Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssun3 | Structured version Visualization version GIF version |
Description: Subclass law for union of classes. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
ssun3 | ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ⊆ (𝐵 ∪ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 4106 | . 2 ⊢ 𝐵 ⊆ (𝐵 ∪ 𝐶) | |
2 | sstr2 3928 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ (𝐵 ∪ 𝐶) → 𝐴 ⊆ (𝐵 ∪ 𝐶))) | |
3 | 1, 2 | mpi 20 | 1 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ⊆ (𝐵 ∪ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∪ cun 3885 ⊆ wss 3887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-un 3892 df-in 3894 df-ss 3904 |
This theorem is referenced by: ssun 4123 ssunsn2 4760 xpsspw 5719 wfrlem15OLD 8154 uncmp 22554 alexsubALTlem3 23200 sxbrsigalem0 32238 bnj1450 33030 fineqvac 33066 altxpsspw 34279 pibt2 35588 superuncl 41175 cnvtrcl0 41234 |
Copyright terms: Public domain | W3C validator |