| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssun4 | Structured version Visualization version GIF version | ||
| Description: Subclass law for union of classes. (Contributed by NM, 14-Aug-1994.) |
| Ref | Expression |
|---|---|
| ssun4 | ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ⊆ (𝐶 ∪ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun2 4124 | . 2 ⊢ 𝐵 ⊆ (𝐶 ∪ 𝐵) | |
| 2 | sstr2 3936 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ (𝐶 ∪ 𝐵) → 𝐴 ⊆ (𝐶 ∪ 𝐵))) | |
| 3 | 1, 2 | mpi 20 | 1 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ⊆ (𝐶 ∪ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∪ cun 3895 ⊆ wss 3897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3902 df-ss 3914 |
| This theorem is referenced by: ssun 4140 xpsspw 5744 uncmp 23313 volcn 25529 bnj1408 35040 bnj1452 35056 tz9.1regs 35122 pibt2 37451 elrfi 42727 cnvrcl0 43658 |
| Copyright terms: Public domain | W3C validator |