MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unisng Structured version   Visualization version   GIF version

Theorem unisng 4857
Description: A set equals the union of its singleton. Theorem 8.2 of [Quine] p. 53. (Contributed by NM, 13-Aug-2002.)
Assertion
Ref Expression
unisng (𝐴𝑉 {𝐴} = 𝐴)

Proof of Theorem unisng
StepHypRef Expression
1 dfsn2 4571 . . . 4 {𝐴} = {𝐴, 𝐴}
21unieqi 4849 . . 3 {𝐴} = {𝐴, 𝐴}
32a1i 11 . 2 (𝐴𝑉 {𝐴} = {𝐴, 𝐴})
4 uniprg 4853 . . 3 ((𝐴𝑉𝐴𝑉) → {𝐴, 𝐴} = (𝐴𝐴))
54anidms 566 . 2 (𝐴𝑉 {𝐴, 𝐴} = (𝐴𝐴))
6 unidm 4082 . . 3 (𝐴𝐴) = 𝐴
76a1i 11 . 2 (𝐴𝑉 → (𝐴𝐴) = 𝐴)
83, 5, 73eqtrd 2782 1 (𝐴𝑉 {𝐴} = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  cun 3881  {csn 4558  {cpr 4560   cuni 4836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-un 3888  df-in 3890  df-ss 3900  df-sn 4559  df-pr 4561  df-uni 4837
This theorem is referenced by:  unisn  4858  unisn3  4859  dfnfc2  4860  unisn2  5231  en2other2  9696  pmtrprfv  18976  dprdsn  19554  indistopon  22059  ordtuni  22249  cmpcld  22461  ptcmplem5  23115  cldsubg  23170  icccmplem2  23892  vmappw  26170  chsupsn  29676  xrge0tsmseq  31221  cycpm2tr  31288  qustrivr  31463  esumsnf  31932  prsiga  31999  rossros  32048  cvmscld  33135  unisnif  34154  topjoin  34481  fnejoin2  34485  bj-snmoore  35211  pibt2  35515  heiborlem8  35903  fourierdlem80  43617
  Copyright terms: Public domain W3C validator