑) ↔ ∃𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ 𝜑))) |
8 | df-rex 3060 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
9 | df-rex 3060 | . . . 4 ⊢ (∃𝑥 ∈ 𝐵 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜑)) | |
10 | 8, 9 | orbi12i 912 | . . 3 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐵 𝜑) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∨ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜑))) |
11 | 2, 7, 10 | 3bitr4i 302 | . 2 ⊢ (∃𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝜑) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐵 𝜑)) |
12 | 1, 11 | bitri 274 | 1 ⊢ (∃𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐵 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 ∨ wo 845 ∃wex 1773 ∈ wcel 2098 ∃wrex 3059 ∪ cun 3942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-rex 3060 df-v 3463 df-un 3949 |
This theorem is referenced by: rexprgf 4699 rextpg 4705 iunxun 5098 unima 6972 oarec 8583 naddunif 8714 zornn0g 10530 scshwfzeqfzo 14813 rpnnen2lem12 16205 dvdsprmpweqnn 16857 vdwlem6 16958 pmatcollpw3fi1 22734 cmpfi 23356 sleadd1 27952 addsasslem1 27966 addsasslem2 27967 addsdilem1 28101 addsdilem2 28102 mulsasslem1 28113 mulsasslem2 28114 elntg2 28868 rprmdvdsprod 33346 satfvsucsuc 35106 poimirlem25 37249 |
Copyright terms: Public domain | W3C validator |