| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unisng | Structured version Visualization version GIF version | ||
| Description: A set equals the union of its singleton. Theorem 8.2 of [Quine] p. 53. (Contributed by NM, 13-Aug-2002.) |
| Ref | Expression |
|---|---|
| unisng | ⊢ (𝐴 ∈ 𝑉 → ∪ {𝐴} = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsn2 4619 | . . . 4 ⊢ {𝐴} = {𝐴, 𝐴} | |
| 2 | 1 | unieqi 4899 | . . 3 ⊢ ∪ {𝐴} = ∪ {𝐴, 𝐴} |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ {𝐴} = ∪ {𝐴, 𝐴}) |
| 4 | uniprg 4903 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → ∪ {𝐴, 𝐴} = (𝐴 ∪ 𝐴)) | |
| 5 | 4 | anidms 566 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ {𝐴, 𝐴} = (𝐴 ∪ 𝐴)) |
| 6 | unidm 4137 | . . 3 ⊢ (𝐴 ∪ 𝐴) = 𝐴 | |
| 7 | 6 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∪ 𝐴) = 𝐴) |
| 8 | 3, 5, 7 | 3eqtrd 2773 | 1 ⊢ (𝐴 ∈ 𝑉 → ∪ {𝐴} = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ∪ cun 3929 {csn 4606 {cpr 4608 ∪ cuni 4887 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3465 df-un 3936 df-ss 3948 df-sn 4607 df-pr 4609 df-uni 4888 |
| This theorem is referenced by: unisn 4906 unisn3 4908 dfnfc2 4909 unisn2 5292 unisucs 6441 en2other2 10031 pmtrprfv 19439 dprdsn 20024 indistopon 22955 ordtuni 23144 cmpcld 23356 ptcmplem5 24010 cldsubg 24065 icccmplem2 24781 vmappw 27095 chsupsn 31360 xrge0tsmseq 33006 cycpm2tr 33078 qustrivr 33328 esumsnf 34024 prsiga 34091 rossros 34140 cvmscld 35237 unisnif 35885 topjoin 36325 fnejoin2 36329 bj-snmoore 37073 pibt2 37377 heiborlem8 37784 sucunisn 43346 onsucunitp 43348 oaun3 43357 fourierdlem80 46158 |
| Copyright terms: Public domain | W3C validator |