| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssun3 | Structured version Visualization version GIF version | ||
| Description: Subclass law for union of classes. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| ssun3 | ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ⊆ (𝐵 ∪ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun1 4177 | . 2 ⊢ 𝐵 ⊆ (𝐵 ∪ 𝐶) | |
| 2 | sstr2 3989 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ (𝐵 ∪ 𝐶) → 𝐴 ⊆ (𝐵 ∪ 𝐶))) | |
| 3 | 1, 2 | mpi 20 | 1 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ⊆ (𝐵 ∪ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∪ cun 3948 ⊆ wss 3950 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-v 3481 df-un 3955 df-ss 3967 |
| This theorem is referenced by: ssun 4194 ssunsn2 4826 xpsspw 5818 wfrlem15OLD 8364 uncmp 23412 alexsubALTlem3 24058 constrextdg2lem 33790 sxbrsigalem0 34274 bnj1450 35065 fineqvac 35112 altxpsspw 35979 pibt2 37419 superuncl 43586 cnvtrcl0 43644 |
| Copyright terms: Public domain | W3C validator |