![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssun4 | Structured version Visualization version GIF version |
Description: Subclass law for union of classes. (Contributed by NM, 14-Aug-1994.) |
Ref | Expression |
---|---|
ssun4 | ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ⊆ (𝐶 ∪ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun2 4189 | . 2 ⊢ 𝐵 ⊆ (𝐶 ∪ 𝐵) | |
2 | sstr2 4002 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ (𝐶 ∪ 𝐵) → 𝐴 ⊆ (𝐶 ∪ 𝐵))) | |
3 | 1, 2 | mpi 20 | 1 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ⊆ (𝐶 ∪ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∪ cun 3961 ⊆ wss 3963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-un 3968 df-ss 3980 |
This theorem is referenced by: ssun 4205 xpsspw 5822 uncmp 23427 volcn 25655 bnj1408 35029 bnj1452 35045 pibt2 37400 elrfi 42682 cnvrcl0 43615 |
Copyright terms: Public domain | W3C validator |