Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > unssbd | Structured version Visualization version GIF version |
Description: If (𝐴 ∪ 𝐵) is contained in 𝐶, so is 𝐵. One-way deduction form of unss 4118. Partial converse of unssd 4120. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
unssad.1 | ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝐶) |
Ref | Expression |
---|---|
unssbd | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unssad.1 | . . 3 ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝐶) | |
2 | unss 4118 | . . 3 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (𝐴 ∪ 𝐵) ⊆ 𝐶) | |
3 | 1, 2 | sylibr 233 | . 2 ⊢ (𝜑 → (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶)) |
4 | 3 | simprd 496 | 1 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∪ cun 3885 ⊆ wss 3887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-un 3892 df-in 3894 df-ss 3904 |
This theorem is referenced by: eldifpw 7618 ertr 8513 finsschain 9126 r0weon 9768 ackbij1lem16 9991 wunfi 10477 wunex2 10494 hashf1lem2 14170 sumsplit 15480 fsum2dlem 15482 fsumabs 15513 fsumrlim 15523 fsumo1 15524 fsumiun 15533 fprod2dlem 15690 mreexexlem3d 17355 yonedalem1 17990 yonedalem21 17991 yonedalem3a 17992 yonedalem4c 17995 yonedalem22 17996 yonedalem3b 17997 yonedainv 17999 yonffthlem 18000 ablfac1eulem 19675 lsmsp 20348 lsppratlem3 20411 mplcoe1 21238 mdetunilem9 21769 filufint 23071 fmfnfmlem4 23108 hausflim 23132 fclsfnflim 23178 fsumcn 24033 itgfsum 24991 jensenlem1 26136 jensenlem2 26137 gsumvsca1 31479 gsumvsca2 31480 ordtconnlem1 31874 vhmcls 33528 mclsppslem 33545 naddcllem 33831 rngunsnply 40998 brtrclfv2 41335 |
Copyright terms: Public domain | W3C validator |