Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > unssbd | Structured version Visualization version GIF version |
Description: If (𝐴 ∪ 𝐵) is contained in 𝐶, so is 𝐵. One-way deduction form of unss 4117. Partial converse of unssd 4119. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
unssad.1 | ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝐶) |
Ref | Expression |
---|---|
unssbd | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unssad.1 | . . 3 ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝐶) | |
2 | unss 4117 | . . 3 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (𝐴 ∪ 𝐵) ⊆ 𝐶) | |
3 | 1, 2 | sylibr 233 | . 2 ⊢ (𝜑 → (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶)) |
4 | 3 | simprd 496 | 1 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∪ cun 3884 ⊆ wss 3886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3431 df-un 3891 df-in 3893 df-ss 3903 |
This theorem is referenced by: eldifpw 7608 ertr 8500 finsschain 9113 r0weon 9778 ackbij1lem16 10001 wunfi 10487 wunex2 10504 hashf1lem2 14180 sumsplit 15490 fsum2dlem 15492 fsumabs 15523 fsumrlim 15533 fsumo1 15534 fsumiun 15543 fprod2dlem 15700 mreexexlem3d 17365 yonedalem1 18000 yonedalem21 18001 yonedalem3a 18002 yonedalem4c 18005 yonedalem22 18006 yonedalem3b 18007 yonedainv 18009 yonffthlem 18010 ablfac1eulem 19685 lsmsp 20358 lsppratlem3 20421 mplcoe1 21248 mdetunilem9 21779 filufint 23081 fmfnfmlem4 23118 hausflim 23142 fclsfnflim 23188 fsumcn 24043 itgfsum 25001 jensenlem1 26146 jensenlem2 26147 gsumvsca1 31487 gsumvsca2 31488 ordtconnlem1 31882 vhmcls 33536 mclsppslem 33553 naddcllem 33839 rngunsnply 41006 brtrclfv2 41316 |
Copyright terms: Public domain | W3C validator |