Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rex2dom | Structured version Visualization version GIF version |
Description: A set that has at least 2 different members dominates ordinal 2. (Contributed by BTernaryTau, 30-Dec-2024.) |
Ref | Expression |
---|---|
rex2dom | ⊢ ((𝐴 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≠ 𝑦) → 2o ≼ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3458 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
2 | prssi 4765 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → {𝑥, 𝑦} ⊆ 𝐴) | |
3 | df2o3 8353 | . . . . . . . 8 ⊢ 2o = {∅, 1o} | |
4 | 0ex 5245 | . . . . . . . . . 10 ⊢ ∅ ∈ V | |
5 | 4 | a1i 11 | . . . . . . . . 9 ⊢ (𝑥 ≠ 𝑦 → ∅ ∈ V) |
6 | 1oex 8355 | . . . . . . . . . 10 ⊢ 1o ∈ V | |
7 | 6 | a1i 11 | . . . . . . . . 9 ⊢ (𝑥 ≠ 𝑦 → 1o ∈ V) |
8 | vex 3444 | . . . . . . . . . 10 ⊢ 𝑥 ∈ V | |
9 | 8 | a1i 11 | . . . . . . . . 9 ⊢ (𝑥 ≠ 𝑦 → 𝑥 ∈ V) |
10 | vex 3444 | . . . . . . . . . 10 ⊢ 𝑦 ∈ V | |
11 | 10 | a1i 11 | . . . . . . . . 9 ⊢ (𝑥 ≠ 𝑦 → 𝑦 ∈ V) |
12 | 1n0 8367 | . . . . . . . . . . 11 ⊢ 1o ≠ ∅ | |
13 | 12 | necomi 2995 | . . . . . . . . . 10 ⊢ ∅ ≠ 1o |
14 | 13 | a1i 11 | . . . . . . . . 9 ⊢ (𝑥 ≠ 𝑦 → ∅ ≠ 1o) |
15 | id 22 | . . . . . . . . 9 ⊢ (𝑥 ≠ 𝑦 → 𝑥 ≠ 𝑦) | |
16 | 5, 7, 9, 11, 14, 15 | en2prd 8891 | . . . . . . . 8 ⊢ (𝑥 ≠ 𝑦 → {∅, 1o} ≈ {𝑥, 𝑦}) |
17 | 3, 16 | eqbrtrid 5121 | . . . . . . 7 ⊢ (𝑥 ≠ 𝑦 → 2o ≈ {𝑥, 𝑦}) |
18 | endom 8818 | . . . . . . 7 ⊢ (2o ≈ {𝑥, 𝑦} → 2o ≼ {𝑥, 𝑦}) | |
19 | 17, 18 | syl 17 | . . . . . 6 ⊢ (𝑥 ≠ 𝑦 → 2o ≼ {𝑥, 𝑦}) |
20 | domssr 8838 | . . . . . . 7 ⊢ ((𝐴 ∈ V ∧ {𝑥, 𝑦} ⊆ 𝐴 ∧ 2o ≼ {𝑥, 𝑦}) → 2o ≼ 𝐴) | |
21 | 20 | 3expib 1121 | . . . . . 6 ⊢ (𝐴 ∈ V → (({𝑥, 𝑦} ⊆ 𝐴 ∧ 2o ≼ {𝑥, 𝑦}) → 2o ≼ 𝐴)) |
22 | 2, 19, 21 | syl2ani 607 | . . . . 5 ⊢ (𝐴 ∈ V → (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) ∧ 𝑥 ≠ 𝑦) → 2o ≼ 𝐴)) |
23 | 22 | expd 416 | . . . 4 ⊢ (𝐴 ∈ V → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 ≠ 𝑦 → 2o ≼ 𝐴))) |
24 | 23 | rexlimdvv 3200 | . . 3 ⊢ (𝐴 ∈ V → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≠ 𝑦 → 2o ≼ 𝐴)) |
25 | 1, 24 | syl 17 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≠ 𝑦 → 2o ≼ 𝐴)) |
26 | 25 | imp 407 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≠ 𝑦) → 2o ≼ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2105 ≠ wne 2940 ∃wrex 3070 Vcvv 3440 ⊆ wss 3896 ∅c0 4266 {cpr 4572 class class class wbr 5086 1oc1o 8338 2oc2o 8339 ≈ cen 8779 ≼ cdom 8780 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-12 2170 ax-ext 2707 ax-sep 5237 ax-nul 5244 ax-pr 5366 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3442 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4471 df-sn 4571 df-pr 4573 df-op 4577 df-br 5087 df-opab 5149 df-id 5506 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-suc 6294 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-1o 8345 df-2o 8346 df-en 8783 df-dom 8784 |
This theorem is referenced by: 1sdom2dom 9090 1sdom 9091 |
Copyright terms: Public domain | W3C validator |