![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexun | Structured version Visualization version GIF version |
Description: Restricted existential quantification over union. (Contributed by Jeff Madsen, 5-Jan-2011.) |
Ref | Expression |
---|---|
rexun | ⊢ (∃𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐵 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 3072 | . 2 ⊢ (∃𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ ∃𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝜑)) | |
2 | 19.43 1886 | . . 3 ⊢ (∃𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ 𝜑)) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∨ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜑))) | |
3 | elun 4149 | . . . . . 6 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) | |
4 | 3 | anbi1i 625 | . . . . 5 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝜑) ↔ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ 𝜑)) |
5 | andir 1008 | . . . . 5 ⊢ (((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ 𝜑) ↔ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ 𝜑))) | |
6 | 4, 5 | bitri 275 | . . . 4 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝜑) ↔ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ 𝜑))) |
7 | 6 | exbii 1851 | . . 3 ⊢ (∃𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝜑) ↔ ∃𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ 𝜑))) |
8 | df-rex 3072 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
9 | df-rex 3072 | . . . 4 ⊢ (∃𝑥 ∈ 𝐵 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜑)) | |
10 | 8, 9 | orbi12i 914 | . . 3 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐵 𝜑) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∨ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜑))) |
11 | 2, 7, 10 | 3bitr4i 303 | . 2 ⊢ (∃𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝜑) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐵 𝜑)) |
12 | 1, 11 | bitri 275 | 1 ⊢ (∃𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐵 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 ∨ wo 846 ∃wex 1782 ∈ wcel 2107 ∃wrex 3071 ∪ cun 3947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rex 3072 df-v 3477 df-un 3954 |
This theorem is referenced by: rexprgf 4698 rextpg 4704 iunxun 5098 unima 6967 oarec 8562 naddunif 8692 zornn0g 10500 scshwfzeqfzo 14777 rpnnen2lem12 16168 dvdsprmpweqnn 16818 vdwlem6 16919 pmatcollpw3fi1 22290 cmpfi 22912 sleadd1 27472 addsasslem1 27486 addsasslem2 27487 addsdilem1 27606 addsdilem2 27607 mulsasslem1 27618 mulsasslem2 27619 elntg2 28243 satfvsucsuc 34356 poimirlem25 36513 |
Copyright terms: Public domain | W3C validator |