![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssun3 | Structured version Visualization version GIF version |
Description: Subclass law for union of classes. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
ssun3 | ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ⊆ (𝐵 ∪ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 4188 | . 2 ⊢ 𝐵 ⊆ (𝐵 ∪ 𝐶) | |
2 | sstr2 4002 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ (𝐵 ∪ 𝐶) → 𝐴 ⊆ (𝐵 ∪ 𝐶))) | |
3 | 1, 2 | mpi 20 | 1 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ⊆ (𝐵 ∪ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∪ cun 3961 ⊆ wss 3963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-un 3968 df-ss 3980 |
This theorem is referenced by: ssun 4205 ssunsn2 4832 xpsspw 5822 wfrlem15OLD 8362 uncmp 23427 alexsubALTlem3 24073 sxbrsigalem0 34253 bnj1450 35043 fineqvac 35090 altxpsspw 35959 pibt2 37400 superuncl 43558 cnvtrcl0 43616 |
Copyright terms: Public domain | W3C validator |