| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > onsucunifi | Structured version Visualization version GIF version | ||
| Description: The successor to the union of any non-empty, finite subset of ordinals is the union of the successors of the elements. (Contributed by RP, 12-Feb-2025.) |
| Ref | Expression |
|---|---|
| onsucunifi | ⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → suc ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 suc 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordunifi 9174 | . . 3 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∪ 𝐴 ∈ 𝐴) | |
| 2 | suceq 6374 | . . . 4 ⊢ (𝑥 = ∪ 𝐴 → suc 𝑥 = suc ∪ 𝐴) | |
| 3 | 2 | ssiun2s 4995 | . . 3 ⊢ (∪ 𝐴 ∈ 𝐴 → suc ∪ 𝐴 ⊆ ∪ 𝑥 ∈ 𝐴 suc 𝑥) |
| 4 | 1, 3 | syl 17 | . 2 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → suc ∪ 𝐴 ⊆ ∪ 𝑥 ∈ 𝐴 suc 𝑥) |
| 5 | ssorduni 7712 | . . . . . 6 ⊢ (𝐴 ⊆ On → Ord ∪ 𝐴) | |
| 6 | ordsuci 7741 | . . . . . 6 ⊢ (Ord ∪ 𝐴 → Ord suc ∪ 𝐴) | |
| 7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝐴 ⊆ On → Ord suc ∪ 𝐴) |
| 8 | onsucuni 7758 | . . . . . 6 ⊢ (𝐴 ⊆ On → 𝐴 ⊆ suc ∪ 𝐴) | |
| 9 | 8 | sselda 3929 | . . . . 5 ⊢ ((𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ suc ∪ 𝐴) |
| 10 | ordsucss 7748 | . . . . . 6 ⊢ (Ord suc ∪ 𝐴 → (𝑥 ∈ suc ∪ 𝐴 → suc 𝑥 ⊆ suc ∪ 𝐴)) | |
| 11 | 10 | imp 406 | . . . . 5 ⊢ ((Ord suc ∪ 𝐴 ∧ 𝑥 ∈ suc ∪ 𝐴) → suc 𝑥 ⊆ suc ∪ 𝐴) |
| 12 | 7, 9, 11 | syl2an2r 685 | . . . 4 ⊢ ((𝐴 ⊆ On ∧ 𝑥 ∈ 𝐴) → suc 𝑥 ⊆ suc ∪ 𝐴) |
| 13 | 12 | iunssd 4997 | . . 3 ⊢ (𝐴 ⊆ On → ∪ 𝑥 ∈ 𝐴 suc 𝑥 ⊆ suc ∪ 𝐴) |
| 14 | 13 | 3ad2ant1 1133 | . 2 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∪ 𝑥 ∈ 𝐴 suc 𝑥 ⊆ suc ∪ 𝐴) |
| 15 | 4, 14 | eqssd 3947 | 1 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → suc ∪ 𝐴 = ∪ 𝑥 ∈ 𝐴 suc 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ⊆ wss 3897 ∅c0 4280 ∪ cuni 4856 ∪ ciun 4939 Ord word 6305 Oncon0 6306 suc csuc 6308 Fincfn 8869 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-om 7797 df-en 8870 df-fin 8873 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |