MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unisng Structured version   Visualization version   GIF version

Theorem unisng 4892
Description: A set equals the union of its singleton. Theorem 8.2 of [Quine] p. 53. (Contributed by NM, 13-Aug-2002.)
Assertion
Ref Expression
unisng (𝐴𝑉 {𝐴} = 𝐴)

Proof of Theorem unisng
StepHypRef Expression
1 dfsn2 4605 . . . 4 {𝐴} = {𝐴, 𝐴}
21unieqi 4886 . . 3 {𝐴} = {𝐴, 𝐴}
32a1i 11 . 2 (𝐴𝑉 {𝐴} = {𝐴, 𝐴})
4 uniprg 4890 . . 3 ((𝐴𝑉𝐴𝑉) → {𝐴, 𝐴} = (𝐴𝐴))
54anidms 566 . 2 (𝐴𝑉 {𝐴, 𝐴} = (𝐴𝐴))
6 unidm 4123 . . 3 (𝐴𝐴) = 𝐴
76a1i 11 . 2 (𝐴𝑉 → (𝐴𝐴) = 𝐴)
83, 5, 73eqtrd 2769 1 (𝐴𝑉 {𝐴} = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cun 3915  {csn 4592  {cpr 4594   cuni 4874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-un 3922  df-ss 3934  df-sn 4593  df-pr 4595  df-uni 4875
This theorem is referenced by:  unisn  4893  unisn3  4895  dfnfc2  4896  unisn2  5270  unisucs  6414  en2other2  9969  pmtrprfv  19390  dprdsn  19975  indistopon  22895  ordtuni  23084  cmpcld  23296  ptcmplem5  23950  cldsubg  24005  icccmplem2  24719  vmappw  27033  chsupsn  31349  xrge0tsmseq  33011  cycpm2tr  33083  qustrivr  33343  esumsnf  34061  prsiga  34128  rossros  34177  cvmscld  35267  unisnif  35920  topjoin  36360  fnejoin2  36364  bj-snmoore  37108  pibt2  37412  heiborlem8  37819  sucunisn  43367  onsucunitp  43369  oaun3  43378  fourierdlem80  46191
  Copyright terms: Public domain W3C validator