Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsucunipr Structured version   Visualization version   GIF version

Theorem onsucunipr 43075
Description: The successor to the union of any pair of ordinals is the union of the successors of the elements. (Contributed by RP, 12-Feb-2025.)
Assertion
Ref Expression
onsucunipr ((𝐴 ∈ On ∧ 𝐵 ∈ On) → suc {𝐴, 𝐵} = {suc 𝐴, suc 𝐵})

Proof of Theorem onsucunipr
StepHypRef Expression
1 ssequn1 4178 . . . . . 6 (𝐴𝐵 ↔ (𝐴𝐵) = 𝐵)
2 suceq 6434 . . . . . 6 ((𝐴𝐵) = 𝐵 → suc (𝐴𝐵) = suc 𝐵)
31, 2sylbi 216 . . . . 5 (𝐴𝐵 → suc (𝐴𝐵) = suc 𝐵)
43adantl 480 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → suc (𝐴𝐵) = suc 𝐵)
5 onsucwordi 42991 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → suc 𝐴 ⊆ suc 𝐵))
65imp 405 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → suc 𝐴 ⊆ suc 𝐵)
7 ssequn1 4178 . . . . 5 (suc 𝐴 ⊆ suc 𝐵 ↔ (suc 𝐴 ∪ suc 𝐵) = suc 𝐵)
86, 7sylib 217 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → (suc 𝐴 ∪ suc 𝐵) = suc 𝐵)
94, 8eqtr4d 2769 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → suc (𝐴𝐵) = (suc 𝐴 ∪ suc 𝐵))
10 ssequn2 4181 . . . . . 6 (𝐵𝐴 ↔ (𝐴𝐵) = 𝐴)
11 suceq 6434 . . . . . 6 ((𝐴𝐵) = 𝐴 → suc (𝐴𝐵) = suc 𝐴)
1210, 11sylbi 216 . . . . 5 (𝐵𝐴 → suc (𝐴𝐵) = suc 𝐴)
1312adantl 480 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐵𝐴) → suc (𝐴𝐵) = suc 𝐴)
14 onsucwordi 42991 . . . . . . 7 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵𝐴 → suc 𝐵 ⊆ suc 𝐴))
1514ancoms 457 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵𝐴 → suc 𝐵 ⊆ suc 𝐴))
1615imp 405 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐵𝐴) → suc 𝐵 ⊆ suc 𝐴)
17 ssequn2 4181 . . . . 5 (suc 𝐵 ⊆ suc 𝐴 ↔ (suc 𝐴 ∪ suc 𝐵) = suc 𝐴)
1816, 17sylib 217 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐵𝐴) → (suc 𝐴 ∪ suc 𝐵) = suc 𝐴)
1913, 18eqtr4d 2769 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐵𝐴) → suc (𝐴𝐵) = (suc 𝐴 ∪ suc 𝐵))
20 eloni 6378 . . . 4 (𝐴 ∈ On → Ord 𝐴)
21 eloni 6378 . . . 4 (𝐵 ∈ On → Ord 𝐵)
22 ordtri2or2 6467 . . . 4 ((Ord 𝐴 ∧ Ord 𝐵) → (𝐴𝐵𝐵𝐴))
2320, 21, 22syl2an 594 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵𝐵𝐴))
249, 19, 23mpjaodan 956 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → suc (𝐴𝐵) = (suc 𝐴 ∪ suc 𝐵))
25 uniprg 4921 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → {𝐴, 𝐵} = (𝐴𝐵))
26 suceq 6434 . . 3 ( {𝐴, 𝐵} = (𝐴𝐵) → suc {𝐴, 𝐵} = suc (𝐴𝐵))
2725, 26syl 17 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → suc {𝐴, 𝐵} = suc (𝐴𝐵))
28 onsuc 7812 . . 3 (𝐴 ∈ On → suc 𝐴 ∈ On)
29 onsuc 7812 . . 3 (𝐵 ∈ On → suc 𝐵 ∈ On)
30 uniprg 4921 . . 3 ((suc 𝐴 ∈ On ∧ suc 𝐵 ∈ On) → {suc 𝐴, suc 𝐵} = (suc 𝐴 ∪ suc 𝐵))
3128, 29, 30syl2an 594 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → {suc 𝐴, suc 𝐵} = (suc 𝐴 ∪ suc 𝐵))
3224, 27, 313eqtr4d 2776 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → suc {𝐴, 𝐵} = {suc 𝐴, suc 𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wo 845   = wceq 1534  wcel 2099  cun 3944  wss 3946  {cpr 4625   cuni 4905  Ord word 6367  Oncon0 6368  suc csuc 6370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2697  ax-sep 5296  ax-nul 5303  ax-pr 5425  ax-un 7738
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2704  df-cleq 2718  df-clel 2803  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-br 5146  df-opab 5208  df-tr 5263  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-we 5631  df-ord 6371  df-on 6372  df-suc 6374
This theorem is referenced by:  onsucunitp  43076
  Copyright terms: Public domain W3C validator