Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > unimax | Structured version Visualization version GIF version |
Description: Any member of a class is the largest of those members that it includes. (Contributed by NM, 13-Aug-2002.) |
Ref | Expression |
---|---|
unimax | ⊢ (𝐴 ∈ 𝐵 → ∪ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴} = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3947 | . . 3 ⊢ 𝐴 ⊆ 𝐴 | |
2 | sseq1 3950 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ⊆ 𝐴 ↔ 𝐴 ⊆ 𝐴)) | |
3 | 2 | elrab3 3626 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴} ↔ 𝐴 ⊆ 𝐴)) |
4 | 1, 3 | mpbiri 257 | . 2 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴}) |
5 | sseq1 3950 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑥 ⊆ 𝐴 ↔ 𝑦 ⊆ 𝐴)) | |
6 | 5 | elrab 3625 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴} ↔ (𝑦 ∈ 𝐵 ∧ 𝑦 ⊆ 𝐴)) |
7 | 6 | simprbi 496 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴} → 𝑦 ⊆ 𝐴) |
8 | 7 | rgen 3075 | . 2 ⊢ ∀𝑦 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴}𝑦 ⊆ 𝐴 |
9 | ssunieq 4881 | . . 3 ⊢ ((𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴} ∧ ∀𝑦 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴}𝑦 ⊆ 𝐴) → 𝐴 = ∪ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴}) | |
10 | 9 | eqcomd 2745 | . 2 ⊢ ((𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴} ∧ ∀𝑦 ∈ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴}𝑦 ⊆ 𝐴) → ∪ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴} = 𝐴) |
11 | 4, 8, 10 | sylancl 585 | 1 ⊢ (𝐴 ∈ 𝐵 → ∪ {𝑥 ∈ 𝐵 ∣ 𝑥 ⊆ 𝐴} = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ∀wral 3065 {crab 3069 ⊆ wss 3891 ∪ cuni 4844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-11 2157 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rab 3074 df-v 3432 df-in 3898 df-ss 3908 df-uni 4845 |
This theorem is referenced by: lssuni 20182 chsupid 29753 shatomistici 30702 lssats 37005 lpssat 37006 lssatle 37008 lssat 37009 mrelatglbALT 46234 mreclat 46235 toplatmeet 46241 |
Copyright terms: Public domain | W3C validator |