HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shsspwh Structured version   Visualization version   GIF version

Theorem shsspwh 30767
Description: Subspaces are subsets of Hilbert space. (Contributed by NM, 24-Nov-2004.) (New usage is discouraged.)
Assertion
Ref Expression
shsspwh S ⊆ 𝒫 ℋ

Proof of Theorem shsspwh
StepHypRef Expression
1 pwuni 4949 . 2 S ⊆ 𝒫 S
2 helsh 30766 . . . 4 ℋ ∈ S
3 shss 30731 . . . . 5 (𝑥S𝑥 ⊆ ℋ)
43rgen 3062 . . . 4 𝑥S 𝑥 ⊆ ℋ
5 ssunieq 4947 . . . 4 (( ℋ ∈ S ∧ ∀𝑥S 𝑥 ⊆ ℋ) → ℋ = S )
62, 4, 5mp2an 689 . . 3 ℋ = S
76pweqi 4618 . 2 𝒫 ℋ = 𝒫 S
81, 7sseqtrri 4019 1 S ⊆ 𝒫 ℋ
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2105  wral 3060  wss 3948  𝒫 cpw 4602   cuni 4908  chba 30440   S csh 30449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7728  ax-cnex 11169  ax-1cn 11171  ax-addcl 11173  ax-hilex 30520  ax-hfvadd 30521  ax-hv0cl 30524  ax-hfvmul 30526
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7859  df-2nd 7979  df-frecs 8269  df-wrecs 8300  df-recs 8374  df-rdg 8413  df-map 8825  df-nn 12218  df-hlim 30493  df-sh 30728  df-ch 30742
This theorem is referenced by:  chsspwh  30768  shsupunss  30867
  Copyright terms: Public domain W3C validator