MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssun4 Structured version   Visualization version   GIF version

Theorem ssun4 4126
Description: Subclass law for union of classes. (Contributed by NM, 14-Aug-1994.)
Assertion
Ref Expression
ssun4 (𝐴𝐵𝐴 ⊆ (𝐶𝐵))

Proof of Theorem ssun4
StepHypRef Expression
1 ssun2 4124 . 2 𝐵 ⊆ (𝐶𝐵)
2 sstr2 3936 . 2 (𝐴𝐵 → (𝐵 ⊆ (𝐶𝐵) → 𝐴 ⊆ (𝐶𝐵)))
31, 2mpi 20 1 (𝐴𝐵𝐴 ⊆ (𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  cun 3895  wss 3897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-un 3902  df-ss 3914
This theorem is referenced by:  ssun  4140  xpsspw  5744  uncmp  23313  volcn  25529  bnj1408  35040  bnj1452  35056  tz9.1regs  35122  pibt2  37451  elrfi  42727  cnvrcl0  43658
  Copyright terms: Public domain W3C validator