| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unidif | Structured version Visualization version GIF version | ||
| Description: If the difference 𝐴 ∖ 𝐵 contains the largest members of 𝐴, then the union of the difference is the union of 𝐴. (Contributed by NM, 22-Mar-2004.) |
| Ref | Expression |
|---|---|
| unidif | ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ (𝐴 ∖ 𝐵)𝑥 ⊆ 𝑦 → ∪ (𝐴 ∖ 𝐵) = ∪ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniss2 4922 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ (𝐴 ∖ 𝐵)𝑥 ⊆ 𝑦 → ∪ 𝐴 ⊆ ∪ (𝐴 ∖ 𝐵)) | |
| 2 | difss 4116 | . . . 4 ⊢ (𝐴 ∖ 𝐵) ⊆ 𝐴 | |
| 3 | 2 | unissi 4897 | . . 3 ⊢ ∪ (𝐴 ∖ 𝐵) ⊆ ∪ 𝐴 |
| 4 | 1, 3 | jctil 519 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ (𝐴 ∖ 𝐵)𝑥 ⊆ 𝑦 → (∪ (𝐴 ∖ 𝐵) ⊆ ∪ 𝐴 ∧ ∪ 𝐴 ⊆ ∪ (𝐴 ∖ 𝐵))) |
| 5 | eqss 3979 | . 2 ⊢ (∪ (𝐴 ∖ 𝐵) = ∪ 𝐴 ↔ (∪ (𝐴 ∖ 𝐵) ⊆ ∪ 𝐴 ∧ ∪ 𝐴 ⊆ ∪ (𝐴 ∖ 𝐵))) | |
| 6 | 4, 5 | sylibr 234 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ (𝐴 ∖ 𝐵)𝑥 ⊆ 𝑦 → ∪ (𝐴 ∖ 𝐵) = ∪ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∀wral 3052 ∃wrex 3061 ∖ cdif 3928 ⊆ wss 3931 ∪ cuni 4888 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-v 3466 df-dif 3934 df-ss 3948 df-uni 4889 |
| This theorem is referenced by: ordunidif 6407 |
| Copyright terms: Public domain | W3C validator |