![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sucunisn | Structured version Visualization version GIF version |
Description: The successor to the union of any singleton of a set is the successor of the set. (Contributed by RP, 11-Feb-2025.) |
Ref | Expression |
---|---|
sucunisn | ⊢ (𝐴 ∈ 𝑉 → suc ∪ {𝐴} = suc 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unisng 4929 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ {𝐴} = 𝐴) | |
2 | suceq 6430 | . 2 ⊢ (∪ {𝐴} = 𝐴 → suc ∪ {𝐴} = suc 𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ 𝑉 → suc ∪ {𝐴} = suc 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 {csn 4628 ∪ cuni 4908 suc csuc 6366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-v 3476 df-un 3953 df-in 3955 df-ss 3965 df-sn 4629 df-pr 4631 df-uni 4909 df-suc 6370 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |