Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsucunifi Structured version   Visualization version   GIF version

Theorem onsucunifi 42701
Description: The successor to the union of any non-empty, finite subset of ordinals is the union of the successors of the elements. (Contributed by RP, 12-Feb-2025.)
Assertion
Ref Expression
onsucunifi ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → suc 𝐴 = 𝑥𝐴 suc 𝑥)
Distinct variable group:   𝑥,𝐴

Proof of Theorem onsucunifi
StepHypRef Expression
1 ordunifi 9295 . . 3 ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → 𝐴𝐴)
2 suceq 6424 . . . 4 (𝑥 = 𝐴 → suc 𝑥 = suc 𝐴)
32ssiun2s 5044 . . 3 ( 𝐴𝐴 → suc 𝐴 𝑥𝐴 suc 𝑥)
41, 3syl 17 . 2 ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → suc 𝐴 𝑥𝐴 suc 𝑥)
5 ssorduni 7763 . . . . . 6 (𝐴 ⊆ On → Ord 𝐴)
6 ordsuci 7793 . . . . . 6 (Ord 𝐴 → Ord suc 𝐴)
75, 6syl 17 . . . . 5 (𝐴 ⊆ On → Ord suc 𝐴)
8 onsucuni 7813 . . . . . 6 (𝐴 ⊆ On → 𝐴 ⊆ suc 𝐴)
98sselda 3977 . . . . 5 ((𝐴 ⊆ On ∧ 𝑥𝐴) → 𝑥 ∈ suc 𝐴)
10 ordsucss 7803 . . . . . 6 (Ord suc 𝐴 → (𝑥 ∈ suc 𝐴 → suc 𝑥 ⊆ suc 𝐴))
1110imp 406 . . . . 5 ((Ord suc 𝐴𝑥 ∈ suc 𝐴) → suc 𝑥 ⊆ suc 𝐴)
127, 9, 11syl2an2r 682 . . . 4 ((𝐴 ⊆ On ∧ 𝑥𝐴) → suc 𝑥 ⊆ suc 𝐴)
1312iunssd 5046 . . 3 (𝐴 ⊆ On → 𝑥𝐴 suc 𝑥 ⊆ suc 𝐴)
14133ad2ant1 1130 . 2 ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → 𝑥𝐴 suc 𝑥 ⊆ suc 𝐴)
154, 14eqssd 3994 1 ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → suc 𝐴 = 𝑥𝐴 suc 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1533  wcel 2098  wne 2934  wss 3943  c0 4317   cuni 4902   ciun 4990  Ord word 6357  Oncon0 6358  suc csuc 6360  Fincfn 8941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-om 7853  df-en 8942  df-fin 8945
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator