| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > shsspwh | Structured version Visualization version GIF version | ||
| Description: Subspaces are subsets of Hilbert space. (Contributed by NM, 24-Nov-2004.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| shsspwh | ⊢ Sℋ ⊆ 𝒫 ℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwuni 4898 | . 2 ⊢ Sℋ ⊆ 𝒫 ∪ Sℋ | |
| 2 | helsh 31246 | . . . 4 ⊢ ℋ ∈ Sℋ | |
| 3 | shss 31211 | . . . . 5 ⊢ (𝑥 ∈ Sℋ → 𝑥 ⊆ ℋ) | |
| 4 | 3 | rgen 3050 | . . . 4 ⊢ ∀𝑥 ∈ Sℋ 𝑥 ⊆ ℋ |
| 5 | ssunieq 4896 | . . . 4 ⊢ (( ℋ ∈ Sℋ ∧ ∀𝑥 ∈ Sℋ 𝑥 ⊆ ℋ) → ℋ = ∪ Sℋ ) | |
| 6 | 2, 4, 5 | mp2an 692 | . . 3 ⊢ ℋ = ∪ Sℋ |
| 7 | 6 | pweqi 4567 | . 2 ⊢ 𝒫 ℋ = 𝒫 ∪ Sℋ |
| 8 | 1, 7 | sseqtrri 3980 | 1 ⊢ Sℋ ⊆ 𝒫 ℋ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 ∀wral 3048 ⊆ wss 3898 𝒫 cpw 4551 ∪ cuni 4860 ℋchba 30920 Sℋ csh 30929 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-1cn 11075 ax-addcl 11077 ax-hilex 31000 ax-hfvadd 31001 ax-hv0cl 31004 ax-hfvmul 31006 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-map 8761 df-nn 12137 df-hlim 30973 df-sh 31208 df-ch 31222 |
| This theorem is referenced by: chsspwh 31248 shsupunss 31347 |
| Copyright terms: Public domain | W3C validator |