| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unssbd | Structured version Visualization version GIF version | ||
| Description: If (𝐴 ∪ 𝐵) is contained in 𝐶, so is 𝐵. One-way deduction form of unss 4140. Partial converse of unssd 4142. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| unssad.1 | ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝐶) |
| Ref | Expression |
|---|---|
| unssbd | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unssad.1 | . . 3 ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝐶) | |
| 2 | unss 4140 | . . 3 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (𝐴 ∪ 𝐵) ⊆ 𝐶) | |
| 3 | 1, 2 | sylibr 234 | . 2 ⊢ (𝜑 → (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶)) |
| 4 | 3 | simprd 495 | 1 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∪ cun 3900 ⊆ wss 3902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3907 df-ss 3919 |
| This theorem is referenced by: eldifpw 7701 naddcllem 8591 ertr 8637 finsschain 9243 r0weon 9903 ackbij1lem16 10125 wunfi 10612 wunex2 10629 hashf1lem2 14363 sumsplit 15675 fsum2dlem 15677 fsumabs 15708 fsumrlim 15718 fsumo1 15719 fsumiun 15728 fprod2dlem 15887 mreexexlem3d 17552 yonedalem1 18178 yonedalem21 18179 yonedalem3a 18180 yonedalem4c 18183 yonedalem22 18184 yonedalem3b 18185 yonedainv 18187 yonffthlem 18188 ablfac1eulem 19987 lsmsp 21021 lsppratlem3 21087 mplcoe1 21973 mdetunilem9 22536 filufint 23836 fmfnfmlem4 23873 hausflim 23897 fclsfnflim 23943 fsumcn 24789 itgfsum 25756 jensenlem1 26925 jensenlem2 26926 gsumvsca1 33193 gsumvsca2 33194 qsdrngilem 33457 evls1fldgencl 33681 fldextrspunlem1 33686 constrextdg2lem 33759 constrllcllem 33763 constrlccllem 33764 constrcccllem 33765 ordtconnlem1 33935 vhmcls 35608 mclsppslem 35625 rngunsnply 43208 brtrclfv2 43766 |
| Copyright terms: Public domain | W3C validator |