| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordssun | Structured version Visualization version GIF version | ||
| Description: Property of a subclass of the maximum (i.e. union) of two ordinals. (Contributed by NM, 28-Nov-2003.) |
| Ref | Expression |
|---|---|
| ordssun | ⊢ ((Ord 𝐵 ∧ Ord 𝐶) → (𝐴 ⊆ (𝐵 ∪ 𝐶) ↔ (𝐴 ⊆ 𝐵 ∨ 𝐴 ⊆ 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtri2or2 6453 | . . 3 ⊢ ((Ord 𝐵 ∧ Ord 𝐶) → (𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵)) | |
| 2 | ssequn1 4161 | . . . . . 6 ⊢ (𝐵 ⊆ 𝐶 ↔ (𝐵 ∪ 𝐶) = 𝐶) | |
| 3 | sseq2 3985 | . . . . . 6 ⊢ ((𝐵 ∪ 𝐶) = 𝐶 → (𝐴 ⊆ (𝐵 ∪ 𝐶) ↔ 𝐴 ⊆ 𝐶)) | |
| 4 | 2, 3 | sylbi 217 | . . . . 5 ⊢ (𝐵 ⊆ 𝐶 → (𝐴 ⊆ (𝐵 ∪ 𝐶) ↔ 𝐴 ⊆ 𝐶)) |
| 5 | olc 868 | . . . . 5 ⊢ (𝐴 ⊆ 𝐶 → (𝐴 ⊆ 𝐵 ∨ 𝐴 ⊆ 𝐶)) | |
| 6 | 4, 5 | biimtrdi 253 | . . . 4 ⊢ (𝐵 ⊆ 𝐶 → (𝐴 ⊆ (𝐵 ∪ 𝐶) → (𝐴 ⊆ 𝐵 ∨ 𝐴 ⊆ 𝐶))) |
| 7 | ssequn2 4164 | . . . . . 6 ⊢ (𝐶 ⊆ 𝐵 ↔ (𝐵 ∪ 𝐶) = 𝐵) | |
| 8 | sseq2 3985 | . . . . . 6 ⊢ ((𝐵 ∪ 𝐶) = 𝐵 → (𝐴 ⊆ (𝐵 ∪ 𝐶) ↔ 𝐴 ⊆ 𝐵)) | |
| 9 | 7, 8 | sylbi 217 | . . . . 5 ⊢ (𝐶 ⊆ 𝐵 → (𝐴 ⊆ (𝐵 ∪ 𝐶) ↔ 𝐴 ⊆ 𝐵)) |
| 10 | orc 867 | . . . . 5 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ⊆ 𝐵 ∨ 𝐴 ⊆ 𝐶)) | |
| 11 | 9, 10 | biimtrdi 253 | . . . 4 ⊢ (𝐶 ⊆ 𝐵 → (𝐴 ⊆ (𝐵 ∪ 𝐶) → (𝐴 ⊆ 𝐵 ∨ 𝐴 ⊆ 𝐶))) |
| 12 | 6, 11 | jaoi 857 | . . 3 ⊢ ((𝐵 ⊆ 𝐶 ∨ 𝐶 ⊆ 𝐵) → (𝐴 ⊆ (𝐵 ∪ 𝐶) → (𝐴 ⊆ 𝐵 ∨ 𝐴 ⊆ 𝐶))) |
| 13 | 1, 12 | syl 17 | . 2 ⊢ ((Ord 𝐵 ∧ Ord 𝐶) → (𝐴 ⊆ (𝐵 ∪ 𝐶) → (𝐴 ⊆ 𝐵 ∨ 𝐴 ⊆ 𝐶))) |
| 14 | ssun 4170 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∨ 𝐴 ⊆ 𝐶) → 𝐴 ⊆ (𝐵 ∪ 𝐶)) | |
| 15 | 13, 14 | impbid1 225 | 1 ⊢ ((Ord 𝐵 ∧ Ord 𝐶) → (𝐴 ⊆ (𝐵 ∪ 𝐶) ↔ (𝐴 ⊆ 𝐵 ∨ 𝐴 ⊆ 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∪ cun 3924 ⊆ wss 3926 Ord word 6351 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-tr 5230 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-ord 6355 |
| This theorem is referenced by: ordsucun 7819 |
| Copyright terms: Public domain | W3C validator |