| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unssbd | Structured version Visualization version GIF version | ||
| Description: If (𝐴 ∪ 𝐵) is contained in 𝐶, so is 𝐵. One-way deduction form of unss 4156. Partial converse of unssd 4158. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| unssad.1 | ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝐶) |
| Ref | Expression |
|---|---|
| unssbd | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unssad.1 | . . 3 ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝐶) | |
| 2 | unss 4156 | . . 3 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (𝐴 ∪ 𝐵) ⊆ 𝐶) | |
| 3 | 1, 2 | sylibr 234 | . 2 ⊢ (𝜑 → (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶)) |
| 4 | 3 | simprd 495 | 1 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∪ cun 3915 ⊆ wss 3917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-un 3922 df-ss 3934 |
| This theorem is referenced by: eldifpw 7747 naddcllem 8643 ertr 8689 finsschain 9317 r0weon 9972 ackbij1lem16 10194 wunfi 10681 wunex2 10698 hashf1lem2 14428 sumsplit 15741 fsum2dlem 15743 fsumabs 15774 fsumrlim 15784 fsumo1 15785 fsumiun 15794 fprod2dlem 15953 mreexexlem3d 17614 yonedalem1 18240 yonedalem21 18241 yonedalem3a 18242 yonedalem4c 18245 yonedalem22 18246 yonedalem3b 18247 yonedainv 18249 yonffthlem 18250 ablfac1eulem 20011 lsmsp 21000 lsppratlem3 21066 mplcoe1 21951 mdetunilem9 22514 filufint 23814 fmfnfmlem4 23851 hausflim 23875 fclsfnflim 23921 fsumcn 24768 itgfsum 25735 jensenlem1 26904 jensenlem2 26905 gsumvsca1 33186 gsumvsca2 33187 qsdrngilem 33472 evls1fldgencl 33672 fldextrspunlem1 33677 constrextdg2lem 33745 constrllcllem 33749 constrlccllem 33750 constrcccllem 33751 ordtconnlem1 33921 vhmcls 35560 mclsppslem 35577 rngunsnply 43165 brtrclfv2 43723 |
| Copyright terms: Public domain | W3C validator |