MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexun Structured version   Visualization version   GIF version

Theorem rexun 4169
Description: Restricted existential quantification over union. (Contributed by Jeff Madsen, 5-Jan-2011.)
Assertion
Ref Expression
rexun (∃𝑥 ∈ (𝐴𝐵)𝜑 ↔ (∃𝑥𝐴 𝜑 ∨ ∃𝑥𝐵 𝜑))

Proof of Theorem rexun
StepHypRef Expression
1 df-rex 3148 . 2 (∃𝑥 ∈ (𝐴𝐵)𝜑 ↔ ∃𝑥(𝑥 ∈ (𝐴𝐵) ∧ 𝜑))
2 19.43 1876 . . 3 (∃𝑥((𝑥𝐴𝜑) ∨ (𝑥𝐵𝜑)) ↔ (∃𝑥(𝑥𝐴𝜑) ∨ ∃𝑥(𝑥𝐵𝜑)))
3 elun 4128 . . . . . 6 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
43anbi1i 623 . . . . 5 ((𝑥 ∈ (𝐴𝐵) ∧ 𝜑) ↔ ((𝑥𝐴𝑥𝐵) ∧ 𝜑))
5 andir 1004 . . . . 5 (((𝑥𝐴𝑥𝐵) ∧ 𝜑) ↔ ((𝑥𝐴𝜑) ∨ (𝑥𝐵𝜑)))
64, 5bitri 276 . . . 4 ((𝑥 ∈ (𝐴𝐵) ∧ 𝜑) ↔ ((𝑥𝐴𝜑) ∨ (𝑥𝐵𝜑)))
76exbii 1841 . . 3 (∃𝑥(𝑥 ∈ (𝐴𝐵) ∧ 𝜑) ↔ ∃𝑥((𝑥𝐴𝜑) ∨ (𝑥𝐵𝜑)))
8 df-rex 3148 . . . 4 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
9 df-rex 3148 . . . 4 (∃𝑥𝐵 𝜑 ↔ ∃𝑥(𝑥𝐵𝜑))
108, 9orbi12i 910 . . 3 ((∃𝑥𝐴 𝜑 ∨ ∃𝑥𝐵 𝜑) ↔ (∃𝑥(𝑥𝐴𝜑) ∨ ∃𝑥(𝑥𝐵𝜑)))
112, 7, 103bitr4i 304 . 2 (∃𝑥(𝑥 ∈ (𝐴𝐵) ∧ 𝜑) ↔ (∃𝑥𝐴 𝜑 ∨ ∃𝑥𝐵 𝜑))
121, 11bitri 276 1 (∃𝑥 ∈ (𝐴𝐵)𝜑 ↔ (∃𝑥𝐴 𝜑 ∨ ∃𝑥𝐵 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 207  wa 396  wo 843  wex 1773  wcel 2106  wrex 3143  cun 3937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2152  ax-12 2167  ax-ext 2796
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-clab 2803  df-cleq 2817  df-clel 2897  df-nfc 2967  df-rex 3148  df-v 3501  df-un 3944
This theorem is referenced by:  rexprgf  4629  rextpg  4633  iunxun  5012  unima  6735  oarec  8181  zornn0g  9919  scshwfzeqfzo  14181  rpnnen2lem12  15570  dvdsprmpweqnn  16213  vdwlem6  16314  pmatcollpw3fi1  21312  cmpfi  21932  elntg2  26686  satfvsucsuc  32497  poimirlem25  34785
  Copyright terms: Public domain W3C validator