MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mgmidmo Structured version   Visualization version   GIF version

Theorem mgmidmo 18575
Description: A two-sided identity element is unique (if it exists) in any magma. (Contributed by Mario Carneiro, 7-Dec-2014.) (Revised by NM, 17-Jun-2017.)
Assertion
Ref Expression
mgmidmo ∃*𝑢𝐵𝑥𝐵 ((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥)
Distinct variable groups:   𝑥,𝑢,𝐵   𝑢, + ,𝑥

Proof of Theorem mgmidmo
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 simpl 483 . . . . 5 (((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) → (𝑢 + 𝑥) = 𝑥)
21ralimi 3083 . . . 4 (∀𝑥𝐵 ((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) → ∀𝑥𝐵 (𝑢 + 𝑥) = 𝑥)
3 simpr 485 . . . . 5 (((𝑤 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑤) = 𝑥) → (𝑥 + 𝑤) = 𝑥)
43ralimi 3083 . . . 4 (∀𝑥𝐵 ((𝑤 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑤) = 𝑥) → ∀𝑥𝐵 (𝑥 + 𝑤) = 𝑥)
5 oveq1 7412 . . . . . . . . 9 (𝑥 = 𝑢 → (𝑥 + 𝑤) = (𝑢 + 𝑤))
6 id 22 . . . . . . . . 9 (𝑥 = 𝑢𝑥 = 𝑢)
75, 6eqeq12d 2748 . . . . . . . 8 (𝑥 = 𝑢 → ((𝑥 + 𝑤) = 𝑥 ↔ (𝑢 + 𝑤) = 𝑢))
87rspcva 3610 . . . . . . 7 ((𝑢𝐵 ∧ ∀𝑥𝐵 (𝑥 + 𝑤) = 𝑥) → (𝑢 + 𝑤) = 𝑢)
9 oveq2 7413 . . . . . . . . 9 (𝑥 = 𝑤 → (𝑢 + 𝑥) = (𝑢 + 𝑤))
10 id 22 . . . . . . . . 9 (𝑥 = 𝑤𝑥 = 𝑤)
119, 10eqeq12d 2748 . . . . . . . 8 (𝑥 = 𝑤 → ((𝑢 + 𝑥) = 𝑥 ↔ (𝑢 + 𝑤) = 𝑤))
1211rspcva 3610 . . . . . . 7 ((𝑤𝐵 ∧ ∀𝑥𝐵 (𝑢 + 𝑥) = 𝑥) → (𝑢 + 𝑤) = 𝑤)
138, 12sylan9req 2793 . . . . . 6 (((𝑢𝐵 ∧ ∀𝑥𝐵 (𝑥 + 𝑤) = 𝑥) ∧ (𝑤𝐵 ∧ ∀𝑥𝐵 (𝑢 + 𝑥) = 𝑥)) → 𝑢 = 𝑤)
1413an42s 659 . . . . 5 (((𝑢𝐵𝑤𝐵) ∧ (∀𝑥𝐵 (𝑢 + 𝑥) = 𝑥 ∧ ∀𝑥𝐵 (𝑥 + 𝑤) = 𝑥)) → 𝑢 = 𝑤)
1514ex 413 . . . 4 ((𝑢𝐵𝑤𝐵) → ((∀𝑥𝐵 (𝑢 + 𝑥) = 𝑥 ∧ ∀𝑥𝐵 (𝑥 + 𝑤) = 𝑥) → 𝑢 = 𝑤))
162, 4, 15syl2ani 607 . . 3 ((𝑢𝐵𝑤𝐵) → ((∀𝑥𝐵 ((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) ∧ ∀𝑥𝐵 ((𝑤 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑤) = 𝑥)) → 𝑢 = 𝑤))
1716rgen2 3197 . 2 𝑢𝐵𝑤𝐵 ((∀𝑥𝐵 ((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) ∧ ∀𝑥𝐵 ((𝑤 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑤) = 𝑥)) → 𝑢 = 𝑤)
18 oveq1 7412 . . . . 5 (𝑢 = 𝑤 → (𝑢 + 𝑥) = (𝑤 + 𝑥))
1918eqeq1d 2734 . . . 4 (𝑢 = 𝑤 → ((𝑢 + 𝑥) = 𝑥 ↔ (𝑤 + 𝑥) = 𝑥))
2019ovanraleqv 7429 . . 3 (𝑢 = 𝑤 → (∀𝑥𝐵 ((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) ↔ ∀𝑥𝐵 ((𝑤 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑤) = 𝑥)))
2120rmo4 3725 . 2 (∃*𝑢𝐵𝑥𝐵 ((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) ↔ ∀𝑢𝐵𝑤𝐵 ((∀𝑥𝐵 ((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) ∧ ∀𝑥𝐵 ((𝑤 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑤) = 𝑥)) → 𝑢 = 𝑤))
2217, 21mpbir 230 1 ∃*𝑢𝐵𝑥𝐵 ((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wral 3061  ∃*wrmo 3375  (class class class)co 7405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-mo 2534  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rmo 3376  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-iota 6492  df-fv 6548  df-ov 7408
This theorem is referenced by:  ismgmid  18580  mndideu  18632
  Copyright terms: Public domain W3C validator