Step | Hyp | Ref
| Expression |
1 | | onfin2 8945 |
. . . . 5
⊢ ω =
(On ∩ Fin) |
2 | | inss2 4160 |
. . . . 5
⊢ (On ∩
Fin) ⊆ Fin |
3 | 1, 2 | eqsstri 3951 |
. . . 4
⊢ ω
⊆ Fin |
4 | | peano2 7711 |
. . . 4
⊢ (𝐴 ∈ ω → suc 𝐴 ∈
ω) |
5 | 3, 4 | sselid 3915 |
. . 3
⊢ (𝐴 ∈ ω → suc 𝐴 ∈ Fin) |
6 | 5 | 3ad2ant3 1133 |
. 2
⊢ ((
[⊊] Or 𝑋
∧ 𝑋 ⊆ Fin ∧
𝐴 ∈ ω) →
suc 𝐴 ∈
Fin) |
7 | 4 | 3ad2ant3 1133 |
. . 3
⊢ ((
[⊊] Or 𝑋
∧ 𝑋 ⊆ Fin ∧
𝐴 ∈ ω) →
suc 𝐴 ∈
ω) |
8 | | breq1 5073 |
. . . . . 6
⊢ (𝑏 = 𝑐 → (𝑏 ≼ 𝐴 ↔ 𝑐 ≼ 𝐴)) |
9 | 8 | elrab 3617 |
. . . . 5
⊢ (𝑐 ∈ {𝑏 ∈ 𝑋 ∣ 𝑏 ≼ 𝐴} ↔ (𝑐 ∈ 𝑋 ∧ 𝑐 ≼ 𝐴)) |
10 | | simprr 769 |
. . . . . . . 8
⊢ (((
[⊊] Or 𝑋
∧ 𝑋 ⊆ Fin ∧
𝐴 ∈ ω) ∧
(𝑐 ∈ 𝑋 ∧ 𝑐 ≼ 𝐴)) → 𝑐 ≼ 𝐴) |
11 | | simpl2 1190 |
. . . . . . . . . . 11
⊢ (((
[⊊] Or 𝑋
∧ 𝑋 ⊆ Fin ∧
𝐴 ∈ ω) ∧
(𝑐 ∈ 𝑋 ∧ 𝑐 ≼ 𝐴)) → 𝑋 ⊆ Fin) |
12 | | simprl 767 |
. . . . . . . . . . 11
⊢ (((
[⊊] Or 𝑋
∧ 𝑋 ⊆ Fin ∧
𝐴 ∈ ω) ∧
(𝑐 ∈ 𝑋 ∧ 𝑐 ≼ 𝐴)) → 𝑐 ∈ 𝑋) |
13 | 11, 12 | sseldd 3918 |
. . . . . . . . . 10
⊢ (((
[⊊] Or 𝑋
∧ 𝑋 ⊆ Fin ∧
𝐴 ∈ ω) ∧
(𝑐 ∈ 𝑋 ∧ 𝑐 ≼ 𝐴)) → 𝑐 ∈ Fin) |
14 | | finnum 9637 |
. . . . . . . . . 10
⊢ (𝑐 ∈ Fin → 𝑐 ∈ dom
card) |
15 | 13, 14 | syl 17 |
. . . . . . . . 9
⊢ (((
[⊊] Or 𝑋
∧ 𝑋 ⊆ Fin ∧
𝐴 ∈ ω) ∧
(𝑐 ∈ 𝑋 ∧ 𝑐 ≼ 𝐴)) → 𝑐 ∈ dom card) |
16 | | simpl3 1191 |
. . . . . . . . . . 11
⊢ (((
[⊊] Or 𝑋
∧ 𝑋 ⊆ Fin ∧
𝐴 ∈ ω) ∧
(𝑐 ∈ 𝑋 ∧ 𝑐 ≼ 𝐴)) → 𝐴 ∈ ω) |
17 | 3, 16 | sselid 3915 |
. . . . . . . . . 10
⊢ (((
[⊊] Or 𝑋
∧ 𝑋 ⊆ Fin ∧
𝐴 ∈ ω) ∧
(𝑐 ∈ 𝑋 ∧ 𝑐 ≼ 𝐴)) → 𝐴 ∈ Fin) |
18 | | finnum 9637 |
. . . . . . . . . 10
⊢ (𝐴 ∈ Fin → 𝐴 ∈ dom
card) |
19 | 17, 18 | syl 17 |
. . . . . . . . 9
⊢ (((
[⊊] Or 𝑋
∧ 𝑋 ⊆ Fin ∧
𝐴 ∈ ω) ∧
(𝑐 ∈ 𝑋 ∧ 𝑐 ≼ 𝐴)) → 𝐴 ∈ dom card) |
20 | | carddom2 9666 |
. . . . . . . . 9
⊢ ((𝑐 ∈ dom card ∧ 𝐴 ∈ dom card) →
((card‘𝑐) ⊆
(card‘𝐴) ↔ 𝑐 ≼ 𝐴)) |
21 | 15, 19, 20 | syl2anc 583 |
. . . . . . . 8
⊢ (((
[⊊] Or 𝑋
∧ 𝑋 ⊆ Fin ∧
𝐴 ∈ ω) ∧
(𝑐 ∈ 𝑋 ∧ 𝑐 ≼ 𝐴)) → ((card‘𝑐) ⊆ (card‘𝐴) ↔ 𝑐 ≼ 𝐴)) |
22 | 10, 21 | mpbird 256 |
. . . . . . 7
⊢ (((
[⊊] Or 𝑋
∧ 𝑋 ⊆ Fin ∧
𝐴 ∈ ω) ∧
(𝑐 ∈ 𝑋 ∧ 𝑐 ≼ 𝐴)) → (card‘𝑐) ⊆ (card‘𝐴)) |
23 | 22 | ex 412 |
. . . . . 6
⊢ ((
[⊊] Or 𝑋
∧ 𝑋 ⊆ Fin ∧
𝐴 ∈ ω) →
((𝑐 ∈ 𝑋 ∧ 𝑐 ≼ 𝐴) → (card‘𝑐) ⊆ (card‘𝐴))) |
24 | | cardnn 9652 |
. . . . . . . . 9
⊢ (𝐴 ∈ ω →
(card‘𝐴) = 𝐴) |
25 | 24 | sseq2d 3949 |
. . . . . . . 8
⊢ (𝐴 ∈ ω →
((card‘𝑐) ⊆
(card‘𝐴) ↔
(card‘𝑐) ⊆
𝐴)) |
26 | | cardon 9633 |
. . . . . . . . 9
⊢
(card‘𝑐)
∈ On |
27 | | nnon 7693 |
. . . . . . . . 9
⊢ (𝐴 ∈ ω → 𝐴 ∈ On) |
28 | | onsssuc 6338 |
. . . . . . . . 9
⊢
(((card‘𝑐)
∈ On ∧ 𝐴 ∈
On) → ((card‘𝑐)
⊆ 𝐴 ↔
(card‘𝑐) ∈ suc
𝐴)) |
29 | 26, 27, 28 | sylancr 586 |
. . . . . . . 8
⊢ (𝐴 ∈ ω →
((card‘𝑐) ⊆
𝐴 ↔ (card‘𝑐) ∈ suc 𝐴)) |
30 | 25, 29 | bitrd 278 |
. . . . . . 7
⊢ (𝐴 ∈ ω →
((card‘𝑐) ⊆
(card‘𝐴) ↔
(card‘𝑐) ∈ suc
𝐴)) |
31 | 30 | 3ad2ant3 1133 |
. . . . . 6
⊢ ((
[⊊] Or 𝑋
∧ 𝑋 ⊆ Fin ∧
𝐴 ∈ ω) →
((card‘𝑐) ⊆
(card‘𝐴) ↔
(card‘𝑐) ∈ suc
𝐴)) |
32 | 23, 31 | sylibd 238 |
. . . . 5
⊢ ((
[⊊] Or 𝑋
∧ 𝑋 ⊆ Fin ∧
𝐴 ∈ ω) →
((𝑐 ∈ 𝑋 ∧ 𝑐 ≼ 𝐴) → (card‘𝑐) ∈ suc 𝐴)) |
33 | 9, 32 | syl5bi 241 |
. . . 4
⊢ ((
[⊊] Or 𝑋
∧ 𝑋 ⊆ Fin ∧
𝐴 ∈ ω) →
(𝑐 ∈ {𝑏 ∈ 𝑋 ∣ 𝑏 ≼ 𝐴} → (card‘𝑐) ∈ suc 𝐴)) |
34 | | elrabi 3611 |
. . . . 5
⊢ (𝑐 ∈ {𝑏 ∈ 𝑋 ∣ 𝑏 ≼ 𝐴} → 𝑐 ∈ 𝑋) |
35 | | elrabi 3611 |
. . . . 5
⊢ (𝑑 ∈ {𝑏 ∈ 𝑋 ∣ 𝑏 ≼ 𝐴} → 𝑑 ∈ 𝑋) |
36 | | ssel 3910 |
. . . . . . . . . . 11
⊢ (𝑋 ⊆ Fin → (𝑐 ∈ 𝑋 → 𝑐 ∈ Fin)) |
37 | | ssel 3910 |
. . . . . . . . . . 11
⊢ (𝑋 ⊆ Fin → (𝑑 ∈ 𝑋 → 𝑑 ∈ Fin)) |
38 | 36, 37 | anim12d 608 |
. . . . . . . . . 10
⊢ (𝑋 ⊆ Fin → ((𝑐 ∈ 𝑋 ∧ 𝑑 ∈ 𝑋) → (𝑐 ∈ Fin ∧ 𝑑 ∈ Fin))) |
39 | 38 | imp 406 |
. . . . . . . . 9
⊢ ((𝑋 ⊆ Fin ∧ (𝑐 ∈ 𝑋 ∧ 𝑑 ∈ 𝑋)) → (𝑐 ∈ Fin ∧ 𝑑 ∈ Fin)) |
40 | 39 | 3ad2antl2 1184 |
. . . . . . . 8
⊢ (((
[⊊] Or 𝑋
∧ 𝑋 ⊆ Fin ∧
𝐴 ∈ ω) ∧
(𝑐 ∈ 𝑋 ∧ 𝑑 ∈ 𝑋)) → (𝑐 ∈ Fin ∧ 𝑑 ∈ Fin)) |
41 | | sorpssi 7560 |
. . . . . . . . 9
⊢ ((
[⊊] Or 𝑋
∧ (𝑐 ∈ 𝑋 ∧ 𝑑 ∈ 𝑋)) → (𝑐 ⊆ 𝑑 ∨ 𝑑 ⊆ 𝑐)) |
42 | 41 | 3ad2antl1 1183 |
. . . . . . . 8
⊢ (((
[⊊] Or 𝑋
∧ 𝑋 ⊆ Fin ∧
𝐴 ∈ ω) ∧
(𝑐 ∈ 𝑋 ∧ 𝑑 ∈ 𝑋)) → (𝑐 ⊆ 𝑑 ∨ 𝑑 ⊆ 𝑐)) |
43 | | finnum 9637 |
. . . . . . . . . . 11
⊢ (𝑑 ∈ Fin → 𝑑 ∈ dom
card) |
44 | | carden2 9676 |
. . . . . . . . . . 11
⊢ ((𝑐 ∈ dom card ∧ 𝑑 ∈ dom card) →
((card‘𝑐) =
(card‘𝑑) ↔ 𝑐 ≈ 𝑑)) |
45 | 14, 43, 44 | syl2an 595 |
. . . . . . . . . 10
⊢ ((𝑐 ∈ Fin ∧ 𝑑 ∈ Fin) →
((card‘𝑐) =
(card‘𝑑) ↔ 𝑐 ≈ 𝑑)) |
46 | 45 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑐 ∈ Fin ∧ 𝑑 ∈ Fin) ∧ (𝑐 ⊆ 𝑑 ∨ 𝑑 ⊆ 𝑐)) → ((card‘𝑐) = (card‘𝑑) ↔ 𝑐 ≈ 𝑑)) |
47 | | fin23lem25 10011 |
. . . . . . . . . . 11
⊢ ((𝑐 ∈ Fin ∧ 𝑑 ∈ Fin ∧ (𝑐 ⊆ 𝑑 ∨ 𝑑 ⊆ 𝑐)) → (𝑐 ≈ 𝑑 ↔ 𝑐 = 𝑑)) |
48 | 47 | 3expa 1116 |
. . . . . . . . . 10
⊢ (((𝑐 ∈ Fin ∧ 𝑑 ∈ Fin) ∧ (𝑐 ⊆ 𝑑 ∨ 𝑑 ⊆ 𝑐)) → (𝑐 ≈ 𝑑 ↔ 𝑐 = 𝑑)) |
49 | 48 | biimpd 228 |
. . . . . . . . 9
⊢ (((𝑐 ∈ Fin ∧ 𝑑 ∈ Fin) ∧ (𝑐 ⊆ 𝑑 ∨ 𝑑 ⊆ 𝑐)) → (𝑐 ≈ 𝑑 → 𝑐 = 𝑑)) |
50 | 46, 49 | sylbid 239 |
. . . . . . . 8
⊢ (((𝑐 ∈ Fin ∧ 𝑑 ∈ Fin) ∧ (𝑐 ⊆ 𝑑 ∨ 𝑑 ⊆ 𝑐)) → ((card‘𝑐) = (card‘𝑑) → 𝑐 = 𝑑)) |
51 | 40, 42, 50 | syl2anc 583 |
. . . . . . 7
⊢ (((
[⊊] Or 𝑋
∧ 𝑋 ⊆ Fin ∧
𝐴 ∈ ω) ∧
(𝑐 ∈ 𝑋 ∧ 𝑑 ∈ 𝑋)) → ((card‘𝑐) = (card‘𝑑) → 𝑐 = 𝑑)) |
52 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑐 = 𝑑 → (card‘𝑐) = (card‘𝑑)) |
53 | 51, 52 | impbid1 224 |
. . . . . 6
⊢ (((
[⊊] Or 𝑋
∧ 𝑋 ⊆ Fin ∧
𝐴 ∈ ω) ∧
(𝑐 ∈ 𝑋 ∧ 𝑑 ∈ 𝑋)) → ((card‘𝑐) = (card‘𝑑) ↔ 𝑐 = 𝑑)) |
54 | 53 | ex 412 |
. . . . 5
⊢ ((
[⊊] Or 𝑋
∧ 𝑋 ⊆ Fin ∧
𝐴 ∈ ω) →
((𝑐 ∈ 𝑋 ∧ 𝑑 ∈ 𝑋) → ((card‘𝑐) = (card‘𝑑) ↔ 𝑐 = 𝑑))) |
55 | 34, 35, 54 | syl2ani 606 |
. . . 4
⊢ ((
[⊊] Or 𝑋
∧ 𝑋 ⊆ Fin ∧
𝐴 ∈ ω) →
((𝑐 ∈ {𝑏 ∈ 𝑋 ∣ 𝑏 ≼ 𝐴} ∧ 𝑑 ∈ {𝑏 ∈ 𝑋 ∣ 𝑏 ≼ 𝐴}) → ((card‘𝑐) = (card‘𝑑) ↔ 𝑐 = 𝑑))) |
56 | 33, 55 | dom2d 8736 |
. . 3
⊢ ((
[⊊] Or 𝑋
∧ 𝑋 ⊆ Fin ∧
𝐴 ∈ ω) →
(suc 𝐴 ∈ ω
→ {𝑏 ∈ 𝑋 ∣ 𝑏 ≼ 𝐴} ≼ suc 𝐴)) |
57 | 7, 56 | mpd 15 |
. 2
⊢ ((
[⊊] Or 𝑋
∧ 𝑋 ⊆ Fin ∧
𝐴 ∈ ω) →
{𝑏 ∈ 𝑋 ∣ 𝑏 ≼ 𝐴} ≼ suc 𝐴) |
58 | | domfi 8935 |
. 2
⊢ ((suc
𝐴 ∈ Fin ∧ {𝑏 ∈ 𝑋 ∣ 𝑏 ≼ 𝐴} ≼ suc 𝐴) → {𝑏 ∈ 𝑋 ∣ 𝑏 ≼ 𝐴} ∈ Fin) |
59 | 6, 57, 58 | syl2anc 583 |
1
⊢ ((
[⊊] Or 𝑋
∧ 𝑋 ⊆ Fin ∧
𝐴 ∈ ω) →
{𝑏 ∈ 𝑋 ∣ 𝑏 ≼ 𝐴} ∈ Fin) |