MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unssbd Structured version   Visualization version   GIF version

Theorem unssbd 4160
Description: If (𝐴𝐵) is contained in 𝐶, so is 𝐵. One-way deduction form of unss 4156. Partial converse of unssd 4158. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
unssad.1 (𝜑 → (𝐴𝐵) ⊆ 𝐶)
Assertion
Ref Expression
unssbd (𝜑𝐵𝐶)

Proof of Theorem unssbd
StepHypRef Expression
1 unssad.1 . . 3 (𝜑 → (𝐴𝐵) ⊆ 𝐶)
2 unss 4156 . . 3 ((𝐴𝐶𝐵𝐶) ↔ (𝐴𝐵) ⊆ 𝐶)
31, 2sylibr 234 . 2 (𝜑 → (𝐴𝐶𝐵𝐶))
43simprd 495 1 (𝜑𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  cun 3915  wss 3917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-un 3922  df-ss 3934
This theorem is referenced by:  eldifpw  7747  naddcllem  8643  ertr  8689  finsschain  9317  r0weon  9972  ackbij1lem16  10194  wunfi  10681  wunex2  10698  hashf1lem2  14428  sumsplit  15741  fsum2dlem  15743  fsumabs  15774  fsumrlim  15784  fsumo1  15785  fsumiun  15794  fprod2dlem  15953  mreexexlem3d  17614  yonedalem1  18240  yonedalem21  18241  yonedalem3a  18242  yonedalem4c  18245  yonedalem22  18246  yonedalem3b  18247  yonedainv  18249  yonffthlem  18250  ablfac1eulem  20011  lsmsp  21000  lsppratlem3  21066  mplcoe1  21951  mdetunilem9  22514  filufint  23814  fmfnfmlem4  23851  hausflim  23875  fclsfnflim  23921  fsumcn  24768  itgfsum  25735  jensenlem1  26904  jensenlem2  26905  gsumvsca1  33186  gsumvsca2  33187  qsdrngilem  33472  evls1fldgencl  33672  fldextrspunlem1  33677  constrextdg2lem  33745  constrllcllem  33749  constrlccllem  33750  constrcccllem  33751  ordtconnlem1  33921  vhmcls  35560  mclsppslem  35577  rngunsnply  43165  brtrclfv2  43723
  Copyright terms: Public domain W3C validator