MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unssbd Structured version   Visualization version   GIF version

Theorem unssbd 4194
Description: If (𝐴𝐵) is contained in 𝐶, so is 𝐵. One-way deduction form of unss 4190. Partial converse of unssd 4192. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
unssad.1 (𝜑 → (𝐴𝐵) ⊆ 𝐶)
Assertion
Ref Expression
unssbd (𝜑𝐵𝐶)

Proof of Theorem unssbd
StepHypRef Expression
1 unssad.1 . . 3 (𝜑 → (𝐴𝐵) ⊆ 𝐶)
2 unss 4190 . . 3 ((𝐴𝐶𝐵𝐶) ↔ (𝐴𝐵) ⊆ 𝐶)
31, 2sylibr 234 . 2 (𝜑 → (𝐴𝐶𝐵𝐶))
43simprd 495 1 (𝜑𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  cun 3949  wss 3951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-v 3482  df-un 3956  df-ss 3968
This theorem is referenced by:  eldifpw  7788  naddcllem  8714  ertr  8760  finsschain  9399  r0weon  10052  ackbij1lem16  10274  wunfi  10761  wunex2  10778  hashf1lem2  14495  sumsplit  15804  fsum2dlem  15806  fsumabs  15837  fsumrlim  15847  fsumo1  15848  fsumiun  15857  fprod2dlem  16016  mreexexlem3d  17689  yonedalem1  18317  yonedalem21  18318  yonedalem3a  18319  yonedalem4c  18322  yonedalem22  18323  yonedalem3b  18324  yonedainv  18326  yonffthlem  18327  ablfac1eulem  20092  lsmsp  21085  lsppratlem3  21151  mplcoe1  22055  mdetunilem9  22626  filufint  23928  fmfnfmlem4  23965  hausflim  23989  fclsfnflim  24035  fsumcn  24894  itgfsum  25862  jensenlem1  27030  jensenlem2  27031  gsumvsca1  33232  gsumvsca2  33233  qsdrngilem  33522  evls1fldgencl  33720  fldextrspunlem1  33725  constrextdg2lem  33789  ordtconnlem1  33923  vhmcls  35571  mclsppslem  35588  rngunsnply  43181  brtrclfv2  43740
  Copyright terms: Public domain W3C validator