| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unisng | Structured version Visualization version GIF version | ||
| Description: A set equals the union of its singleton. Theorem 8.2 of [Quine] p. 53. (Contributed by NM, 13-Aug-2002.) |
| Ref | Expression |
|---|---|
| unisng | ⊢ (𝐴 ∈ 𝑉 → ∪ {𝐴} = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsn2 4589 | . . . 4 ⊢ {𝐴} = {𝐴, 𝐴} | |
| 2 | 1 | unieqi 4871 | . . 3 ⊢ ∪ {𝐴} = ∪ {𝐴, 𝐴} |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ {𝐴} = ∪ {𝐴, 𝐴}) |
| 4 | uniprg 4875 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → ∪ {𝐴, 𝐴} = (𝐴 ∪ 𝐴)) | |
| 5 | 4 | anidms 566 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ {𝐴, 𝐴} = (𝐴 ∪ 𝐴)) |
| 6 | unidm 4107 | . . 3 ⊢ (𝐴 ∪ 𝐴) = 𝐴 | |
| 7 | 6 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∪ 𝐴) = 𝐴) |
| 8 | 3, 5, 7 | 3eqtrd 2770 | 1 ⊢ (𝐴 ∈ 𝑉 → ∪ {𝐴} = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∪ cun 3900 {csn 4576 {cpr 4578 ∪ cuni 4859 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3907 df-ss 3919 df-sn 4577 df-pr 4579 df-uni 4860 |
| This theorem is referenced by: unisn 4878 unisn3 4880 dfnfc2 4881 unisn2 5250 unisucs 6385 en2other2 9900 pmtrprfv 19366 dprdsn 19951 indistopon 22917 ordtuni 23106 cmpcld 23318 ptcmplem5 23972 cldsubg 24027 icccmplem2 24740 vmappw 27054 chsupsn 31391 xrge0tsmseq 33042 cycpm2tr 33086 qustrivr 33328 esumsnf 34075 prsiga 34142 rossros 34191 cvmscld 35315 unisnif 35965 topjoin 36405 fnejoin2 36409 bj-snmoore 37153 pibt2 37457 heiborlem8 37864 sucunisn 43410 onsucunitp 43412 oaun3 43421 fourierdlem80 46230 |
| Copyright terms: Public domain | W3C validator |