![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordssun | Structured version Visualization version GIF version |
Description: Property of a subclass of the maximum (i.e. union) of two ordinals. (Contributed by NM, 28-Nov-2003.) |
Ref | Expression |
---|---|
ordssun | ⊢ ((Ord 𝐵 ∧ Ord 𝐶) → (𝐴 ⊆ (𝐵 ∪ 𝐶) ↔ (𝐴 ⊆ 𝐵 ∨ 𝐴 ⊆ 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordtri2or2 6456 | . . 3 ⊢ ((Ord 𝐵 ∧ Ord 𝐶) → (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) | |
2 | ssequn1 4175 | . . . . . 6 ⊢ (𝐵 ⊆ 𝐶 ↔ (𝐵 ∪ 𝐶) = 𝐶) | |
3 | sseq2 4003 | . . . . . 6 ⊢ ((𝐵 ∪ 𝐶) = 𝐶 → (𝐴 ⊆ (𝐵 ∪ 𝐶) ↔ 𝐴 ⊆ 𝐶)) | |
4 | 2, 3 | sylbi 216 | . . . . 5 ⊢ (𝐵 ⊆ 𝐶 → (𝐴 ⊆ (𝐵 ∪ 𝐶) ↔ 𝐴 ⊆ 𝐶)) |
5 | olc 865 | . . . . 5 ⊢ (𝐴 ⊆ 𝐶 → (𝐴 ⊆ 𝐵 ∨ 𝐴 ⊆ 𝐶)) | |
6 | 4, 5 | biimtrdi 252 | . . . 4 ⊢ (𝐵 ⊆ 𝐶 → (𝐴 ⊆ (𝐵 ∪ 𝐶) → (𝐴 ⊆ 𝐵 ∨ 𝐴 ⊆ 𝐶))) |
7 | ssequn2 4178 | . . . . . 6 ⊢ (𝐶 ⊆ 𝐵 ↔ (𝐵 ∪ 𝐶) = 𝐵) | |
8 | sseq2 4003 | . . . . . 6 ⊢ ((𝐵 ∪ 𝐶) = 𝐵 → (𝐴 ⊆ (𝐵 ∪ 𝐶) ↔ 𝐴 ⊆ 𝐵)) | |
9 | 7, 8 | sylbi 216 | . . . . 5 ⊢ (𝐶 ⊆ 𝐵 → (𝐴 ⊆ (𝐵 ∪ 𝐶) ↔ 𝐴 ⊆ 𝐵)) |
10 | orc 864 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ⊆ 𝐵 ∨ 𝐴 ⊆ 𝐶)) | |
11 | 9, 10 | biimtrdi 252 | . . . 4 ⊢ (𝐶 ⊆ 𝐵 → (𝐴 ⊆ (𝐵 ∪ 𝐶) → (𝐴 ⊆ 𝐵 ∨ 𝐴 ⊆ 𝐶))) |
12 | 6, 11 | jaoi 854 | . . 3 ⊢ ((𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵) → (𝐴 ⊆ (𝐵 ∪ 𝐶) → (𝐴 ⊆ 𝐵 ∨ 𝐴 ⊆ 𝐶))) |
13 | 1, 12 | syl 17 | . 2 ⊢ ((Ord 𝐵 ∧ Ord 𝐶) → (𝐴 ⊆ (𝐵 ∪ 𝐶) → (𝐴 ⊆ 𝐵 ∨ 𝐴 ⊆ 𝐶))) |
14 | ssun 4184 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∨ 𝐴 ⊆ 𝐶) → 𝐴 ⊆ (𝐵 ∪ 𝐶)) | |
15 | 13, 14 | impbid1 224 | 1 ⊢ ((Ord 𝐵 ∧ Ord 𝐶) → (𝐴 ⊆ (𝐵 ∪ 𝐶) ↔ (𝐴 ⊆ 𝐵 ∨ 𝐴 ⊆ 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 844 = wceq 1533 ∪ cun 3941 ⊆ wss 3943 Ord word 6356 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-tr 5259 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-ord 6360 |
This theorem is referenced by: ordsucun 7809 |
Copyright terms: Public domain | W3C validator |