| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unssbd | Structured version Visualization version GIF version | ||
| Description: If (𝐴 ∪ 𝐵) is contained in 𝐶, so is 𝐵. One-way deduction form of unss 4139. Partial converse of unssd 4141. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| unssad.1 | ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝐶) |
| Ref | Expression |
|---|---|
| unssbd | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unssad.1 | . . 3 ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝐶) | |
| 2 | unss 4139 | . . 3 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (𝐴 ∪ 𝐵) ⊆ 𝐶) | |
| 3 | 1, 2 | sylibr 234 | . 2 ⊢ (𝜑 → (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶)) |
| 4 | 3 | simprd 495 | 1 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∪ cun 3896 ⊆ wss 3898 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-un 3903 df-ss 3915 |
| This theorem is referenced by: eldifpw 7709 naddcllem 8599 ertr 8645 finsschain 9252 r0weon 9912 ackbij1lem16 10134 wunfi 10621 wunex2 10638 hashf1lem2 14367 sumsplit 15679 fsum2dlem 15681 fsumabs 15712 fsumrlim 15722 fsumo1 15723 fsumiun 15732 fprod2dlem 15891 mreexexlem3d 17556 yonedalem1 18182 yonedalem21 18183 yonedalem3a 18184 yonedalem4c 18187 yonedalem22 18188 yonedalem3b 18189 yonedainv 18191 yonffthlem 18192 ablfac1eulem 19990 lsmsp 21024 lsppratlem3 21090 mplcoe1 21975 mdetunilem9 22538 filufint 23838 fmfnfmlem4 23875 hausflim 23899 fclsfnflim 23945 fsumcn 24791 itgfsum 25758 jensenlem1 26927 jensenlem2 26928 gsumvsca1 33204 gsumvsca2 33205 qsdrngilem 33468 evls1fldgencl 33706 fldextrspunlem1 33711 constrextdg2lem 33784 constrllcllem 33788 constrlccllem 33789 constrcccllem 33790 ordtconnlem1 33960 vhmcls 35633 mclsppslem 35650 rngunsnply 43289 brtrclfv2 43847 |
| Copyright terms: Public domain | W3C validator |