| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rex2dom | Structured version Visualization version GIF version | ||
| Description: A set that has at least 2 different members dominates ordinal 2. (Contributed by BTernaryTau, 30-Dec-2024.) |
| Ref | Expression |
|---|---|
| rex2dom | ⊢ ((𝐴 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≠ 𝑦) → 2o ≼ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3480 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 2 | prssi 4797 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → {𝑥, 𝑦} ⊆ 𝐴) | |
| 3 | df2o3 8488 | . . . . . . . 8 ⊢ 2o = {∅, 1o} | |
| 4 | 0ex 5277 | . . . . . . . . . 10 ⊢ ∅ ∈ V | |
| 5 | 4 | a1i 11 | . . . . . . . . 9 ⊢ (𝑥 ≠ 𝑦 → ∅ ∈ V) |
| 6 | 1oex 8490 | . . . . . . . . . 10 ⊢ 1o ∈ V | |
| 7 | 6 | a1i 11 | . . . . . . . . 9 ⊢ (𝑥 ≠ 𝑦 → 1o ∈ V) |
| 8 | vex 3463 | . . . . . . . . . 10 ⊢ 𝑥 ∈ V | |
| 9 | 8 | a1i 11 | . . . . . . . . 9 ⊢ (𝑥 ≠ 𝑦 → 𝑥 ∈ V) |
| 10 | vex 3463 | . . . . . . . . . 10 ⊢ 𝑦 ∈ V | |
| 11 | 10 | a1i 11 | . . . . . . . . 9 ⊢ (𝑥 ≠ 𝑦 → 𝑦 ∈ V) |
| 12 | 1n0 8500 | . . . . . . . . . . 11 ⊢ 1o ≠ ∅ | |
| 13 | 12 | necomi 2986 | . . . . . . . . . 10 ⊢ ∅ ≠ 1o |
| 14 | 13 | a1i 11 | . . . . . . . . 9 ⊢ (𝑥 ≠ 𝑦 → ∅ ≠ 1o) |
| 15 | id 22 | . . . . . . . . 9 ⊢ (𝑥 ≠ 𝑦 → 𝑥 ≠ 𝑦) | |
| 16 | 5, 7, 9, 11, 14, 15 | en2prd 9062 | . . . . . . . 8 ⊢ (𝑥 ≠ 𝑦 → {∅, 1o} ≈ {𝑥, 𝑦}) |
| 17 | 3, 16 | eqbrtrid 5154 | . . . . . . 7 ⊢ (𝑥 ≠ 𝑦 → 2o ≈ {𝑥, 𝑦}) |
| 18 | endom 8993 | . . . . . . 7 ⊢ (2o ≈ {𝑥, 𝑦} → 2o ≼ {𝑥, 𝑦}) | |
| 19 | 17, 18 | syl 17 | . . . . . 6 ⊢ (𝑥 ≠ 𝑦 → 2o ≼ {𝑥, 𝑦}) |
| 20 | domssr 9013 | . . . . . . 7 ⊢ ((𝐴 ∈ V ∧ {𝑥, 𝑦} ⊆ 𝐴 ∧ 2o ≼ {𝑥, 𝑦}) → 2o ≼ 𝐴) | |
| 21 | 20 | 3expib 1122 | . . . . . 6 ⊢ (𝐴 ∈ V → (({𝑥, 𝑦} ⊆ 𝐴 ∧ 2o ≼ {𝑥, 𝑦}) → 2o ≼ 𝐴)) |
| 22 | 2, 19, 21 | syl2ani 607 | . . . . 5 ⊢ (𝐴 ∈ V → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ≠ 𝑦) → 2o ≼ 𝐴)) |
| 23 | 22 | expd 415 | . . . 4 ⊢ (𝐴 ∈ V → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 ≠ 𝑦 → 2o ≼ 𝐴))) |
| 24 | 23 | rexlimdvv 3197 | . . 3 ⊢ (𝐴 ∈ V → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≠ 𝑦 → 2o ≼ 𝐴)) |
| 25 | 1, 24 | syl 17 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≠ 𝑦 → 2o ≼ 𝐴)) |
| 26 | 25 | imp 406 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≠ 𝑦) → 2o ≼ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ≠ wne 2932 ∃wrex 3060 Vcvv 3459 ⊆ wss 3926 ∅c0 4308 {cpr 4603 class class class wbr 5119 1oc1o 8473 2oc2o 8474 ≈ cen 8956 ≼ cdom 8957 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-suc 6358 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-1o 8480 df-2o 8481 df-en 8960 df-dom 8961 |
| This theorem is referenced by: 1sdom2dom 9255 1sdom 9256 |
| Copyright terms: Public domain | W3C validator |