Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sucunisn Structured version   Visualization version   GIF version

Theorem sucunisn 43377
Description: The successor to the union of any singleton of a set is the successor of the set. (Contributed by RP, 11-Feb-2025.)
Assertion
Ref Expression
sucunisn (𝐴𝑉 → suc {𝐴} = suc 𝐴)

Proof of Theorem sucunisn
StepHypRef Expression
1 unisng 4933 . 2 (𝐴𝑉 {𝐴} = 𝐴)
2 suceq 6458 . 2 ( {𝐴} = 𝐴 → suc {𝐴} = suc 𝐴)
31, 2syl 17 1 (𝐴𝑉 → suc {𝐴} = suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  {csn 4634   cuni 4915  suc csuc 6394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-tru 1542  df-ex 1779  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-v 3483  df-un 3971  df-ss 3983  df-sn 4635  df-pr 4637  df-uni 4916  df-suc 6398
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator