| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unisng | Structured version Visualization version GIF version | ||
| Description: A set equals the union of its singleton. Theorem 8.2 of [Quine] p. 53. (Contributed by NM, 13-Aug-2002.) |
| Ref | Expression |
|---|---|
| unisng | ⊢ (𝐴 ∈ 𝑉 → ∪ {𝐴} = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsn2 4588 | . . . 4 ⊢ {𝐴} = {𝐴, 𝐴} | |
| 2 | 1 | unieqi 4870 | . . 3 ⊢ ∪ {𝐴} = ∪ {𝐴, 𝐴} |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ {𝐴} = ∪ {𝐴, 𝐴}) |
| 4 | uniprg 4874 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → ∪ {𝐴, 𝐴} = (𝐴 ∪ 𝐴)) | |
| 5 | 4 | anidms 566 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ {𝐴, 𝐴} = (𝐴 ∪ 𝐴)) |
| 6 | unidm 4106 | . . 3 ⊢ (𝐴 ∪ 𝐴) = 𝐴 | |
| 7 | 6 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∪ 𝐴) = 𝐴) |
| 8 | 3, 5, 7 | 3eqtrd 2772 | 1 ⊢ (𝐴 ∈ 𝑉 → ∪ {𝐴} = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ∪ cun 3896 {csn 4575 {cpr 4577 ∪ cuni 4858 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-un 3903 df-ss 3915 df-sn 4576 df-pr 4578 df-uni 4859 |
| This theorem is referenced by: unisn 4877 unisn3 4879 dfnfc2 4880 unisn2 5252 unisucs 6390 en2other2 9907 pmtrprfv 19367 dprdsn 19952 indistopon 22917 ordtuni 23106 cmpcld 23318 ptcmplem5 23972 cldsubg 24027 icccmplem2 24740 vmappw 27054 chsupsn 31395 xrge0tsmseq 33051 cycpm2tr 33095 qustrivr 33337 esumsnf 34098 prsiga 34165 rossros 34214 cvmscld 35338 unisnif 35988 topjoin 36430 fnejoin2 36434 bj-snmoore 37178 pibt2 37482 heiborlem8 37879 sucunisn 43489 onsucunitp 43491 oaun3 43500 fourierdlem80 46309 |
| Copyright terms: Public domain | W3C validator |