![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rex2dom | Structured version Visualization version GIF version |
Description: A set that has at least 2 different members dominates ordinal 2. (Contributed by BTernaryTau, 30-Dec-2024.) |
Ref | Expression |
---|---|
rex2dom | ⊢ ((𝐴 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≠ 𝑦) → 2o ≼ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3480 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
2 | prssi 4826 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → {𝑥, 𝑦} ⊆ 𝐴) | |
3 | df2o3 8495 | . . . . . . . 8 ⊢ 2o = {∅, 1o} | |
4 | 0ex 5308 | . . . . . . . . . 10 ⊢ ∅ ∈ V | |
5 | 4 | a1i 11 | . . . . . . . . 9 ⊢ (𝑥 ≠ 𝑦 → ∅ ∈ V) |
6 | 1oex 8497 | . . . . . . . . . 10 ⊢ 1o ∈ V | |
7 | 6 | a1i 11 | . . . . . . . . 9 ⊢ (𝑥 ≠ 𝑦 → 1o ∈ V) |
8 | vex 3465 | . . . . . . . . . 10 ⊢ 𝑥 ∈ V | |
9 | 8 | a1i 11 | . . . . . . . . 9 ⊢ (𝑥 ≠ 𝑦 → 𝑥 ∈ V) |
10 | vex 3465 | . . . . . . . . . 10 ⊢ 𝑦 ∈ V | |
11 | 10 | a1i 11 | . . . . . . . . 9 ⊢ (𝑥 ≠ 𝑦 → 𝑦 ∈ V) |
12 | 1n0 8509 | . . . . . . . . . . 11 ⊢ 1o ≠ ∅ | |
13 | 12 | necomi 2984 | . . . . . . . . . 10 ⊢ ∅ ≠ 1o |
14 | 13 | a1i 11 | . . . . . . . . 9 ⊢ (𝑥 ≠ 𝑦 → ∅ ≠ 1o) |
15 | id 22 | . . . . . . . . 9 ⊢ (𝑥 ≠ 𝑦 → 𝑥 ≠ 𝑦) | |
16 | 5, 7, 9, 11, 14, 15 | en2prd 9076 | . . . . . . . 8 ⊢ (𝑥 ≠ 𝑦 → {∅, 1o} ≈ {𝑥, 𝑦}) |
17 | 3, 16 | eqbrtrid 5184 | . . . . . . 7 ⊢ (𝑥 ≠ 𝑦 → 2o ≈ {𝑥, 𝑦}) |
18 | endom 9000 | . . . . . . 7 ⊢ (2o ≈ {𝑥, 𝑦} → 2o ≼ {𝑥, 𝑦}) | |
19 | 17, 18 | syl 17 | . . . . . 6 ⊢ (𝑥 ≠ 𝑦 → 2o ≼ {𝑥, 𝑦}) |
20 | domssr 9020 | . . . . . . 7 ⊢ ((𝐴 ∈ V ∧ {𝑥, 𝑦} ⊆ 𝐴 ∧ 2o ≼ {𝑥, 𝑦}) → 2o ≼ 𝐴) | |
21 | 20 | 3expib 1119 | . . . . . 6 ⊢ (𝐴 ∈ V → (({𝑥, 𝑦} ⊆ 𝐴 ∧ 2o ≼ {𝑥, 𝑦}) → 2o ≼ 𝐴)) |
22 | 2, 19, 21 | syl2ani 605 | . . . . 5 ⊢ (𝐴 ∈ V → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ≠ 𝑦) → 2o ≼ 𝐴)) |
23 | 22 | expd 414 | . . . 4 ⊢ (𝐴 ∈ V → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 ≠ 𝑦 → 2o ≼ 𝐴))) |
24 | 23 | rexlimdvv 3200 | . . 3 ⊢ (𝐴 ∈ V → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≠ 𝑦 → 2o ≼ 𝐴)) |
25 | 1, 24 | syl 17 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≠ 𝑦 → 2o ≼ 𝐴)) |
26 | 25 | imp 405 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≠ 𝑦) → 2o ≼ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∈ wcel 2098 ≠ wne 2929 ∃wrex 3059 Vcvv 3461 ⊆ wss 3944 ∅c0 4322 {cpr 4632 class class class wbr 5149 1oc1o 8480 2oc2o 8481 ≈ cen 8961 ≼ cdom 8962 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-ne 2930 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5150 df-opab 5212 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-suc 6377 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-1o 8487 df-2o 8488 df-en 8965 df-dom 8966 |
This theorem is referenced by: 1sdom2dom 9275 1sdom 9276 |
Copyright terms: Public domain | W3C validator |