Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsucunifi Structured version   Visualization version   GIF version

Theorem onsucunifi 42105
Description: The successor to the union of any non-empty, finite subset of ordinals is the union of the successors of the elements. (Contributed by RP, 12-Feb-2025.)
Assertion
Ref Expression
onsucunifi ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → suc 𝐴 = 𝑥𝐴 suc 𝑥)
Distinct variable group:   𝑥,𝐴

Proof of Theorem onsucunifi
StepHypRef Expression
1 ordunifi 9289 . . 3 ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → 𝐴𝐴)
2 suceq 6427 . . . 4 (𝑥 = 𝐴 → suc 𝑥 = suc 𝐴)
32ssiun2s 5050 . . 3 ( 𝐴𝐴 → suc 𝐴 𝑥𝐴 suc 𝑥)
41, 3syl 17 . 2 ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → suc 𝐴 𝑥𝐴 suc 𝑥)
5 ssorduni 7762 . . . . . 6 (𝐴 ⊆ On → Ord 𝐴)
6 ordsuci 7792 . . . . . 6 (Ord 𝐴 → Ord suc 𝐴)
75, 6syl 17 . . . . 5 (𝐴 ⊆ On → Ord suc 𝐴)
8 onsucuni 7812 . . . . . 6 (𝐴 ⊆ On → 𝐴 ⊆ suc 𝐴)
98sselda 3981 . . . . 5 ((𝐴 ⊆ On ∧ 𝑥𝐴) → 𝑥 ∈ suc 𝐴)
10 ordsucss 7802 . . . . . 6 (Ord suc 𝐴 → (𝑥 ∈ suc 𝐴 → suc 𝑥 ⊆ suc 𝐴))
1110imp 407 . . . . 5 ((Ord suc 𝐴𝑥 ∈ suc 𝐴) → suc 𝑥 ⊆ suc 𝐴)
127, 9, 11syl2an2r 683 . . . 4 ((𝐴 ⊆ On ∧ 𝑥𝐴) → suc 𝑥 ⊆ suc 𝐴)
1312iunssd 5052 . . 3 (𝐴 ⊆ On → 𝑥𝐴 suc 𝑥 ⊆ suc 𝐴)
14133ad2ant1 1133 . 2 ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → 𝑥𝐴 suc 𝑥 ⊆ suc 𝐴)
154, 14eqssd 3998 1 ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → suc 𝐴 = 𝑥𝐴 suc 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1541  wcel 2106  wne 2940  wss 3947  c0 4321   cuni 4907   ciun 4996  Ord word 6360  Oncon0 6361  suc csuc 6363  Fincfn 8935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-om 7852  df-en 8936  df-fin 8939
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator