MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unidif Structured version   Visualization version   GIF version

Theorem unidif 4946
Description: If the difference 𝐴𝐵 contains the largest members of 𝐴, then the union of the difference is the union of 𝐴. (Contributed by NM, 22-Mar-2004.)
Assertion
Ref Expression
unidif (∀𝑥𝐴𝑦 ∈ (𝐴𝐵)𝑥𝑦 (𝐴𝐵) = 𝐴)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem unidif
StepHypRef Expression
1 uniss2 4945 . . 3 (∀𝑥𝐴𝑦 ∈ (𝐴𝐵)𝑥𝑦 𝐴 (𝐴𝐵))
2 difss 4131 . . . 4 (𝐴𝐵) ⊆ 𝐴
32unissi 4917 . . 3 (𝐴𝐵) ⊆ 𝐴
41, 3jctil 520 . 2 (∀𝑥𝐴𝑦 ∈ (𝐴𝐵)𝑥𝑦 → ( (𝐴𝐵) ⊆ 𝐴 𝐴 (𝐴𝐵)))
5 eqss 3997 . 2 ( (𝐴𝐵) = 𝐴 ↔ ( (𝐴𝐵) ⊆ 𝐴 𝐴 (𝐴𝐵)))
64, 5sylibr 233 1 (∀𝑥𝐴𝑦 ∈ (𝐴𝐵)𝑥𝑦 (𝐴𝐵) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wral 3061  wrex 3070  cdif 3945  wss 3948   cuni 4908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-v 3476  df-dif 3951  df-in 3955  df-ss 3965  df-uni 4909
This theorem is referenced by:  ordunidif  6413
  Copyright terms: Public domain W3C validator