| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unisng | Structured version Visualization version GIF version | ||
| Description: A set equals the union of its singleton. Theorem 8.2 of [Quine] p. 53. (Contributed by NM, 13-Aug-2002.) |
| Ref | Expression |
|---|---|
| unisng | ⊢ (𝐴 ∈ 𝑉 → ∪ {𝐴} = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsn2 4614 | . . . 4 ⊢ {𝐴} = {𝐴, 𝐴} | |
| 2 | 1 | unieqi 4895 | . . 3 ⊢ ∪ {𝐴} = ∪ {𝐴, 𝐴} |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ {𝐴} = ∪ {𝐴, 𝐴}) |
| 4 | uniprg 4899 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → ∪ {𝐴, 𝐴} = (𝐴 ∪ 𝐴)) | |
| 5 | 4 | anidms 566 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ {𝐴, 𝐴} = (𝐴 ∪ 𝐴)) |
| 6 | unidm 4132 | . . 3 ⊢ (𝐴 ∪ 𝐴) = 𝐴 | |
| 7 | 6 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∪ 𝐴) = 𝐴) |
| 8 | 3, 5, 7 | 3eqtrd 2774 | 1 ⊢ (𝐴 ∈ 𝑉 → ∪ {𝐴} = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ∪ cun 3924 {csn 4601 {cpr 4603 ∪ cuni 4883 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-un 3931 df-ss 3943 df-sn 4602 df-pr 4604 df-uni 4884 |
| This theorem is referenced by: unisn 4902 unisn3 4904 dfnfc2 4905 unisn2 5282 unisucs 6431 en2other2 10023 pmtrprfv 19434 dprdsn 20019 indistopon 22939 ordtuni 23128 cmpcld 23340 ptcmplem5 23994 cldsubg 24049 icccmplem2 24763 vmappw 27078 chsupsn 31394 xrge0tsmseq 33058 cycpm2tr 33130 qustrivr 33380 esumsnf 34095 prsiga 34162 rossros 34211 cvmscld 35295 unisnif 35943 topjoin 36383 fnejoin2 36387 bj-snmoore 37131 pibt2 37435 heiborlem8 37842 sucunisn 43395 onsucunitp 43397 oaun3 43406 fourierdlem80 46215 |
| Copyright terms: Public domain | W3C validator |