MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordssun Structured version   Visualization version   GIF version

Theorem ordssun 6497
Description: Property of a subclass of the maximum (i.e. union) of two ordinals. (Contributed by NM, 28-Nov-2003.)
Assertion
Ref Expression
ordssun ((Ord 𝐵 ∧ Ord 𝐶) → (𝐴 ⊆ (𝐵𝐶) ↔ (𝐴𝐵𝐴𝐶)))

Proof of Theorem ordssun
StepHypRef Expression
1 ordtri2or2 6494 . . 3 ((Ord 𝐵 ∧ Ord 𝐶) → (𝐵𝐶𝐶𝐵))
2 ssequn1 4209 . . . . . 6 (𝐵𝐶 ↔ (𝐵𝐶) = 𝐶)
3 sseq2 4035 . . . . . 6 ((𝐵𝐶) = 𝐶 → (𝐴 ⊆ (𝐵𝐶) ↔ 𝐴𝐶))
42, 3sylbi 217 . . . . 5 (𝐵𝐶 → (𝐴 ⊆ (𝐵𝐶) ↔ 𝐴𝐶))
5 olc 867 . . . . 5 (𝐴𝐶 → (𝐴𝐵𝐴𝐶))
64, 5biimtrdi 253 . . . 4 (𝐵𝐶 → (𝐴 ⊆ (𝐵𝐶) → (𝐴𝐵𝐴𝐶)))
7 ssequn2 4212 . . . . . 6 (𝐶𝐵 ↔ (𝐵𝐶) = 𝐵)
8 sseq2 4035 . . . . . 6 ((𝐵𝐶) = 𝐵 → (𝐴 ⊆ (𝐵𝐶) ↔ 𝐴𝐵))
97, 8sylbi 217 . . . . 5 (𝐶𝐵 → (𝐴 ⊆ (𝐵𝐶) ↔ 𝐴𝐵))
10 orc 866 . . . . 5 (𝐴𝐵 → (𝐴𝐵𝐴𝐶))
119, 10biimtrdi 253 . . . 4 (𝐶𝐵 → (𝐴 ⊆ (𝐵𝐶) → (𝐴𝐵𝐴𝐶)))
126, 11jaoi 856 . . 3 ((𝐵𝐶𝐶𝐵) → (𝐴 ⊆ (𝐵𝐶) → (𝐴𝐵𝐴𝐶)))
131, 12syl 17 . 2 ((Ord 𝐵 ∧ Ord 𝐶) → (𝐴 ⊆ (𝐵𝐶) → (𝐴𝐵𝐴𝐶)))
14 ssun 4218 . 2 ((𝐴𝐵𝐴𝐶) → 𝐴 ⊆ (𝐵𝐶))
1513, 14impbid1 225 1 ((Ord 𝐵 ∧ Ord 𝐶) → (𝐴 ⊆ (𝐵𝐶) ↔ (𝐴𝐵𝐴𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846   = wceq 1537  cun 3974  wss 3976  Ord word 6394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-tr 5284  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-ord 6398
This theorem is referenced by:  ordsucun  7861
  Copyright terms: Public domain W3C validator