MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unssbd Structured version   Visualization version   GIF version

Theorem unssbd 4147
Description: If (𝐴𝐵) is contained in 𝐶, so is 𝐵. One-way deduction form of unss 4143. Partial converse of unssd 4145. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
unssad.1 (𝜑 → (𝐴𝐵) ⊆ 𝐶)
Assertion
Ref Expression
unssbd (𝜑𝐵𝐶)

Proof of Theorem unssbd
StepHypRef Expression
1 unssad.1 . . 3 (𝜑 → (𝐴𝐵) ⊆ 𝐶)
2 unss 4143 . . 3 ((𝐴𝐶𝐵𝐶) ↔ (𝐴𝐵) ⊆ 𝐶)
31, 2sylibr 234 . 2 (𝜑 → (𝐴𝐶𝐵𝐶))
43simprd 495 1 (𝜑𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  cun 3903  wss 3905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3440  df-un 3910  df-ss 3922
This theorem is referenced by:  eldifpw  7708  naddcllem  8601  ertr  8647  finsschain  9268  r0weon  9925  ackbij1lem16  10147  wunfi  10634  wunex2  10651  hashf1lem2  14381  sumsplit  15693  fsum2dlem  15695  fsumabs  15726  fsumrlim  15736  fsumo1  15737  fsumiun  15746  fprod2dlem  15905  mreexexlem3d  17570  yonedalem1  18196  yonedalem21  18197  yonedalem3a  18198  yonedalem4c  18201  yonedalem22  18202  yonedalem3b  18203  yonedainv  18205  yonffthlem  18206  ablfac1eulem  19971  lsmsp  21008  lsppratlem3  21074  mplcoe1  21960  mdetunilem9  22523  filufint  23823  fmfnfmlem4  23860  hausflim  23884  fclsfnflim  23930  fsumcn  24777  itgfsum  25744  jensenlem1  26913  jensenlem2  26914  gsumvsca1  33181  gsumvsca2  33182  qsdrngilem  33444  evls1fldgencl  33644  fldextrspunlem1  33649  constrextdg2lem  33717  constrllcllem  33721  constrlccllem  33722  constrcccllem  33723  ordtconnlem1  33893  vhmcls  35541  mclsppslem  35558  rngunsnply  43145  brtrclfv2  43703
  Copyright terms: Public domain W3C validator