MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssunieq Structured version   Visualization version   GIF version

Theorem ssunieq 4943
Description: Relationship implying union. (Contributed by NM, 10-Nov-1999.)
Assertion
Ref Expression
ssunieq ((𝐴𝐵 ∧ ∀𝑥𝐵 𝑥𝐴) → 𝐴 = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem ssunieq
StepHypRef Expression
1 elssuni 4937 . . 3 (𝐴𝐵𝐴 𝐵)
2 unissb 4939 . . . 4 ( 𝐵𝐴 ↔ ∀𝑥𝐵 𝑥𝐴)
32biimpri 228 . . 3 (∀𝑥𝐵 𝑥𝐴 𝐵𝐴)
41, 3anim12i 613 . 2 ((𝐴𝐵 ∧ ∀𝑥𝐵 𝑥𝐴) → (𝐴 𝐵 𝐵𝐴))
5 eqss 3999 . 2 (𝐴 = 𝐵 ↔ (𝐴 𝐵 𝐵𝐴))
64, 5sylibr 234 1 ((𝐴𝐵 ∧ ∀𝑥𝐵 𝑥𝐴) → 𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3061  wss 3951   cuni 4907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-v 3482  df-ss 3968  df-uni 4908
This theorem is referenced by:  unimax  4944  shsspwh  31265
  Copyright terms: Public domain W3C validator