MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssun3 Structured version   Visualization version   GIF version

Theorem ssun3 4190
Description: Subclass law for union of classes. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
ssun3 (𝐴𝐵𝐴 ⊆ (𝐵𝐶))

Proof of Theorem ssun3
StepHypRef Expression
1 ssun1 4188 . 2 𝐵 ⊆ (𝐵𝐶)
2 sstr2 4002 . 2 (𝐴𝐵 → (𝐵 ⊆ (𝐵𝐶) → 𝐴 ⊆ (𝐵𝐶)))
31, 2mpi 20 1 (𝐴𝐵𝐴 ⊆ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  cun 3961  wss 3963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-v 3480  df-un 3968  df-ss 3980
This theorem is referenced by:  ssun  4205  ssunsn2  4832  xpsspw  5822  wfrlem15OLD  8362  uncmp  23427  alexsubALTlem3  24073  sxbrsigalem0  34253  bnj1450  35043  fineqvac  35090  altxpsspw  35959  pibt2  37400  superuncl  43558  cnvtrcl0  43616
  Copyright terms: Public domain W3C validator