Proof of Theorem onsucunipr
Step | Hyp | Ref
| Expression |
1 | | ssequn1 4178 |
. . . . . 6
⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ 𝐵) = 𝐵) |
2 | | suceq 6434 |
. . . . . 6
⊢ ((𝐴 ∪ 𝐵) = 𝐵 → suc (𝐴 ∪ 𝐵) = suc 𝐵) |
3 | 1, 2 | sylbi 216 |
. . . . 5
⊢ (𝐴 ⊆ 𝐵 → suc (𝐴 ∪ 𝐵) = suc 𝐵) |
4 | 3 | adantl 480 |
. . . 4
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴 ⊆ 𝐵) → suc (𝐴 ∪ 𝐵) = suc 𝐵) |
5 | | onsucwordi 42991 |
. . . . . 6
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 → suc 𝐴 ⊆ suc 𝐵)) |
6 | 5 | imp 405 |
. . . . 5
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴 ⊆ 𝐵) → suc 𝐴 ⊆ suc 𝐵) |
7 | | ssequn1 4178 |
. . . . 5
⊢ (suc
𝐴 ⊆ suc 𝐵 ↔ (suc 𝐴 ∪ suc 𝐵) = suc 𝐵) |
8 | 6, 7 | sylib 217 |
. . . 4
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴 ⊆ 𝐵) → (suc 𝐴 ∪ suc 𝐵) = suc 𝐵) |
9 | 4, 8 | eqtr4d 2769 |
. . 3
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴 ⊆ 𝐵) → suc (𝐴 ∪ 𝐵) = (suc 𝐴 ∪ suc 𝐵)) |
10 | | ssequn2 4181 |
. . . . . 6
⊢ (𝐵 ⊆ 𝐴 ↔ (𝐴 ∪ 𝐵) = 𝐴) |
11 | | suceq 6434 |
. . . . . 6
⊢ ((𝐴 ∪ 𝐵) = 𝐴 → suc (𝐴 ∪ 𝐵) = suc 𝐴) |
12 | 10, 11 | sylbi 216 |
. . . . 5
⊢ (𝐵 ⊆ 𝐴 → suc (𝐴 ∪ 𝐵) = suc 𝐴) |
13 | 12 | adantl 480 |
. . . 4
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐵 ⊆ 𝐴) → suc (𝐴 ∪ 𝐵) = suc 𝐴) |
14 | | onsucwordi 42991 |
. . . . . . 7
⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵 ⊆ 𝐴 → suc 𝐵 ⊆ suc 𝐴)) |
15 | 14 | ancoms 457 |
. . . . . 6
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 ⊆ 𝐴 → suc 𝐵 ⊆ suc 𝐴)) |
16 | 15 | imp 405 |
. . . . 5
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐵 ⊆ 𝐴) → suc 𝐵 ⊆ suc 𝐴) |
17 | | ssequn2 4181 |
. . . . 5
⊢ (suc
𝐵 ⊆ suc 𝐴 ↔ (suc 𝐴 ∪ suc 𝐵) = suc 𝐴) |
18 | 16, 17 | sylib 217 |
. . . 4
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐵 ⊆ 𝐴) → (suc 𝐴 ∪ suc 𝐵) = suc 𝐴) |
19 | 13, 18 | eqtr4d 2769 |
. . 3
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐵 ⊆ 𝐴) → suc (𝐴 ∪ 𝐵) = (suc 𝐴 ∪ suc 𝐵)) |
20 | | eloni 6378 |
. . . 4
⊢ (𝐴 ∈ On → Ord 𝐴) |
21 | | eloni 6378 |
. . . 4
⊢ (𝐵 ∈ On → Ord 𝐵) |
22 | | ordtri2or2 6467 |
. . . 4
⊢ ((Ord
𝐴 ∧ Ord 𝐵) → (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) |
23 | 20, 21, 22 | syl2an 594 |
. . 3
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) |
24 | 9, 19, 23 | mpjaodan 956 |
. 2
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → suc (𝐴 ∪ 𝐵) = (suc 𝐴 ∪ suc 𝐵)) |
25 | | uniprg 4921 |
. . 3
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ∪ {𝐴,
𝐵} = (𝐴 ∪ 𝐵)) |
26 | | suceq 6434 |
. . 3
⊢ (∪ {𝐴,
𝐵} = (𝐴 ∪ 𝐵) → suc ∪
{𝐴, 𝐵} = suc (𝐴 ∪ 𝐵)) |
27 | 25, 26 | syl 17 |
. 2
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → suc ∪ {𝐴,
𝐵} = suc (𝐴 ∪ 𝐵)) |
28 | | onsuc 7812 |
. . 3
⊢ (𝐴 ∈ On → suc 𝐴 ∈ On) |
29 | | onsuc 7812 |
. . 3
⊢ (𝐵 ∈ On → suc 𝐵 ∈ On) |
30 | | uniprg 4921 |
. . 3
⊢ ((suc
𝐴 ∈ On ∧ suc 𝐵 ∈ On) → ∪ {suc 𝐴, suc 𝐵} = (suc 𝐴 ∪ suc 𝐵)) |
31 | 28, 29, 30 | syl2an 594 |
. 2
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ∪ {suc 𝐴, suc 𝐵} = (suc 𝐴 ∪ suc 𝐵)) |
32 | 24, 27, 31 | 3eqtr4d 2776 |
1
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → suc ∪ {𝐴,
𝐵} = ∪ {suc 𝐴, suc 𝐵}) |