| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unimax | Structured version Visualization version GIF version | ||
| Description: Any member of a class is the largest of those members that it includes. (Contributed by NM, 13-Aug-2002.) |
| Ref | Expression |
|---|---|
| unimax | ⊢ (𝐴 ∈ 𝐵 → ∪ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴} = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3953 | . . 3 ⊢ 𝐴 ⊆ 𝐴 | |
| 2 | sseq1 3956 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ⊆ 𝐴 ↔ 𝐴 ⊆ 𝐴)) | |
| 3 | 2 | elrab3 3644 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴} ↔ 𝐴 ⊆ 𝐴)) |
| 4 | 1, 3 | mpbiri 258 | . 2 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴}) |
| 5 | sseq1 3956 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑥 ⊆ 𝐴 ↔ 𝑦 ⊆ 𝐴)) | |
| 6 | 5 | elrab 3643 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴} ↔ (𝑦 ∈ 𝐵 ∧ 𝑦 ⊆ 𝐴)) |
| 7 | 6 | simprbi 496 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴} → 𝑦 ⊆ 𝐴) |
| 8 | 7 | rgen 3050 | . 2 ⊢ ∀𝑦 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴}𝑦 ⊆ 𝐴 |
| 9 | ssunieq 4896 | . . 3 ⊢ ((𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴} ∧ ∀𝑦 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴}𝑦 ⊆ 𝐴) → 𝐴 = ∪ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴}) | |
| 10 | 9 | eqcomd 2739 | . 2 ⊢ ((𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴} ∧ ∀𝑦 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴}𝑦 ⊆ 𝐴) → ∪ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴} = 𝐴) |
| 11 | 4, 8, 10 | sylancl 586 | 1 ⊢ (𝐴 ∈ 𝐵 → ∪ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴} = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 {crab 3396 ⊆ wss 3898 ∪ cuni 4860 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rab 3397 df-v 3439 df-ss 3915 df-uni 4861 |
| This theorem is referenced by: lssuni 20881 chsupid 31413 shatomistici 32362 lssats 39184 lpssat 39185 lssatle 39187 lssat 39188 mrelatglbALT 49157 mreclat 49158 toplatmeet 49164 |
| Copyright terms: Public domain | W3C validator |