MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin1a2lem9 Structured version   Visualization version   GIF version

Theorem fin1a2lem9 10477
Description: Lemma for fin1a2 10484. In a chain of finite sets, initial segments are finite. (Contributed by Stefan O'Rear, 8-Nov-2014.)
Assertion
Ref Expression
fin1a2lem9 (( [] Or 𝑋𝑋 ⊆ Fin ∧ 𝐴 ∈ ω) → {𝑏𝑋𝑏𝐴} ∈ Fin)
Distinct variable groups:   𝐴,𝑏   𝑋,𝑏

Proof of Theorem fin1a2lem9
Dummy variables 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 onfin2 9294 . . . . 5 ω = (On ∩ Fin)
2 inss2 4259 . . . . 5 (On ∩ Fin) ⊆ Fin
31, 2eqsstri 4043 . . . 4 ω ⊆ Fin
4 peano2 7929 . . . 4 (𝐴 ∈ ω → suc 𝐴 ∈ ω)
53, 4sselid 4006 . . 3 (𝐴 ∈ ω → suc 𝐴 ∈ Fin)
653ad2ant3 1135 . 2 (( [] Or 𝑋𝑋 ⊆ Fin ∧ 𝐴 ∈ ω) → suc 𝐴 ∈ Fin)
743ad2ant3 1135 . . 3 (( [] Or 𝑋𝑋 ⊆ Fin ∧ 𝐴 ∈ ω) → suc 𝐴 ∈ ω)
8 breq1 5169 . . . . . 6 (𝑏 = 𝑐 → (𝑏𝐴𝑐𝐴))
98elrab 3708 . . . . 5 (𝑐 ∈ {𝑏𝑋𝑏𝐴} ↔ (𝑐𝑋𝑐𝐴))
10 simprr 772 . . . . . . . 8 ((( [] Or 𝑋𝑋 ⊆ Fin ∧ 𝐴 ∈ ω) ∧ (𝑐𝑋𝑐𝐴)) → 𝑐𝐴)
11 simpl2 1192 . . . . . . . . . . 11 ((( [] Or 𝑋𝑋 ⊆ Fin ∧ 𝐴 ∈ ω) ∧ (𝑐𝑋𝑐𝐴)) → 𝑋 ⊆ Fin)
12 simprl 770 . . . . . . . . . . 11 ((( [] Or 𝑋𝑋 ⊆ Fin ∧ 𝐴 ∈ ω) ∧ (𝑐𝑋𝑐𝐴)) → 𝑐𝑋)
1311, 12sseldd 4009 . . . . . . . . . 10 ((( [] Or 𝑋𝑋 ⊆ Fin ∧ 𝐴 ∈ ω) ∧ (𝑐𝑋𝑐𝐴)) → 𝑐 ∈ Fin)
14 finnum 10017 . . . . . . . . . 10 (𝑐 ∈ Fin → 𝑐 ∈ dom card)
1513, 14syl 17 . . . . . . . . 9 ((( [] Or 𝑋𝑋 ⊆ Fin ∧ 𝐴 ∈ ω) ∧ (𝑐𝑋𝑐𝐴)) → 𝑐 ∈ dom card)
16 simpl3 1193 . . . . . . . . . . 11 ((( [] Or 𝑋𝑋 ⊆ Fin ∧ 𝐴 ∈ ω) ∧ (𝑐𝑋𝑐𝐴)) → 𝐴 ∈ ω)
173, 16sselid 4006 . . . . . . . . . 10 ((( [] Or 𝑋𝑋 ⊆ Fin ∧ 𝐴 ∈ ω) ∧ (𝑐𝑋𝑐𝐴)) → 𝐴 ∈ Fin)
18 finnum 10017 . . . . . . . . . 10 (𝐴 ∈ Fin → 𝐴 ∈ dom card)
1917, 18syl 17 . . . . . . . . 9 ((( [] Or 𝑋𝑋 ⊆ Fin ∧ 𝐴 ∈ ω) ∧ (𝑐𝑋𝑐𝐴)) → 𝐴 ∈ dom card)
20 carddom2 10046 . . . . . . . . 9 ((𝑐 ∈ dom card ∧ 𝐴 ∈ dom card) → ((card‘𝑐) ⊆ (card‘𝐴) ↔ 𝑐𝐴))
2115, 19, 20syl2anc 583 . . . . . . . 8 ((( [] Or 𝑋𝑋 ⊆ Fin ∧ 𝐴 ∈ ω) ∧ (𝑐𝑋𝑐𝐴)) → ((card‘𝑐) ⊆ (card‘𝐴) ↔ 𝑐𝐴))
2210, 21mpbird 257 . . . . . . 7 ((( [] Or 𝑋𝑋 ⊆ Fin ∧ 𝐴 ∈ ω) ∧ (𝑐𝑋𝑐𝐴)) → (card‘𝑐) ⊆ (card‘𝐴))
2322ex 412 . . . . . 6 (( [] Or 𝑋𝑋 ⊆ Fin ∧ 𝐴 ∈ ω) → ((𝑐𝑋𝑐𝐴) → (card‘𝑐) ⊆ (card‘𝐴)))
24 cardnn 10032 . . . . . . . . 9 (𝐴 ∈ ω → (card‘𝐴) = 𝐴)
2524sseq2d 4041 . . . . . . . 8 (𝐴 ∈ ω → ((card‘𝑐) ⊆ (card‘𝐴) ↔ (card‘𝑐) ⊆ 𝐴))
26 cardon 10013 . . . . . . . . 9 (card‘𝑐) ∈ On
27 nnon 7909 . . . . . . . . 9 (𝐴 ∈ ω → 𝐴 ∈ On)
28 onsssuc 6485 . . . . . . . . 9 (((card‘𝑐) ∈ On ∧ 𝐴 ∈ On) → ((card‘𝑐) ⊆ 𝐴 ↔ (card‘𝑐) ∈ suc 𝐴))
2926, 27, 28sylancr 586 . . . . . . . 8 (𝐴 ∈ ω → ((card‘𝑐) ⊆ 𝐴 ↔ (card‘𝑐) ∈ suc 𝐴))
3025, 29bitrd 279 . . . . . . 7 (𝐴 ∈ ω → ((card‘𝑐) ⊆ (card‘𝐴) ↔ (card‘𝑐) ∈ suc 𝐴))
31303ad2ant3 1135 . . . . . 6 (( [] Or 𝑋𝑋 ⊆ Fin ∧ 𝐴 ∈ ω) → ((card‘𝑐) ⊆ (card‘𝐴) ↔ (card‘𝑐) ∈ suc 𝐴))
3223, 31sylibd 239 . . . . 5 (( [] Or 𝑋𝑋 ⊆ Fin ∧ 𝐴 ∈ ω) → ((𝑐𝑋𝑐𝐴) → (card‘𝑐) ∈ suc 𝐴))
339, 32biimtrid 242 . . . 4 (( [] Or 𝑋𝑋 ⊆ Fin ∧ 𝐴 ∈ ω) → (𝑐 ∈ {𝑏𝑋𝑏𝐴} → (card‘𝑐) ∈ suc 𝐴))
34 elrabi 3703 . . . . 5 (𝑐 ∈ {𝑏𝑋𝑏𝐴} → 𝑐𝑋)
35 elrabi 3703 . . . . 5 (𝑑 ∈ {𝑏𝑋𝑏𝐴} → 𝑑𝑋)
36 ssel 4002 . . . . . . . . . . 11 (𝑋 ⊆ Fin → (𝑐𝑋𝑐 ∈ Fin))
37 ssel 4002 . . . . . . . . . . 11 (𝑋 ⊆ Fin → (𝑑𝑋𝑑 ∈ Fin))
3836, 37anim12d 608 . . . . . . . . . 10 (𝑋 ⊆ Fin → ((𝑐𝑋𝑑𝑋) → (𝑐 ∈ Fin ∧ 𝑑 ∈ Fin)))
3938imp 406 . . . . . . . . 9 ((𝑋 ⊆ Fin ∧ (𝑐𝑋𝑑𝑋)) → (𝑐 ∈ Fin ∧ 𝑑 ∈ Fin))
40393ad2antl2 1186 . . . . . . . 8 ((( [] Or 𝑋𝑋 ⊆ Fin ∧ 𝐴 ∈ ω) ∧ (𝑐𝑋𝑑𝑋)) → (𝑐 ∈ Fin ∧ 𝑑 ∈ Fin))
41 sorpssi 7764 . . . . . . . . 9 (( [] Or 𝑋 ∧ (𝑐𝑋𝑑𝑋)) → (𝑐𝑑𝑑𝑐))
42413ad2antl1 1185 . . . . . . . 8 ((( [] Or 𝑋𝑋 ⊆ Fin ∧ 𝐴 ∈ ω) ∧ (𝑐𝑋𝑑𝑋)) → (𝑐𝑑𝑑𝑐))
43 finnum 10017 . . . . . . . . . . 11 (𝑑 ∈ Fin → 𝑑 ∈ dom card)
44 carden2 10056 . . . . . . . . . . 11 ((𝑐 ∈ dom card ∧ 𝑑 ∈ dom card) → ((card‘𝑐) = (card‘𝑑) ↔ 𝑐𝑑))
4514, 43, 44syl2an 595 . . . . . . . . . 10 ((𝑐 ∈ Fin ∧ 𝑑 ∈ Fin) → ((card‘𝑐) = (card‘𝑑) ↔ 𝑐𝑑))
4645adantr 480 . . . . . . . . 9 (((𝑐 ∈ Fin ∧ 𝑑 ∈ Fin) ∧ (𝑐𝑑𝑑𝑐)) → ((card‘𝑐) = (card‘𝑑) ↔ 𝑐𝑑))
47 fin23lem25 10393 . . . . . . . . . . 11 ((𝑐 ∈ Fin ∧ 𝑑 ∈ Fin ∧ (𝑐𝑑𝑑𝑐)) → (𝑐𝑑𝑐 = 𝑑))
48473expa 1118 . . . . . . . . . 10 (((𝑐 ∈ Fin ∧ 𝑑 ∈ Fin) ∧ (𝑐𝑑𝑑𝑐)) → (𝑐𝑑𝑐 = 𝑑))
4948biimpd 229 . . . . . . . . 9 (((𝑐 ∈ Fin ∧ 𝑑 ∈ Fin) ∧ (𝑐𝑑𝑑𝑐)) → (𝑐𝑑𝑐 = 𝑑))
5046, 49sylbid 240 . . . . . . . 8 (((𝑐 ∈ Fin ∧ 𝑑 ∈ Fin) ∧ (𝑐𝑑𝑑𝑐)) → ((card‘𝑐) = (card‘𝑑) → 𝑐 = 𝑑))
5140, 42, 50syl2anc 583 . . . . . . 7 ((( [] Or 𝑋𝑋 ⊆ Fin ∧ 𝐴 ∈ ω) ∧ (𝑐𝑋𝑑𝑋)) → ((card‘𝑐) = (card‘𝑑) → 𝑐 = 𝑑))
52 fveq2 6920 . . . . . . 7 (𝑐 = 𝑑 → (card‘𝑐) = (card‘𝑑))
5351, 52impbid1 225 . . . . . 6 ((( [] Or 𝑋𝑋 ⊆ Fin ∧ 𝐴 ∈ ω) ∧ (𝑐𝑋𝑑𝑋)) → ((card‘𝑐) = (card‘𝑑) ↔ 𝑐 = 𝑑))
5453ex 412 . . . . 5 (( [] Or 𝑋𝑋 ⊆ Fin ∧ 𝐴 ∈ ω) → ((𝑐𝑋𝑑𝑋) → ((card‘𝑐) = (card‘𝑑) ↔ 𝑐 = 𝑑)))
5534, 35, 54syl2ani 606 . . . 4 (( [] Or 𝑋𝑋 ⊆ Fin ∧ 𝐴 ∈ ω) → ((𝑐 ∈ {𝑏𝑋𝑏𝐴} ∧ 𝑑 ∈ {𝑏𝑋𝑏𝐴}) → ((card‘𝑐) = (card‘𝑑) ↔ 𝑐 = 𝑑)))
5633, 55dom2d 9053 . . 3 (( [] Or 𝑋𝑋 ⊆ Fin ∧ 𝐴 ∈ ω) → (suc 𝐴 ∈ ω → {𝑏𝑋𝑏𝐴} ≼ suc 𝐴))
577, 56mpd 15 . 2 (( [] Or 𝑋𝑋 ⊆ Fin ∧ 𝐴 ∈ ω) → {𝑏𝑋𝑏𝐴} ≼ suc 𝐴)
58 domfi 9255 . 2 ((suc 𝐴 ∈ Fin ∧ {𝑏𝑋𝑏𝐴} ≼ suc 𝐴) → {𝑏𝑋𝑏𝐴} ∈ Fin)
596, 57, 58syl2anc 583 1 (( [] Or 𝑋𝑋 ⊆ Fin ∧ 𝐴 ∈ ω) → {𝑏𝑋𝑏𝐴} ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  {crab 3443  cin 3975  wss 3976   class class class wbr 5166   Or wor 5606  dom cdm 5700  Oncon0 6395  suc csuc 6397  cfv 6573   [] crpss 7757  ωcom 7903  cen 9000  cdom 9001  Fincfn 9003  cardccrd 10004
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-rpss 7758  df-om 7904  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008
This theorem is referenced by:  fin1a2lem11  10479
  Copyright terms: Public domain W3C validator