MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rex2dom Structured version   Visualization version   GIF version

Theorem rex2dom 9137
Description: A set that has at least 2 different members dominates ordinal 2. (Contributed by BTernaryTau, 30-Dec-2024.)
Assertion
Ref Expression
rex2dom ((𝐴𝑉 ∧ ∃𝑥𝐴𝑦𝐴 𝑥𝑦) → 2o𝐴)
Distinct variable group:   𝑥,𝐴,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem rex2dom
StepHypRef Expression
1 elex 3457 . . 3 (𝐴𝑉𝐴 ∈ V)
2 prssi 4773 . . . . . 6 ((𝑥𝐴𝑦𝐴) → {𝑥, 𝑦} ⊆ 𝐴)
3 df2o3 8393 . . . . . . . 8 2o = {∅, 1o}
4 0ex 5245 . . . . . . . . . 10 ∅ ∈ V
54a1i 11 . . . . . . . . 9 (𝑥𝑦 → ∅ ∈ V)
6 1oex 8395 . . . . . . . . . 10 1o ∈ V
76a1i 11 . . . . . . . . 9 (𝑥𝑦 → 1o ∈ V)
8 vex 3440 . . . . . . . . . 10 𝑥 ∈ V
98a1i 11 . . . . . . . . 9 (𝑥𝑦𝑥 ∈ V)
10 vex 3440 . . . . . . . . . 10 𝑦 ∈ V
1110a1i 11 . . . . . . . . 9 (𝑥𝑦𝑦 ∈ V)
12 1n0 8403 . . . . . . . . . . 11 1o ≠ ∅
1312necomi 2982 . . . . . . . . . 10 ∅ ≠ 1o
1413a1i 11 . . . . . . . . 9 (𝑥𝑦 → ∅ ≠ 1o)
15 id 22 . . . . . . . . 9 (𝑥𝑦𝑥𝑦)
165, 7, 9, 11, 14, 15en2prd 8969 . . . . . . . 8 (𝑥𝑦 → {∅, 1o} ≈ {𝑥, 𝑦})
173, 16eqbrtrid 5126 . . . . . . 7 (𝑥𝑦 → 2o ≈ {𝑥, 𝑦})
18 endom 8901 . . . . . . 7 (2o ≈ {𝑥, 𝑦} → 2o ≼ {𝑥, 𝑦})
1917, 18syl 17 . . . . . 6 (𝑥𝑦 → 2o ≼ {𝑥, 𝑦})
20 domssr 8921 . . . . . . 7 ((𝐴 ∈ V ∧ {𝑥, 𝑦} ⊆ 𝐴 ∧ 2o ≼ {𝑥, 𝑦}) → 2o𝐴)
21203expib 1122 . . . . . 6 (𝐴 ∈ V → (({𝑥, 𝑦} ⊆ 𝐴 ∧ 2o ≼ {𝑥, 𝑦}) → 2o𝐴))
222, 19, 21syl2ani 607 . . . . 5 (𝐴 ∈ V → (((𝑥𝐴𝑦𝐴) ∧ 𝑥𝑦) → 2o𝐴))
2322expd 415 . . . 4 (𝐴 ∈ V → ((𝑥𝐴𝑦𝐴) → (𝑥𝑦 → 2o𝐴)))
2423rexlimdvv 3188 . . 3 (𝐴 ∈ V → (∃𝑥𝐴𝑦𝐴 𝑥𝑦 → 2o𝐴))
251, 24syl 17 . 2 (𝐴𝑉 → (∃𝑥𝐴𝑦𝐴 𝑥𝑦 → 2o𝐴))
2625imp 406 1 ((𝐴𝑉 ∧ ∃𝑥𝐴𝑦𝐴 𝑥𝑦) → 2o𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2111  wne 2928  wrex 3056  Vcvv 3436  wss 3902  c0 4283  {cpr 4578   class class class wbr 5091  1oc1o 8378  2oc2o 8379  cen 8866  cdom 8867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-suc 6312  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-1o 8385  df-2o 8386  df-en 8870  df-dom 8871
This theorem is referenced by:  1sdom2dom  9138  1sdom  9139
  Copyright terms: Public domain W3C validator