| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssun4 | Structured version Visualization version GIF version | ||
| Description: Subclass law for union of classes. (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| ssun4 | ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ⊆ (𝐶 ∪ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun2 4138 | . 2 ⊢ 𝐵 ⊆ (𝐶 ∪ 𝐵) | |
| 2 | sstr2 3950 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ (𝐶 ∪ 𝐵) → 𝐴 ⊆ (𝐶 ∪ 𝐵))) | |
| 3 | 1, 2 | mpi 20 | 1 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ⊆ (𝐶 ∪ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∪ cun 3909 ⊆ wss 3911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-un 3916 df-ss 3928 |
| This theorem is referenced by: ssun 4154 xpsspw 5763 uncmp 23266 volcn 25483 bnj1408 34999 bnj1452 35015 pibt2 37378 elrfi 42655 cnvrcl0 43587 |
| Copyright terms: Public domain | W3C validator |