MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rex2dom Structured version   Visualization version   GIF version

Theorem rex2dom 9089
Description: A set that has at least 2 different members dominates ordinal 2. (Contributed by BTernaryTau, 30-Dec-2024.)
Assertion
Ref Expression
rex2dom ((𝐴𝑉 ∧ ∃𝑥𝐴𝑦𝐴 𝑥𝑦) → 2o𝐴)
Distinct variable group:   𝑥,𝐴,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem rex2dom
StepHypRef Expression
1 elex 3458 . . 3 (𝐴𝑉𝐴 ∈ V)
2 prssi 4765 . . . . . 6 ((𝑥𝐴𝑦𝐴) → {𝑥, 𝑦} ⊆ 𝐴)
3 df2o3 8353 . . . . . . . 8 2o = {∅, 1o}
4 0ex 5245 . . . . . . . . . 10 ∅ ∈ V
54a1i 11 . . . . . . . . 9 (𝑥𝑦 → ∅ ∈ V)
6 1oex 8355 . . . . . . . . . 10 1o ∈ V
76a1i 11 . . . . . . . . 9 (𝑥𝑦 → 1o ∈ V)
8 vex 3444 . . . . . . . . . 10 𝑥 ∈ V
98a1i 11 . . . . . . . . 9 (𝑥𝑦𝑥 ∈ V)
10 vex 3444 . . . . . . . . . 10 𝑦 ∈ V
1110a1i 11 . . . . . . . . 9 (𝑥𝑦𝑦 ∈ V)
12 1n0 8367 . . . . . . . . . . 11 1o ≠ ∅
1312necomi 2995 . . . . . . . . . 10 ∅ ≠ 1o
1413a1i 11 . . . . . . . . 9 (𝑥𝑦 → ∅ ≠ 1o)
15 id 22 . . . . . . . . 9 (𝑥𝑦𝑥𝑦)
165, 7, 9, 11, 14, 15en2prd 8891 . . . . . . . 8 (𝑥𝑦 → {∅, 1o} ≈ {𝑥, 𝑦})
173, 16eqbrtrid 5121 . . . . . . 7 (𝑥𝑦 → 2o ≈ {𝑥, 𝑦})
18 endom 8818 . . . . . . 7 (2o ≈ {𝑥, 𝑦} → 2o ≼ {𝑥, 𝑦})
1917, 18syl 17 . . . . . 6 (𝑥𝑦 → 2o ≼ {𝑥, 𝑦})
20 domssr 8838 . . . . . . 7 ((𝐴 ∈ V ∧ {𝑥, 𝑦} ⊆ 𝐴 ∧ 2o ≼ {𝑥, 𝑦}) → 2o𝐴)
21203expib 1121 . . . . . 6 (𝐴 ∈ V → (({𝑥, 𝑦} ⊆ 𝐴 ∧ 2o ≼ {𝑥, 𝑦}) → 2o𝐴))
222, 19, 21syl2ani 607 . . . . 5 (𝐴 ∈ V → (((𝑥𝐴𝑦𝐴) ∧ 𝑥𝑦) → 2o𝐴))
2322expd 416 . . . 4 (𝐴 ∈ V → ((𝑥𝐴𝑦𝐴) → (𝑥𝑦 → 2o𝐴)))
2423rexlimdvv 3200 . . 3 (𝐴 ∈ V → (∃𝑥𝐴𝑦𝐴 𝑥𝑦 → 2o𝐴))
251, 24syl 17 . 2 (𝐴𝑉 → (∃𝑥𝐴𝑦𝐴 𝑥𝑦 → 2o𝐴))
2625imp 407 1 ((𝐴𝑉 ∧ ∃𝑥𝐴𝑦𝐴 𝑥𝑦) → 2o𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2105  wne 2940  wrex 3070  Vcvv 3440  wss 3896  c0 4266  {cpr 4572   class class class wbr 5086  1oc1o 8338  2oc2o 8339  cen 8779  cdom 8780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-12 2170  ax-ext 2707  ax-sep 5237  ax-nul 5244  ax-pr 5366
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3442  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-nul 4267  df-if 4471  df-sn 4571  df-pr 4573  df-op 4577  df-br 5087  df-opab 5149  df-id 5506  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-suc 6294  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-1o 8345  df-2o 8346  df-en 8783  df-dom 8784
This theorem is referenced by:  1sdom2dom  9090  1sdom  9091
  Copyright terms: Public domain W3C validator