| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssunieq | Structured version Visualization version GIF version | ||
| Description: Relationship implying union. (Contributed by NM, 10-Nov-1999.) |
| Ref | Expression |
|---|---|
| ssunieq | ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 𝑥 ⊆ 𝐴) → 𝐴 = ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elssuni 4918 | . . 3 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ⊆ ∪ 𝐵) | |
| 2 | unissb 4920 | . . . 4 ⊢ (∪ 𝐵 ⊆ 𝐴 ↔ ∀𝑥 ∈ 𝐵 𝑥 ⊆ 𝐴) | |
| 3 | 2 | biimpri 228 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 𝑥 ⊆ 𝐴 → ∪ 𝐵 ⊆ 𝐴) |
| 4 | 1, 3 | anim12i 613 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 𝑥 ⊆ 𝐴) → (𝐴 ⊆ ∪ 𝐵 ∧ ∪ 𝐵 ⊆ 𝐴)) |
| 5 | eqss 3979 | . 2 ⊢ (𝐴 = ∪ 𝐵 ↔ (𝐴 ⊆ ∪ 𝐵 ∧ ∪ 𝐵 ⊆ 𝐴)) | |
| 6 | 4, 5 | sylibr 234 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 𝑥 ⊆ 𝐴) → 𝐴 = ∪ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ⊆ wss 3931 ∪ cuni 4888 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-v 3466 df-ss 3948 df-uni 4889 |
| This theorem is referenced by: unimax 4925 shsspwh 31232 |
| Copyright terms: Public domain | W3C validator |