MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unimax Structured version   Visualization version   GIF version

Theorem unimax 4882
Description: Any member of a class is the largest of those members that it includes. (Contributed by NM, 13-Aug-2002.)
Assertion
Ref Expression
unimax (𝐴𝐵 {𝑥𝐵𝑥𝐴} = 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem unimax
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssid 3947 . . 3 𝐴𝐴
2 sseq1 3950 . . . 4 (𝑥 = 𝐴 → (𝑥𝐴𝐴𝐴))
32elrab3 3626 . . 3 (𝐴𝐵 → (𝐴 ∈ {𝑥𝐵𝑥𝐴} ↔ 𝐴𝐴))
41, 3mpbiri 257 . 2 (𝐴𝐵𝐴 ∈ {𝑥𝐵𝑥𝐴})
5 sseq1 3950 . . . . 5 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
65elrab 3625 . . . 4 (𝑦 ∈ {𝑥𝐵𝑥𝐴} ↔ (𝑦𝐵𝑦𝐴))
76simprbi 496 . . 3 (𝑦 ∈ {𝑥𝐵𝑥𝐴} → 𝑦𝐴)
87rgen 3075 . 2 𝑦 ∈ {𝑥𝐵𝑥𝐴}𝑦𝐴
9 ssunieq 4881 . . 3 ((𝐴 ∈ {𝑥𝐵𝑥𝐴} ∧ ∀𝑦 ∈ {𝑥𝐵𝑥𝐴}𝑦𝐴) → 𝐴 = {𝑥𝐵𝑥𝐴})
109eqcomd 2745 . 2 ((𝐴 ∈ {𝑥𝐵𝑥𝐴} ∧ ∀𝑦 ∈ {𝑥𝐵𝑥𝐴}𝑦𝐴) → {𝑥𝐵𝑥𝐴} = 𝐴)
114, 8, 10sylancl 585 1 (𝐴𝐵 {𝑥𝐵𝑥𝐴} = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2109  wral 3065  {crab 3069  wss 3891   cuni 4844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-11 2157  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1544  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-ral 3070  df-rab 3074  df-v 3432  df-in 3898  df-ss 3908  df-uni 4845
This theorem is referenced by:  lssuni  20182  chsupid  29753  shatomistici  30702  lssats  37005  lpssat  37006  lssatle  37008  lssat  37009  mrelatglbALT  46234  mreclat  46235  toplatmeet  46241
  Copyright terms: Public domain W3C validator