| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unssbd | Structured version Visualization version GIF version | ||
| Description: If (𝐴 ∪ 𝐵) is contained in 𝐶, so is 𝐵. One-way deduction form of unss 4170. Partial converse of unssd 4172. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| unssad.1 | ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝐶) |
| Ref | Expression |
|---|---|
| unssbd | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unssad.1 | . . 3 ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝐶) | |
| 2 | unss 4170 | . . 3 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (𝐴 ∪ 𝐵) ⊆ 𝐶) | |
| 3 | 1, 2 | sylibr 234 | . 2 ⊢ (𝜑 → (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶)) |
| 4 | 3 | simprd 495 | 1 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∪ cun 3929 ⊆ wss 3931 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-un 3936 df-ss 3948 |
| This theorem is referenced by: eldifpw 7767 naddcllem 8693 ertr 8739 finsschain 9376 r0weon 10031 ackbij1lem16 10253 wunfi 10740 wunex2 10757 hashf1lem2 14479 sumsplit 15789 fsum2dlem 15791 fsumabs 15822 fsumrlim 15832 fsumo1 15833 fsumiun 15842 fprod2dlem 16001 mreexexlem3d 17663 yonedalem1 18289 yonedalem21 18290 yonedalem3a 18291 yonedalem4c 18294 yonedalem22 18295 yonedalem3b 18296 yonedainv 18298 yonffthlem 18299 ablfac1eulem 20060 lsmsp 21049 lsppratlem3 21115 mplcoe1 22000 mdetunilem9 22563 filufint 23863 fmfnfmlem4 23900 hausflim 23924 fclsfnflim 23970 fsumcn 24817 itgfsum 25785 jensenlem1 26954 jensenlem2 26955 gsumvsca1 33228 gsumvsca2 33229 qsdrngilem 33514 evls1fldgencl 33716 fldextrspunlem1 33721 constrextdg2lem 33787 constrllcllem 33791 constrlccllem 33792 constrcccllem 33793 ordtconnlem1 33960 vhmcls 35593 mclsppslem 35610 rngunsnply 43160 brtrclfv2 43718 |
| Copyright terms: Public domain | W3C validator |