MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unidif Structured version   Visualization version   GIF version

Theorem unidif 4966
Description: If the difference 𝐴𝐵 contains the largest members of 𝐴, then the union of the difference is the union of 𝐴. (Contributed by NM, 22-Mar-2004.)
Assertion
Ref Expression
unidif (∀𝑥𝐴𝑦 ∈ (𝐴𝐵)𝑥𝑦 (𝐴𝐵) = 𝐴)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem unidif
StepHypRef Expression
1 uniss2 4965 . . 3 (∀𝑥𝐴𝑦 ∈ (𝐴𝐵)𝑥𝑦 𝐴 (𝐴𝐵))
2 difss 4159 . . . 4 (𝐴𝐵) ⊆ 𝐴
32unissi 4940 . . 3 (𝐴𝐵) ⊆ 𝐴
41, 3jctil 519 . 2 (∀𝑥𝐴𝑦 ∈ (𝐴𝐵)𝑥𝑦 → ( (𝐴𝐵) ⊆ 𝐴 𝐴 (𝐴𝐵)))
5 eqss 4024 . 2 ( (𝐴𝐵) = 𝐴 ↔ ( (𝐴𝐵) ⊆ 𝐴 𝐴 (𝐴𝐵)))
64, 5sylibr 234 1 (∀𝑥𝐴𝑦 ∈ (𝐴𝐵)𝑥𝑦 (𝐴𝐵) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wral 3067  wrex 3076  cdif 3973  wss 3976   cuni 4931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-v 3490  df-dif 3979  df-ss 3993  df-uni 4932
This theorem is referenced by:  ordunidif  6444
  Copyright terms: Public domain W3C validator