| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sucunisn | Structured version Visualization version GIF version | ||
| Description: The successor to the union of any singleton of a set is the successor of the set. (Contributed by RP, 11-Feb-2025.) |
| Ref | Expression |
|---|---|
| sucunisn | ⊢ (𝐴 ∈ 𝑉 → suc ∪ {𝐴} = suc 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unisng 4905 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ {𝐴} = 𝐴) | |
| 2 | suceq 6430 | . 2 ⊢ (∪ {𝐴} = 𝐴 → suc ∪ {𝐴} = suc 𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ 𝑉 → suc ∪ {𝐴} = suc 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 {csn 4606 ∪ cuni 4887 suc csuc 6365 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3465 df-un 3936 df-ss 3948 df-sn 4607 df-pr 4609 df-uni 4888 df-suc 6369 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |