Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsucunifi Structured version   Visualization version   GIF version

Theorem onsucunifi 43352
Description: The successor to the union of any non-empty, finite subset of ordinals is the union of the successors of the elements. (Contributed by RP, 12-Feb-2025.)
Assertion
Ref Expression
onsucunifi ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → suc 𝐴 = 𝑥𝐴 suc 𝑥)
Distinct variable group:   𝑥,𝐴

Proof of Theorem onsucunifi
StepHypRef Expression
1 ordunifi 9213 . . 3 ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → 𝐴𝐴)
2 suceq 6388 . . . 4 (𝑥 = 𝐴 → suc 𝑥 = suc 𝐴)
32ssiun2s 5007 . . 3 ( 𝐴𝐴 → suc 𝐴 𝑥𝐴 suc 𝑥)
41, 3syl 17 . 2 ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → suc 𝐴 𝑥𝐴 suc 𝑥)
5 ssorduni 7735 . . . . . 6 (𝐴 ⊆ On → Ord 𝐴)
6 ordsuci 7764 . . . . . 6 (Ord 𝐴 → Ord suc 𝐴)
75, 6syl 17 . . . . 5 (𝐴 ⊆ On → Ord suc 𝐴)
8 onsucuni 7783 . . . . . 6 (𝐴 ⊆ On → 𝐴 ⊆ suc 𝐴)
98sselda 3943 . . . . 5 ((𝐴 ⊆ On ∧ 𝑥𝐴) → 𝑥 ∈ suc 𝐴)
10 ordsucss 7773 . . . . . 6 (Ord suc 𝐴 → (𝑥 ∈ suc 𝐴 → suc 𝑥 ⊆ suc 𝐴))
1110imp 406 . . . . 5 ((Ord suc 𝐴𝑥 ∈ suc 𝐴) → suc 𝑥 ⊆ suc 𝐴)
127, 9, 11syl2an2r 685 . . . 4 ((𝐴 ⊆ On ∧ 𝑥𝐴) → suc 𝑥 ⊆ suc 𝐴)
1312iunssd 5009 . . 3 (𝐴 ⊆ On → 𝑥𝐴 suc 𝑥 ⊆ suc 𝐴)
14133ad2ant1 1133 . 2 ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → 𝑥𝐴 suc 𝑥 ⊆ suc 𝐴)
154, 14eqssd 3961 1 ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → suc 𝐴 = 𝑥𝐴 suc 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wss 3911  c0 4292   cuni 4867   ciun 4951  Ord word 6319  Oncon0 6320  suc csuc 6322  Fincfn 8895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-om 7823  df-en 8896  df-fin 8899
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator