Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rexun | Structured version Visualization version GIF version |
Description: Restricted existential quantification over union. (Contributed by Jeff Madsen, 5-Jan-2011.) |
Ref | Expression |
---|---|
rexun | ⊢ (∃𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐵 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 3071 | . 2 ⊢ (∃𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ ∃𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝜑)) | |
2 | 19.43 1888 | . . 3 ⊢ (∃𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ 𝜑)) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∨ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜑))) | |
3 | elun 4087 | . . . . . 6 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) | |
4 | 3 | anbi1i 623 | . . . . 5 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝜑) ↔ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ 𝜑)) |
5 | andir 1005 | . . . . 5 ⊢ (((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ 𝜑) ↔ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ 𝜑))) | |
6 | 4, 5 | bitri 274 | . . . 4 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝜑) ↔ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ 𝜑))) |
7 | 6 | exbii 1853 | . . 3 ⊢ (∃𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝜑) ↔ ∃𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ 𝜑))) |
8 | df-rex 3071 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
9 | df-rex 3071 | . . . 4 ⊢ (∃𝑥 ∈ 𝐵 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜑)) | |
10 | 8, 9 | orbi12i 911 | . . 3 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐵 𝜑) ↔ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∨ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜑))) |
11 | 2, 7, 10 | 3bitr4i 302 | . 2 ⊢ (∃𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝜑) ↔ (∃𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐵 𝜑)) |
12 | 1, 11 | bitri 274 | 1 ⊢ (∃𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐵 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∨ wo 843 ∃wex 1785 ∈ wcel 2109 ∃wrex 3066 ∪ cun 3889 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-rex 3071 df-v 3432 df-un 3896 |
This theorem is referenced by: rexprgf 4634 rextpg 4640 iunxun 5027 unima 6837 oarec 8369 zornn0g 10245 scshwfzeqfzo 14520 rpnnen2lem12 15915 dvdsprmpweqnn 16567 vdwlem6 16668 pmatcollpw3fi1 21918 cmpfi 22540 elntg2 27334 satfvsucsuc 33306 poimirlem25 35781 |
Copyright terms: Public domain | W3C validator |