![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unssbd | Structured version Visualization version GIF version |
Description: If (𝐴 ∪ 𝐵) is contained in 𝐶, so is 𝐵. One-way deduction form of unss 4200. Partial converse of unssd 4202. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
unssad.1 | ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝐶) |
Ref | Expression |
---|---|
unssbd | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unssad.1 | . . 3 ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝐶) | |
2 | unss 4200 | . . 3 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (𝐴 ∪ 𝐵) ⊆ 𝐶) | |
3 | 1, 2 | sylibr 234 | . 2 ⊢ (𝜑 → (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶)) |
4 | 3 | simprd 495 | 1 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∪ cun 3961 ⊆ wss 3963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-un 3968 df-ss 3980 |
This theorem is referenced by: eldifpw 7787 naddcllem 8713 ertr 8759 finsschain 9397 r0weon 10050 ackbij1lem16 10272 wunfi 10759 wunex2 10776 hashf1lem2 14492 sumsplit 15801 fsum2dlem 15803 fsumabs 15834 fsumrlim 15844 fsumo1 15845 fsumiun 15854 fprod2dlem 16013 mreexexlem3d 17691 yonedalem1 18329 yonedalem21 18330 yonedalem3a 18331 yonedalem4c 18334 yonedalem22 18335 yonedalem3b 18336 yonedainv 18338 yonffthlem 18339 ablfac1eulem 20107 lsmsp 21103 lsppratlem3 21169 mplcoe1 22073 mdetunilem9 22642 filufint 23944 fmfnfmlem4 23981 hausflim 24005 fclsfnflim 24051 fsumcn 24908 itgfsum 25877 jensenlem1 27045 jensenlem2 27046 gsumvsca1 33215 gsumvsca2 33216 qsdrngilem 33502 evls1fldgencl 33695 ordtconnlem1 33885 vhmcls 35551 mclsppslem 35568 rngunsnply 43158 brtrclfv2 43717 |
Copyright terms: Public domain | W3C validator |