Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sucunisn Structured version   Visualization version   GIF version

Theorem sucunisn 43353
Description: The successor to the union of any singleton of a set is the successor of the set. (Contributed by RP, 11-Feb-2025.)
Assertion
Ref Expression
sucunisn (𝐴𝑉 → suc {𝐴} = suc 𝐴)

Proof of Theorem sucunisn
StepHypRef Expression
1 unisng 4891 . 2 (𝐴𝑉 {𝐴} = 𝐴)
2 suceq 6401 . 2 ( {𝐴} = 𝐴 → suc {𝐴} = suc 𝐴)
31, 2syl 17 1 (𝐴𝑉 → suc {𝐴} = suc 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {csn 4591   cuni 4873  suc csuc 6336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-un 3921  df-ss 3933  df-sn 4592  df-pr 4594  df-uni 4874  df-suc 6340
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator