![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sucunisn | Structured version Visualization version GIF version |
Description: The successor to the union of any singleton of a set is the successor of the set. (Contributed by RP, 11-Feb-2025.) |
Ref | Expression |
---|---|
sucunisn | ⊢ (𝐴 ∈ 𝑉 → suc ∪ {𝐴} = suc 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unisng 4933 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ {𝐴} = 𝐴) | |
2 | suceq 6458 | . 2 ⊢ (∪ {𝐴} = 𝐴 → suc ∪ {𝐴} = suc 𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐴 ∈ 𝑉 → suc ∪ {𝐴} = suc 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 {csn 4634 ∪ cuni 4915 suc csuc 6394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1542 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-v 3483 df-un 3971 df-ss 3983 df-sn 4635 df-pr 4637 df-uni 4916 df-suc 6398 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |