| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssun3 | Structured version Visualization version GIF version | ||
| Description: Subclass law for union of classes. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| ssun3 | ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ⊆ (𝐵 ∪ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun1 4158 | . 2 ⊢ 𝐵 ⊆ (𝐵 ∪ 𝐶) | |
| 2 | sstr2 3970 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ (𝐵 ∪ 𝐶) → 𝐴 ⊆ (𝐵 ∪ 𝐶))) | |
| 3 | 1, 2 | mpi 20 | 1 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ⊆ (𝐵 ∪ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∪ cun 3929 ⊆ wss 3931 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-un 3936 df-ss 3948 |
| This theorem is referenced by: ssun 4175 ssunsn2 4808 xpsspw 5793 wfrlem15OLD 8342 uncmp 23346 alexsubALTlem3 23992 constrextdg2lem 33787 sxbrsigalem0 34308 bnj1450 35086 fineqvac 35133 altxpsspw 36000 pibt2 37440 superuncl 43567 cnvtrcl0 43625 |
| Copyright terms: Public domain | W3C validator |