![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssunieq | Structured version Visualization version GIF version |
Description: Relationship implying union. (Contributed by NM, 10-Nov-1999.) |
Ref | Expression |
---|---|
ssunieq | ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 𝑥 ⊆ 𝐴) → 𝐴 = ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elssuni 4942 | . . 3 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ⊆ ∪ 𝐵) | |
2 | unissb 4944 | . . . 4 ⊢ (∪ 𝐵 ⊆ 𝐴 ↔ ∀𝑥 ∈ 𝐵 𝑥 ⊆ 𝐴) | |
3 | 2 | biimpri 228 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 𝑥 ⊆ 𝐴 → ∪ 𝐵 ⊆ 𝐴) |
4 | 1, 3 | anim12i 613 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 𝑥 ⊆ 𝐴) → (𝐴 ⊆ ∪ 𝐵 ∧ ∪ 𝐵 ⊆ 𝐴)) |
5 | eqss 4011 | . 2 ⊢ (𝐴 = ∪ 𝐵 ↔ (𝐴 ⊆ ∪ 𝐵 ∧ ∪ 𝐵 ⊆ 𝐴)) | |
6 | 4, 5 | sylibr 234 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 𝑥 ⊆ 𝐴) → 𝐴 = ∪ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ⊆ wss 3963 ∪ cuni 4912 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-v 3480 df-ss 3980 df-uni 4913 |
This theorem is referenced by: unimax 4949 shsspwh 31275 |
Copyright terms: Public domain | W3C validator |