| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unssbd | Structured version Visualization version GIF version | ||
| Description: If (𝐴 ∪ 𝐵) is contained in 𝐶, so is 𝐵. One-way deduction form of unss 4143. Partial converse of unssd 4145. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| unssad.1 | ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝐶) |
| Ref | Expression |
|---|---|
| unssbd | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unssad.1 | . . 3 ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝐶) | |
| 2 | unss 4143 | . . 3 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (𝐴 ∪ 𝐵) ⊆ 𝐶) | |
| 3 | 1, 2 | sylibr 234 | . 2 ⊢ (𝜑 → (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶)) |
| 4 | 3 | simprd 495 | 1 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∪ cun 3903 ⊆ wss 3905 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-un 3910 df-ss 3922 |
| This theorem is referenced by: eldifpw 7708 naddcllem 8601 ertr 8647 finsschain 9268 r0weon 9925 ackbij1lem16 10147 wunfi 10634 wunex2 10651 hashf1lem2 14381 sumsplit 15693 fsum2dlem 15695 fsumabs 15726 fsumrlim 15736 fsumo1 15737 fsumiun 15746 fprod2dlem 15905 mreexexlem3d 17570 yonedalem1 18196 yonedalem21 18197 yonedalem3a 18198 yonedalem4c 18201 yonedalem22 18202 yonedalem3b 18203 yonedainv 18205 yonffthlem 18206 ablfac1eulem 19971 lsmsp 21008 lsppratlem3 21074 mplcoe1 21960 mdetunilem9 22523 filufint 23823 fmfnfmlem4 23860 hausflim 23884 fclsfnflim 23930 fsumcn 24777 itgfsum 25744 jensenlem1 26913 jensenlem2 26914 gsumvsca1 33181 gsumvsca2 33182 qsdrngilem 33444 evls1fldgencl 33644 fldextrspunlem1 33649 constrextdg2lem 33717 constrllcllem 33721 constrlccllem 33722 constrcccllem 33723 ordtconnlem1 33893 vhmcls 35541 mclsppslem 35558 rngunsnply 43145 brtrclfv2 43703 |
| Copyright terms: Public domain | W3C validator |