![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unidif | Structured version Visualization version GIF version |
Description: If the difference 𝐴 ∖ 𝐵 contains the largest members of 𝐴, then the union of the difference is the union of 𝐴. (Contributed by NM, 22-Mar-2004.) |
Ref | Expression |
---|---|
unidif | ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ (𝐴 ∖ 𝐵)𝑥 ⊆ 𝑦 → ∪ (𝐴 ∖ 𝐵) = ∪ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniss2 4945 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ (𝐴 ∖ 𝐵)𝑥 ⊆ 𝑦 → ∪ 𝐴 ⊆ ∪ (𝐴 ∖ 𝐵)) | |
2 | difss 4131 | . . . 4 ⊢ (𝐴 ∖ 𝐵) ⊆ 𝐴 | |
3 | 2 | unissi 4917 | . . 3 ⊢ ∪ (𝐴 ∖ 𝐵) ⊆ ∪ 𝐴 |
4 | 1, 3 | jctil 520 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ (𝐴 ∖ 𝐵)𝑥 ⊆ 𝑦 → (∪ (𝐴 ∖ 𝐵) ⊆ ∪ 𝐴 ∧ ∪ 𝐴 ⊆ ∪ (𝐴 ∖ 𝐵))) |
5 | eqss 3997 | . 2 ⊢ (∪ (𝐴 ∖ 𝐵) = ∪ 𝐴 ↔ (∪ (𝐴 ∖ 𝐵) ⊆ ∪ 𝐴 ∧ ∪ 𝐴 ⊆ ∪ (𝐴 ∖ 𝐵))) | |
6 | 4, 5 | sylibr 233 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ (𝐴 ∖ 𝐵)𝑥 ⊆ 𝑦 → ∪ (𝐴 ∖ 𝐵) = ∪ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∀wral 3061 ∃wrex 3070 ∖ cdif 3945 ⊆ wss 3948 ∪ cuni 4908 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-v 3476 df-dif 3951 df-in 3955 df-ss 3965 df-uni 4909 |
This theorem is referenced by: ordunidif 6413 |
Copyright terms: Public domain | W3C validator |