![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unssbd | Structured version Visualization version GIF version |
Description: If (𝐴 ∪ 𝐵) is contained in 𝐶, so is 𝐵. One-way deduction form of unss 4213. Partial converse of unssd 4215. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
unssad.1 | ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝐶) |
Ref | Expression |
---|---|
unssbd | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unssad.1 | . . 3 ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝐶) | |
2 | unss 4213 | . . 3 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (𝐴 ∪ 𝐵) ⊆ 𝐶) | |
3 | 1, 2 | sylibr 234 | . 2 ⊢ (𝜑 → (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶)) |
4 | 3 | simprd 495 | 1 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∪ cun 3974 ⊆ wss 3976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 df-ss 3993 |
This theorem is referenced by: eldifpw 7803 naddcllem 8732 ertr 8778 finsschain 9429 r0weon 10081 ackbij1lem16 10303 wunfi 10790 wunex2 10807 hashf1lem2 14505 sumsplit 15816 fsum2dlem 15818 fsumabs 15849 fsumrlim 15859 fsumo1 15860 fsumiun 15869 fprod2dlem 16028 mreexexlem3d 17704 yonedalem1 18342 yonedalem21 18343 yonedalem3a 18344 yonedalem4c 18347 yonedalem22 18348 yonedalem3b 18349 yonedainv 18351 yonffthlem 18352 ablfac1eulem 20116 lsmsp 21108 lsppratlem3 21174 mplcoe1 22078 mdetunilem9 22647 filufint 23949 fmfnfmlem4 23986 hausflim 24010 fclsfnflim 24056 fsumcn 24913 itgfsum 25882 jensenlem1 27048 jensenlem2 27049 gsumvsca1 33205 gsumvsca2 33206 qsdrngilem 33487 evls1fldgencl 33680 ordtconnlem1 33870 vhmcls 35534 mclsppslem 35551 rngunsnply 43130 brtrclfv2 43689 |
Copyright terms: Public domain | W3C validator |