| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > onsucunifi | Structured version Visualization version GIF version | ||
| Description: The successor to the union of any non-empty, finite subset of ordinals is the union of the successors of the elements. (Contributed by RP, 12-Feb-2025.) |
| Ref | Expression |
|---|---|
| onsucunifi | ⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → suc ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 suc 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordunifi 9237 | . . 3 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∪ 𝐴 ∈ 𝐴) | |
| 2 | suceq 6400 | . . . 4 ⊢ (𝑥 = ∪ 𝐴 → suc 𝑥 = suc ∪ 𝐴) | |
| 3 | 2 | ssiun2s 5012 | . . 3 ⊢ (∪ 𝐴 ∈ 𝐴 → suc ∪ 𝐴 ⊆ ∪ 𝑥 ∈ 𝐴 suc 𝑥) |
| 4 | 1, 3 | syl 17 | . 2 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → suc ∪ 𝐴 ⊆ ∪ 𝑥 ∈ 𝐴 suc 𝑥) |
| 5 | ssorduni 7755 | . . . . . 6 ⊢ (𝐴 ⊆ On → Ord ∪ 𝐴) | |
| 6 | ordsuci 7784 | . . . . . 6 ⊢ (Ord ∪ 𝐴 → Ord suc ∪ 𝐴) | |
| 7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝐴 ⊆ On → Ord suc ∪ 𝐴) |
| 8 | onsucuni 7803 | . . . . . 6 ⊢ (𝐴 ⊆ On → 𝐴 ⊆ suc ∪ 𝐴) | |
| 9 | 8 | sselda 3946 | . . . . 5 ⊢ ((𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ suc ∪ 𝐴) |
| 10 | ordsucss 7793 | . . . . . 6 ⊢ (Ord suc ∪ 𝐴 → (𝑥 ∈ suc ∪ 𝐴 → suc 𝑥 ⊆ suc ∪ 𝐴)) | |
| 11 | 10 | imp 406 | . . . . 5 ⊢ ((Ord suc ∪ 𝐴 ∧ 𝑥 ∈ suc ∪ 𝐴) → suc 𝑥 ⊆ suc ∪ 𝐴) |
| 12 | 7, 9, 11 | syl2an2r 685 | . . . 4 ⊢ ((𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴) → suc 𝑥 ⊆ suc ∪ 𝐴) |
| 13 | 12 | iunssd 5014 | . . 3 ⊢ (𝐴 ⊆ On → ∪ 𝑥 ∈ 𝐴 suc 𝑥 ⊆ suc ∪ 𝐴) |
| 14 | 13 | 3ad2ant1 1133 | . 2 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∪ 𝑥 ∈ 𝐴 suc 𝑥 ⊆ suc ∪ 𝐴) |
| 15 | 4, 14 | eqssd 3964 | 1 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → suc ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 suc 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ⊆ wss 3914 ∅c0 4296 ∪ cuni 4871 ∪ ciun 4955 Ord word 6331 Oncon0 6332 suc csuc 6334 Fincfn 8918 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-om 7843 df-en 8919 df-fin 8922 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |