MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexun Structured version   Visualization version   GIF version

Theorem rexun 4159
Description: Restricted existential quantification over union. (Contributed by Jeff Madsen, 5-Jan-2011.)
Assertion
Ref Expression
rexun (∃𝑥 ∈ (𝐴𝐵)𝜑 ↔ (∃𝑥𝐴 𝜑 ∨ ∃𝑥𝐵 𝜑))

Proof of Theorem rexun
StepHypRef Expression
1 df-rex 3054 . 2 (∃𝑥 ∈ (𝐴𝐵)𝜑 ↔ ∃𝑥(𝑥 ∈ (𝐴𝐵) ∧ 𝜑))
2 19.43 1882 . . 3 (∃𝑥((𝑥𝐴𝜑) ∨ (𝑥𝐵𝜑)) ↔ (∃𝑥(𝑥𝐴𝜑) ∨ ∃𝑥(𝑥𝐵𝜑)))
3 elun 4116 . . . . . 6 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
43anbi1i 624 . . . . 5 ((𝑥 ∈ (𝐴𝐵) ∧ 𝜑) ↔ ((𝑥𝐴𝑥𝐵) ∧ 𝜑))
5 andir 1010 . . . . 5 (((𝑥𝐴𝑥𝐵) ∧ 𝜑) ↔ ((𝑥𝐴𝜑) ∨ (𝑥𝐵𝜑)))
64, 5bitri 275 . . . 4 ((𝑥 ∈ (𝐴𝐵) ∧ 𝜑) ↔ ((𝑥𝐴𝜑) ∨ (𝑥𝐵𝜑)))
76exbii 1848 . . 3 (∃𝑥(𝑥 ∈ (𝐴𝐵) ∧ 𝜑) ↔ ∃𝑥((𝑥𝐴𝜑) ∨ (𝑥𝐵𝜑)))
8 df-rex 3054 . . . 4 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
9 df-rex 3054 . . . 4 (∃𝑥𝐵 𝜑 ↔ ∃𝑥(𝑥𝐵𝜑))
108, 9orbi12i 914 . . 3 ((∃𝑥𝐴 𝜑 ∨ ∃𝑥𝐵 𝜑) ↔ (∃𝑥(𝑥𝐴𝜑) ∨ ∃𝑥(𝑥𝐵𝜑)))
112, 7, 103bitr4i 303 . 2 (∃𝑥(𝑥 ∈ (𝐴𝐵) ∧ 𝜑) ↔ (∃𝑥𝐴 𝜑 ∨ ∃𝑥𝐵 𝜑))
121, 11bitri 275 1 (∃𝑥 ∈ (𝐴𝐵)𝜑 ↔ (∃𝑥𝐴 𝜑 ∨ ∃𝑥𝐵 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wo 847  wex 1779  wcel 2109  wrex 3053  cun 3912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rex 3054  df-v 3449  df-un 3919
This theorem is referenced by:  rexprgf  4659  rextpg  4663  iunxun  5058  unima  6936  oarec  8526  naddunif  8657  zornn0g  10458  scshwfzeqfzo  14792  rpnnen2lem12  16193  dvdsprmpweqnn  16856  vdwlem6  16957  pmatcollpw3fi1  22675  cmpfi  23295  sleadd1  27896  addsasslem1  27910  addsasslem2  27911  addsdilem1  28054  addsdilem2  28055  mulsasslem1  28066  mulsasslem2  28067  elntg2  28912  rprmdvdsprod  33505  satfvsucsuc  35352  poimirlem25  37639
  Copyright terms: Public domain W3C validator