MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin1a2lem9 Structured version   Visualization version   GIF version

Theorem fin1a2lem9 9819
Description: Lemma for fin1a2 9826. In a chain of finite sets, initial segments are finite. (Contributed by Stefan O'Rear, 8-Nov-2014.)
Assertion
Ref Expression
fin1a2lem9 (( [] Or 𝑋𝑋 ⊆ Fin ∧ 𝐴 ∈ ω) → {𝑏𝑋𝑏𝐴} ∈ Fin)
Distinct variable groups:   𝐴,𝑏   𝑋,𝑏

Proof of Theorem fin1a2lem9
Dummy variables 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 onfin2 8695 . . . . 5 ω = (On ∩ Fin)
2 inss2 4156 . . . . 5 (On ∩ Fin) ⊆ Fin
31, 2eqsstri 3949 . . . 4 ω ⊆ Fin
4 peano2 7582 . . . 4 (𝐴 ∈ ω → suc 𝐴 ∈ ω)
53, 4sseldi 3913 . . 3 (𝐴 ∈ ω → suc 𝐴 ∈ Fin)
653ad2ant3 1132 . 2 (( [] Or 𝑋𝑋 ⊆ Fin ∧ 𝐴 ∈ ω) → suc 𝐴 ∈ Fin)
743ad2ant3 1132 . . 3 (( [] Or 𝑋𝑋 ⊆ Fin ∧ 𝐴 ∈ ω) → suc 𝐴 ∈ ω)
8 breq1 5033 . . . . . 6 (𝑏 = 𝑐 → (𝑏𝐴𝑐𝐴))
98elrab 3628 . . . . 5 (𝑐 ∈ {𝑏𝑋𝑏𝐴} ↔ (𝑐𝑋𝑐𝐴))
10 simprr 772 . . . . . . . 8 ((( [] Or 𝑋𝑋 ⊆ Fin ∧ 𝐴 ∈ ω) ∧ (𝑐𝑋𝑐𝐴)) → 𝑐𝐴)
11 simpl2 1189 . . . . . . . . . . 11 ((( [] Or 𝑋𝑋 ⊆ Fin ∧ 𝐴 ∈ ω) ∧ (𝑐𝑋𝑐𝐴)) → 𝑋 ⊆ Fin)
12 simprl 770 . . . . . . . . . . 11 ((( [] Or 𝑋𝑋 ⊆ Fin ∧ 𝐴 ∈ ω) ∧ (𝑐𝑋𝑐𝐴)) → 𝑐𝑋)
1311, 12sseldd 3916 . . . . . . . . . 10 ((( [] Or 𝑋𝑋 ⊆ Fin ∧ 𝐴 ∈ ω) ∧ (𝑐𝑋𝑐𝐴)) → 𝑐 ∈ Fin)
14 finnum 9361 . . . . . . . . . 10 (𝑐 ∈ Fin → 𝑐 ∈ dom card)
1513, 14syl 17 . . . . . . . . 9 ((( [] Or 𝑋𝑋 ⊆ Fin ∧ 𝐴 ∈ ω) ∧ (𝑐𝑋𝑐𝐴)) → 𝑐 ∈ dom card)
16 simpl3 1190 . . . . . . . . . . 11 ((( [] Or 𝑋𝑋 ⊆ Fin ∧ 𝐴 ∈ ω) ∧ (𝑐𝑋𝑐𝐴)) → 𝐴 ∈ ω)
173, 16sseldi 3913 . . . . . . . . . 10 ((( [] Or 𝑋𝑋 ⊆ Fin ∧ 𝐴 ∈ ω) ∧ (𝑐𝑋𝑐𝐴)) → 𝐴 ∈ Fin)
18 finnum 9361 . . . . . . . . . 10 (𝐴 ∈ Fin → 𝐴 ∈ dom card)
1917, 18syl 17 . . . . . . . . 9 ((( [] Or 𝑋𝑋 ⊆ Fin ∧ 𝐴 ∈ ω) ∧ (𝑐𝑋𝑐𝐴)) → 𝐴 ∈ dom card)
20 carddom2 9390 . . . . . . . . 9 ((𝑐 ∈ dom card ∧ 𝐴 ∈ dom card) → ((card‘𝑐) ⊆ (card‘𝐴) ↔ 𝑐𝐴))
2115, 19, 20syl2anc 587 . . . . . . . 8 ((( [] Or 𝑋𝑋 ⊆ Fin ∧ 𝐴 ∈ ω) ∧ (𝑐𝑋𝑐𝐴)) → ((card‘𝑐) ⊆ (card‘𝐴) ↔ 𝑐𝐴))
2210, 21mpbird 260 . . . . . . 7 ((( [] Or 𝑋𝑋 ⊆ Fin ∧ 𝐴 ∈ ω) ∧ (𝑐𝑋𝑐𝐴)) → (card‘𝑐) ⊆ (card‘𝐴))
2322ex 416 . . . . . 6 (( [] Or 𝑋𝑋 ⊆ Fin ∧ 𝐴 ∈ ω) → ((𝑐𝑋𝑐𝐴) → (card‘𝑐) ⊆ (card‘𝐴)))
24 cardnn 9376 . . . . . . . . 9 (𝐴 ∈ ω → (card‘𝐴) = 𝐴)
2524sseq2d 3947 . . . . . . . 8 (𝐴 ∈ ω → ((card‘𝑐) ⊆ (card‘𝐴) ↔ (card‘𝑐) ⊆ 𝐴))
26 cardon 9357 . . . . . . . . 9 (card‘𝑐) ∈ On
27 nnon 7566 . . . . . . . . 9 (𝐴 ∈ ω → 𝐴 ∈ On)
28 onsssuc 6246 . . . . . . . . 9 (((card‘𝑐) ∈ On ∧ 𝐴 ∈ On) → ((card‘𝑐) ⊆ 𝐴 ↔ (card‘𝑐) ∈ suc 𝐴))
2926, 27, 28sylancr 590 . . . . . . . 8 (𝐴 ∈ ω → ((card‘𝑐) ⊆ 𝐴 ↔ (card‘𝑐) ∈ suc 𝐴))
3025, 29bitrd 282 . . . . . . 7 (𝐴 ∈ ω → ((card‘𝑐) ⊆ (card‘𝐴) ↔ (card‘𝑐) ∈ suc 𝐴))
31303ad2ant3 1132 . . . . . 6 (( [] Or 𝑋𝑋 ⊆ Fin ∧ 𝐴 ∈ ω) → ((card‘𝑐) ⊆ (card‘𝐴) ↔ (card‘𝑐) ∈ suc 𝐴))
3223, 31sylibd 242 . . . . 5 (( [] Or 𝑋𝑋 ⊆ Fin ∧ 𝐴 ∈ ω) → ((𝑐𝑋𝑐𝐴) → (card‘𝑐) ∈ suc 𝐴))
339, 32syl5bi 245 . . . 4 (( [] Or 𝑋𝑋 ⊆ Fin ∧ 𝐴 ∈ ω) → (𝑐 ∈ {𝑏𝑋𝑏𝐴} → (card‘𝑐) ∈ suc 𝐴))
34 elrabi 3623 . . . . 5 (𝑐 ∈ {𝑏𝑋𝑏𝐴} → 𝑐𝑋)
35 elrabi 3623 . . . . 5 (𝑑 ∈ {𝑏𝑋𝑏𝐴} → 𝑑𝑋)
36 ssel 3908 . . . . . . . . . . 11 (𝑋 ⊆ Fin → (𝑐𝑋𝑐 ∈ Fin))
37 ssel 3908 . . . . . . . . . . 11 (𝑋 ⊆ Fin → (𝑑𝑋𝑑 ∈ Fin))
3836, 37anim12d 611 . . . . . . . . . 10 (𝑋 ⊆ Fin → ((𝑐𝑋𝑑𝑋) → (𝑐 ∈ Fin ∧ 𝑑 ∈ Fin)))
3938imp 410 . . . . . . . . 9 ((𝑋 ⊆ Fin ∧ (𝑐𝑋𝑑𝑋)) → (𝑐 ∈ Fin ∧ 𝑑 ∈ Fin))
40393ad2antl2 1183 . . . . . . . 8 ((( [] Or 𝑋𝑋 ⊆ Fin ∧ 𝐴 ∈ ω) ∧ (𝑐𝑋𝑑𝑋)) → (𝑐 ∈ Fin ∧ 𝑑 ∈ Fin))
41 sorpssi 7435 . . . . . . . . 9 (( [] Or 𝑋 ∧ (𝑐𝑋𝑑𝑋)) → (𝑐𝑑𝑑𝑐))
42413ad2antl1 1182 . . . . . . . 8 ((( [] Or 𝑋𝑋 ⊆ Fin ∧ 𝐴 ∈ ω) ∧ (𝑐𝑋𝑑𝑋)) → (𝑐𝑑𝑑𝑐))
43 finnum 9361 . . . . . . . . . . 11 (𝑑 ∈ Fin → 𝑑 ∈ dom card)
44 carden2 9400 . . . . . . . . . . 11 ((𝑐 ∈ dom card ∧ 𝑑 ∈ dom card) → ((card‘𝑐) = (card‘𝑑) ↔ 𝑐𝑑))
4514, 43, 44syl2an 598 . . . . . . . . . 10 ((𝑐 ∈ Fin ∧ 𝑑 ∈ Fin) → ((card‘𝑐) = (card‘𝑑) ↔ 𝑐𝑑))
4645adantr 484 . . . . . . . . 9 (((𝑐 ∈ Fin ∧ 𝑑 ∈ Fin) ∧ (𝑐𝑑𝑑𝑐)) → ((card‘𝑐) = (card‘𝑑) ↔ 𝑐𝑑))
47 fin23lem25 9735 . . . . . . . . . . 11 ((𝑐 ∈ Fin ∧ 𝑑 ∈ Fin ∧ (𝑐𝑑𝑑𝑐)) → (𝑐𝑑𝑐 = 𝑑))
48473expa 1115 . . . . . . . . . 10 (((𝑐 ∈ Fin ∧ 𝑑 ∈ Fin) ∧ (𝑐𝑑𝑑𝑐)) → (𝑐𝑑𝑐 = 𝑑))
4948biimpd 232 . . . . . . . . 9 (((𝑐 ∈ Fin ∧ 𝑑 ∈ Fin) ∧ (𝑐𝑑𝑑𝑐)) → (𝑐𝑑𝑐 = 𝑑))
5046, 49sylbid 243 . . . . . . . 8 (((𝑐 ∈ Fin ∧ 𝑑 ∈ Fin) ∧ (𝑐𝑑𝑑𝑐)) → ((card‘𝑐) = (card‘𝑑) → 𝑐 = 𝑑))
5140, 42, 50syl2anc 587 . . . . . . 7 ((( [] Or 𝑋𝑋 ⊆ Fin ∧ 𝐴 ∈ ω) ∧ (𝑐𝑋𝑑𝑋)) → ((card‘𝑐) = (card‘𝑑) → 𝑐 = 𝑑))
52 fveq2 6645 . . . . . . 7 (𝑐 = 𝑑 → (card‘𝑐) = (card‘𝑑))
5351, 52impbid1 228 . . . . . 6 ((( [] Or 𝑋𝑋 ⊆ Fin ∧ 𝐴 ∈ ω) ∧ (𝑐𝑋𝑑𝑋)) → ((card‘𝑐) = (card‘𝑑) ↔ 𝑐 = 𝑑))
5453ex 416 . . . . 5 (( [] Or 𝑋𝑋 ⊆ Fin ∧ 𝐴 ∈ ω) → ((𝑐𝑋𝑑𝑋) → ((card‘𝑐) = (card‘𝑑) ↔ 𝑐 = 𝑑)))
5534, 35, 54syl2ani 609 . . . 4 (( [] Or 𝑋𝑋 ⊆ Fin ∧ 𝐴 ∈ ω) → ((𝑐 ∈ {𝑏𝑋𝑏𝐴} ∧ 𝑑 ∈ {𝑏𝑋𝑏𝐴}) → ((card‘𝑐) = (card‘𝑑) ↔ 𝑐 = 𝑑)))
5633, 55dom2d 8533 . . 3 (( [] Or 𝑋𝑋 ⊆ Fin ∧ 𝐴 ∈ ω) → (suc 𝐴 ∈ ω → {𝑏𝑋𝑏𝐴} ≼ suc 𝐴))
577, 56mpd 15 . 2 (( [] Or 𝑋𝑋 ⊆ Fin ∧ 𝐴 ∈ ω) → {𝑏𝑋𝑏𝐴} ≼ suc 𝐴)
58 domfi 8723 . 2 ((suc 𝐴 ∈ Fin ∧ {𝑏𝑋𝑏𝐴} ≼ suc 𝐴) → {𝑏𝑋𝑏𝐴} ∈ Fin)
596, 57, 58syl2anc 587 1 (( [] Or 𝑋𝑋 ⊆ Fin ∧ 𝐴 ∈ ω) → {𝑏𝑋𝑏𝐴} ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2111  {crab 3110  cin 3880  wss 3881   class class class wbr 5030   Or wor 5437  dom cdm 5519  Oncon0 6159  suc csuc 6161  cfv 6324   [] crpss 7428  ωcom 7560  cen 8489  cdom 8490  Fincfn 8492  cardccrd 9348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-rpss 7429  df-om 7561  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-card 9352
This theorem is referenced by:  fin1a2lem11  9821
  Copyright terms: Public domain W3C validator