| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unssbd | Structured version Visualization version GIF version | ||
| Description: If (𝐴 ∪ 𝐵) is contained in 𝐶, so is 𝐵. One-way deduction form of unss 4153. Partial converse of unssd 4155. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| unssad.1 | ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝐶) |
| Ref | Expression |
|---|---|
| unssbd | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unssad.1 | . . 3 ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝐶) | |
| 2 | unss 4153 | . . 3 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (𝐴 ∪ 𝐵) ⊆ 𝐶) | |
| 3 | 1, 2 | sylibr 234 | . 2 ⊢ (𝜑 → (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶)) |
| 4 | 3 | simprd 495 | 1 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∪ cun 3912 ⊆ wss 3914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-un 3919 df-ss 3931 |
| This theorem is referenced by: eldifpw 7744 naddcllem 8640 ertr 8686 finsschain 9310 r0weon 9965 ackbij1lem16 10187 wunfi 10674 wunex2 10691 hashf1lem2 14421 sumsplit 15734 fsum2dlem 15736 fsumabs 15767 fsumrlim 15777 fsumo1 15778 fsumiun 15787 fprod2dlem 15946 mreexexlem3d 17607 yonedalem1 18233 yonedalem21 18234 yonedalem3a 18235 yonedalem4c 18238 yonedalem22 18239 yonedalem3b 18240 yonedainv 18242 yonffthlem 18243 ablfac1eulem 20004 lsmsp 20993 lsppratlem3 21059 mplcoe1 21944 mdetunilem9 22507 filufint 23807 fmfnfmlem4 23844 hausflim 23868 fclsfnflim 23914 fsumcn 24761 itgfsum 25728 jensenlem1 26897 jensenlem2 26898 gsumvsca1 33179 gsumvsca2 33180 qsdrngilem 33465 evls1fldgencl 33665 fldextrspunlem1 33670 constrextdg2lem 33738 constrllcllem 33742 constrlccllem 33743 constrcccllem 33744 ordtconnlem1 33914 vhmcls 35553 mclsppslem 35570 rngunsnply 43158 brtrclfv2 43716 |
| Copyright terms: Public domain | W3C validator |