MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssun3 Structured version   Visualization version   GIF version

Theorem ssun3 4174
Description: Subclass law for union of classes. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
ssun3 (𝐴𝐵𝐴 ⊆ (𝐵𝐶))

Proof of Theorem ssun3
StepHypRef Expression
1 ssun1 4172 . 2 𝐵 ⊆ (𝐵𝐶)
2 sstr2 3989 . 2 (𝐴𝐵 → (𝐵 ⊆ (𝐵𝐶) → 𝐴 ⊆ (𝐵𝐶)))
31, 2mpi 20 1 (𝐴𝐵𝐴 ⊆ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  cun 3946  wss 3948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-v 3475  df-un 3953  df-in 3955  df-ss 3965
This theorem is referenced by:  ssun  4189  ssunsn2  4830  xpsspw  5809  wfrlem15OLD  8329  uncmp  23227  alexsubALTlem3  23873  sxbrsigalem0  33734  bnj1450  34525  fineqvac  34561  altxpsspw  35419  pibt2  36762  superuncl  42782  cnvtrcl0  42840
  Copyright terms: Public domain W3C validator