MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssun4 Structured version   Visualization version   GIF version

Theorem ssun4 4089
Description: Subclass law for union of classes. (Contributed by NM, 14-Aug-1994.)
Assertion
Ref Expression
ssun4 (𝐴𝐵𝐴 ⊆ (𝐶𝐵))

Proof of Theorem ssun4
StepHypRef Expression
1 ssun2 4087 . 2 𝐵 ⊆ (𝐶𝐵)
2 sstr2 3908 . 2 (𝐴𝐵 → (𝐵 ⊆ (𝐶𝐵) → 𝐴 ⊆ (𝐶𝐵)))
31, 2mpi 20 1 (𝐴𝐵𝐴 ⊆ (𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  cun 3864  wss 3866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-tru 1546  df-ex 1788  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-v 3410  df-un 3871  df-in 3873  df-ss 3883
This theorem is referenced by:  ssun  4103  xpsspw  5679  dftrpred3g  9339  uncmp  22300  volcn  24503  bnj1408  32729  bnj1452  32745  pibt2  35325  elrfi  40219  cnvrcl0  40909
  Copyright terms: Public domain W3C validator