![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unisng | Structured version Visualization version GIF version |
Description: A set equals the union of its singleton. Theorem 8.2 of [Quine] p. 53. (Contributed by NM, 13-Aug-2002.) |
Ref | Expression |
---|---|
unisng | ⊢ (𝐴 ∈ 𝑉 → ∪ {𝐴} = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsn2 4641 | . . . 4 ⊢ {𝐴} = {𝐴, 𝐴} | |
2 | 1 | unieqi 4921 | . . 3 ⊢ ∪ {𝐴} = ∪ {𝐴, 𝐴} |
3 | 2 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ {𝐴} = ∪ {𝐴, 𝐴}) |
4 | uniprg 4925 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → ∪ {𝐴, 𝐴} = (𝐴 ∪ 𝐴)) | |
5 | 4 | anidms 566 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∪ {𝐴, 𝐴} = (𝐴 ∪ 𝐴)) |
6 | unidm 4152 | . . 3 ⊢ (𝐴 ∪ 𝐴) = 𝐴 | |
7 | 6 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∪ 𝐴) = 𝐴) |
8 | 3, 5, 7 | 3eqtrd 2775 | 1 ⊢ (𝐴 ∈ 𝑉 → ∪ {𝐴} = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ∪ cun 3946 {csn 4628 {cpr 4630 ∪ cuni 4908 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-v 3475 df-un 3953 df-in 3955 df-ss 3965 df-sn 4629 df-pr 4631 df-uni 4909 |
This theorem is referenced by: unisn 4930 unisn3 4932 dfnfc2 4933 unisn2 5312 unisucs 6441 en2other2 10010 pmtrprfv 19369 dprdsn 19954 indistopon 22824 ordtuni 23014 cmpcld 23226 ptcmplem5 23880 cldsubg 23935 icccmplem2 24659 vmappw 26961 chsupsn 31099 xrge0tsmseq 32647 cycpm2tr 32714 qustrivr 32917 esumsnf 33526 prsiga 33593 rossros 33642 cvmscld 34728 unisnif 35367 topjoin 35714 fnejoin2 35718 bj-snmoore 36458 pibt2 36762 heiborlem8 37150 sucunisn 42584 onsucunitp 42586 oaun3 42595 fourierdlem80 45361 |
Copyright terms: Public domain | W3C validator |