![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unisng | Structured version Visualization version GIF version |
Description: A set equals the union of its singleton. Theorem 8.2 of [Quine] p. 53. (Contributed by NM, 13-Aug-2002.) |
Ref | Expression |
---|---|
unisng | ⊢ (𝐴 ∈ 𝑉 → ∪ {𝐴} = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsn2 4661 | . . . 4 ⊢ {𝐴} = {𝐴, 𝐴} | |
2 | 1 | unieqi 4943 | . . 3 ⊢ ∪ {𝐴} = ∪ {𝐴, 𝐴} |
3 | 2 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ {𝐴} = ∪ {𝐴, 𝐴}) |
4 | uniprg 4947 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → ∪ {𝐴, 𝐴} = (𝐴 ∪ 𝐴)) | |
5 | 4 | anidms 566 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ {𝐴, 𝐴} = (𝐴 ∪ 𝐴)) |
6 | unidm 4180 | . . 3 ⊢ (𝐴 ∪ 𝐴) = 𝐴 | |
7 | 6 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∪ 𝐴) = 𝐴) |
8 | 3, 5, 7 | 3eqtrd 2784 | 1 ⊢ (𝐴 ∈ 𝑉 → ∪ {𝐴} = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ∪ cun 3974 {csn 4648 {cpr 4650 ∪ cuni 4931 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 df-ss 3993 df-sn 4649 df-pr 4651 df-uni 4932 |
This theorem is referenced by: unisn 4950 unisn3 4952 dfnfc2 4953 unisn2 5330 unisucs 6472 en2other2 10078 pmtrprfv 19495 dprdsn 20080 indistopon 23029 ordtuni 23219 cmpcld 23431 ptcmplem5 24085 cldsubg 24140 icccmplem2 24864 vmappw 27177 chsupsn 31445 xrge0tsmseq 33043 cycpm2tr 33112 qustrivr 33358 esumsnf 34028 prsiga 34095 rossros 34144 cvmscld 35241 unisnif 35889 topjoin 36331 fnejoin2 36335 bj-snmoore 37079 pibt2 37383 heiborlem8 37778 sucunisn 43333 onsucunitp 43335 oaun3 43344 fourierdlem80 46107 |
Copyright terms: Public domain | W3C validator |