| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unisng | Structured version Visualization version GIF version | ||
| Description: A set equals the union of its singleton. Theorem 8.2 of [Quine] p. 53. (Contributed by NM, 13-Aug-2002.) |
| Ref | Expression |
|---|---|
| unisng | ⊢ (𝐴 ∈ 𝑉 → ∪ {𝐴} = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsn2 4592 | . . . 4 ⊢ {𝐴} = {𝐴, 𝐴} | |
| 2 | 1 | unieqi 4873 | . . 3 ⊢ ∪ {𝐴} = ∪ {𝐴, 𝐴} |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ {𝐴} = ∪ {𝐴, 𝐴}) |
| 4 | uniprg 4877 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → ∪ {𝐴, 𝐴} = (𝐴 ∪ 𝐴)) | |
| 5 | 4 | anidms 566 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ {𝐴, 𝐴} = (𝐴 ∪ 𝐴)) |
| 6 | unidm 4110 | . . 3 ⊢ (𝐴 ∪ 𝐴) = 𝐴 | |
| 7 | 6 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∪ 𝐴) = 𝐴) |
| 8 | 3, 5, 7 | 3eqtrd 2768 | 1 ⊢ (𝐴 ∈ 𝑉 → ∪ {𝐴} = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∪ cun 3903 {csn 4579 {cpr 4581 ∪ cuni 4861 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-un 3910 df-ss 3922 df-sn 4580 df-pr 4582 df-uni 4862 |
| This theorem is referenced by: unisn 4880 unisn3 4882 dfnfc2 4883 unisn2 5254 unisucs 6390 en2other2 9922 pmtrprfv 19350 dprdsn 19935 indistopon 22904 ordtuni 23093 cmpcld 23305 ptcmplem5 23959 cldsubg 24014 icccmplem2 24728 vmappw 27042 chsupsn 31375 xrge0tsmseq 33030 cycpm2tr 33074 qustrivr 33312 esumsnf 34030 prsiga 34097 rossros 34146 cvmscld 35245 unisnif 35898 topjoin 36338 fnejoin2 36342 bj-snmoore 37086 pibt2 37390 heiborlem8 37797 sucunisn 43344 onsucunitp 43346 oaun3 43355 fourierdlem80 46168 |
| Copyright terms: Public domain | W3C validator |