MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssun3 Structured version   Visualization version   GIF version

Theorem ssun3 4108
Description: Subclass law for union of classes. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
ssun3 (𝐴𝐵𝐴 ⊆ (𝐵𝐶))

Proof of Theorem ssun3
StepHypRef Expression
1 ssun1 4106 . 2 𝐵 ⊆ (𝐵𝐶)
2 sstr2 3928 . 2 (𝐴𝐵 → (𝐵 ⊆ (𝐵𝐶) → 𝐴 ⊆ (𝐵𝐶)))
31, 2mpi 20 1 (𝐴𝐵𝐴 ⊆ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  cun 3885  wss 3887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-un 3892  df-in 3894  df-ss 3904
This theorem is referenced by:  ssun  4123  ssunsn2  4760  xpsspw  5719  wfrlem15OLD  8154  uncmp  22554  alexsubALTlem3  23200  sxbrsigalem0  32238  bnj1450  33030  fineqvac  33066  altxpsspw  34279  pibt2  35588  superuncl  41175  cnvtrcl0  41234
  Copyright terms: Public domain W3C validator