![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unisng | Structured version Visualization version GIF version |
Description: A set equals the union of its singleton. Theorem 8.2 of [Quine] p. 53. (Contributed by NM, 13-Aug-2002.) |
Ref | Expression |
---|---|
unisng | ⊢ (𝐴 ∈ 𝑉 → ∪ {𝐴} = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsn2 4642 | . . . 4 ⊢ {𝐴} = {𝐴, 𝐴} | |
2 | 1 | unieqi 4922 | . . 3 ⊢ ∪ {𝐴} = ∪ {𝐴, 𝐴} |
3 | 2 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ {𝐴} = ∪ {𝐴, 𝐴}) |
4 | uniprg 4926 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → ∪ {𝐴, 𝐴} = (𝐴 ∪ 𝐴)) | |
5 | 4 | anidms 568 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ {𝐴, 𝐴} = (𝐴 ∪ 𝐴)) |
6 | unidm 4153 | . . 3 ⊢ (𝐴 ∪ 𝐴) = 𝐴 | |
7 | 6 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∪ 𝐴) = 𝐴) |
8 | 3, 5, 7 | 3eqtrd 2777 | 1 ⊢ (𝐴 ∈ 𝑉 → ∪ {𝐴} = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 ∪ cun 3947 {csn 4629 {cpr 4631 ∪ cuni 4909 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 df-un 3954 df-in 3956 df-ss 3966 df-sn 4630 df-pr 4632 df-uni 4910 |
This theorem is referenced by: unisn 4931 unisn3 4933 dfnfc2 4934 unisn2 5313 unisucs 6442 en2other2 10004 pmtrprfv 19321 dprdsn 19906 indistopon 22504 ordtuni 22694 cmpcld 22906 ptcmplem5 23560 cldsubg 23615 icccmplem2 24339 vmappw 26620 chsupsn 30697 xrge0tsmseq 32242 cycpm2tr 32309 qustrivr 32508 esumsnf 33093 prsiga 33160 rossros 33209 cvmscld 34295 unisnif 34928 topjoin 35298 fnejoin2 35302 bj-snmoore 36042 pibt2 36346 heiborlem8 36734 sucunisn 42169 onsucunitp 42171 oaun3 42180 fourierdlem80 44950 |
Copyright terms: Public domain | W3C validator |