MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordssun Structured version   Visualization version   GIF version

Theorem ordssun 6439
Description: Property of a subclass of the maximum (i.e. union) of two ordinals. (Contributed by NM, 28-Nov-2003.)
Assertion
Ref Expression
ordssun ((Ord 𝐵 ∧ Ord 𝐶) → (𝐴 ⊆ (𝐵𝐶) ↔ (𝐴𝐵𝐴𝐶)))

Proof of Theorem ordssun
StepHypRef Expression
1 ordtri2or2 6436 . . 3 ((Ord 𝐵 ∧ Ord 𝐶) → (𝐵𝐶𝐶𝐵))
2 ssequn1 4152 . . . . . 6 (𝐵𝐶 ↔ (𝐵𝐶) = 𝐶)
3 sseq2 3976 . . . . . 6 ((𝐵𝐶) = 𝐶 → (𝐴 ⊆ (𝐵𝐶) ↔ 𝐴𝐶))
42, 3sylbi 217 . . . . 5 (𝐵𝐶 → (𝐴 ⊆ (𝐵𝐶) ↔ 𝐴𝐶))
5 olc 868 . . . . 5 (𝐴𝐶 → (𝐴𝐵𝐴𝐶))
64, 5biimtrdi 253 . . . 4 (𝐵𝐶 → (𝐴 ⊆ (𝐵𝐶) → (𝐴𝐵𝐴𝐶)))
7 ssequn2 4155 . . . . . 6 (𝐶𝐵 ↔ (𝐵𝐶) = 𝐵)
8 sseq2 3976 . . . . . 6 ((𝐵𝐶) = 𝐵 → (𝐴 ⊆ (𝐵𝐶) ↔ 𝐴𝐵))
97, 8sylbi 217 . . . . 5 (𝐶𝐵 → (𝐴 ⊆ (𝐵𝐶) ↔ 𝐴𝐵))
10 orc 867 . . . . 5 (𝐴𝐵 → (𝐴𝐵𝐴𝐶))
119, 10biimtrdi 253 . . . 4 (𝐶𝐵 → (𝐴 ⊆ (𝐵𝐶) → (𝐴𝐵𝐴𝐶)))
126, 11jaoi 857 . . 3 ((𝐵𝐶𝐶𝐵) → (𝐴 ⊆ (𝐵𝐶) → (𝐴𝐵𝐴𝐶)))
131, 12syl 17 . 2 ((Ord 𝐵 ∧ Ord 𝐶) → (𝐴 ⊆ (𝐵𝐶) → (𝐴𝐵𝐴𝐶)))
14 ssun 4161 . 2 ((𝐴𝐵𝐴𝐶) → 𝐴 ⊆ (𝐵𝐶))
1513, 14impbid1 225 1 ((Ord 𝐵 ∧ Ord 𝐶) → (𝐴 ⊆ (𝐵𝐶) ↔ (𝐴𝐵𝐴𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  cun 3915  wss 3917  Ord word 6334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-tr 5218  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-ord 6338
This theorem is referenced by:  ordsucun  7803
  Copyright terms: Public domain W3C validator