Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > unssbd | Structured version Visualization version GIF version |
Description: If (𝐴 ∪ 𝐵) is contained in 𝐶, so is 𝐵. One-way deduction form of unss 4114. Partial converse of unssd 4116. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
unssad.1 | ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝐶) |
Ref | Expression |
---|---|
unssbd | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unssad.1 | . . 3 ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝐶) | |
2 | unss 4114 | . . 3 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (𝐴 ∪ 𝐵) ⊆ 𝐶) | |
3 | 1, 2 | sylibr 233 | . 2 ⊢ (𝜑 → (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶)) |
4 | 3 | simprd 495 | 1 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∪ cun 3881 ⊆ wss 3883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-un 3888 df-in 3890 df-ss 3900 |
This theorem is referenced by: eldifpw 7596 ertr 8471 finsschain 9056 r0weon 9699 ackbij1lem16 9922 wunfi 10408 wunex2 10425 hashf1lem2 14098 sumsplit 15408 fsum2dlem 15410 fsumabs 15441 fsumrlim 15451 fsumo1 15452 fsumiun 15461 fprod2dlem 15618 mreexexlem3d 17272 yonedalem1 17906 yonedalem21 17907 yonedalem3a 17908 yonedalem4c 17911 yonedalem22 17912 yonedalem3b 17913 yonedainv 17915 yonffthlem 17916 ablfac1eulem 19590 lsmsp 20263 lsppratlem3 20326 mplcoe1 21148 mdetunilem9 21677 filufint 22979 fmfnfmlem4 23016 hausflim 23040 fclsfnflim 23086 fsumcn 23939 itgfsum 24896 jensenlem1 26041 jensenlem2 26042 gsumvsca1 31381 gsumvsca2 31382 ordtconnlem1 31776 vhmcls 33428 mclsppslem 33445 naddcllem 33758 rngunsnply 40914 brtrclfv2 41224 |
Copyright terms: Public domain | W3C validator |