![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unisng | Structured version Visualization version GIF version |
Description: A set equals the union of its singleton. Theorem 8.2 of [Quine] p. 53. (Contributed by NM, 13-Aug-2002.) |
Ref | Expression |
---|---|
unisng | ⊢ (𝐴 ∈ 𝑉 → ∪ {𝐴} = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsn2 4643 | . . . 4 ⊢ {𝐴} = {𝐴, 𝐴} | |
2 | 1 | unieqi 4923 | . . 3 ⊢ ∪ {𝐴} = ∪ {𝐴, 𝐴} |
3 | 2 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ {𝐴} = ∪ {𝐴, 𝐴}) |
4 | uniprg 4927 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → ∪ {𝐴, 𝐴} = (𝐴 ∪ 𝐴)) | |
5 | 4 | anidms 566 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ {𝐴, 𝐴} = (𝐴 ∪ 𝐴)) |
6 | unidm 4166 | . . 3 ⊢ (𝐴 ∪ 𝐴) = 𝐴 | |
7 | 6 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∪ 𝐴) = 𝐴) |
8 | 3, 5, 7 | 3eqtrd 2778 | 1 ⊢ (𝐴 ∈ 𝑉 → ∪ {𝐴} = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 ∈ wcel 2105 ∪ cun 3960 {csn 4630 {cpr 4632 ∪ cuni 4911 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-v 3479 df-un 3967 df-ss 3979 df-sn 4631 df-pr 4633 df-uni 4912 |
This theorem is referenced by: unisn 4930 unisn3 4932 dfnfc2 4933 unisn2 5317 unisucs 6462 en2other2 10046 pmtrprfv 19485 dprdsn 20070 indistopon 23023 ordtuni 23213 cmpcld 23425 ptcmplem5 24079 cldsubg 24134 icccmplem2 24858 vmappw 27173 chsupsn 31441 xrge0tsmseq 33049 cycpm2tr 33121 qustrivr 33372 esumsnf 34044 prsiga 34111 rossros 34160 cvmscld 35257 unisnif 35906 topjoin 36347 fnejoin2 36351 bj-snmoore 37095 pibt2 37399 heiborlem8 37804 sucunisn 43360 onsucunitp 43362 oaun3 43371 fourierdlem80 46141 |
Copyright terms: Public domain | W3C validator |