MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssun3 Structured version   Visualization version   GIF version

Theorem ssun3 4104
Description: Subclass law for union of classes. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
ssun3 (𝐴𝐵𝐴 ⊆ (𝐵𝐶))

Proof of Theorem ssun3
StepHypRef Expression
1 ssun1 4102 . 2 𝐵 ⊆ (𝐵𝐶)
2 sstr2 3924 . 2 (𝐴𝐵 → (𝐵 ⊆ (𝐵𝐶) → 𝐴 ⊆ (𝐵𝐶)))
31, 2mpi 20 1 (𝐴𝐵𝐴 ⊆ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  cun 3881  wss 3883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-un 3888  df-in 3890  df-ss 3900
This theorem is referenced by:  ssun  4119  ssunsn2  4757  xpsspw  5708  wfrlem15OLD  8125  uncmp  22462  alexsubALTlem3  23108  sxbrsigalem0  32138  bnj1450  32930  fineqvac  32966  altxpsspw  34206  pibt2  35515  superuncl  41064  cnvtrcl0  41123
  Copyright terms: Public domain W3C validator