Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sucunisn Structured version   Visualization version   GIF version

Theorem sucunisn 43474
Description: The successor to the union of any singleton of a set is the successor of the set. (Contributed by RP, 11-Feb-2025.)
Assertion
Ref Expression
sucunisn (𝐴𝑉 → suc {𝐴} = suc 𝐴)

Proof of Theorem sucunisn
StepHypRef Expression
1 unisng 4874 . 2 (𝐴𝑉 {𝐴} = 𝐴)
2 suceq 6374 . 2 ( {𝐴} = 𝐴 → suc {𝐴} = suc 𝐴)
31, 2syl 17 1 (𝐴𝑉 → suc {𝐴} = suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  {csn 4573   cuni 4856  suc csuc 6308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-un 3902  df-ss 3914  df-sn 4574  df-pr 4576  df-uni 4857  df-suc 6312
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator