| Step | Hyp | Ref
| Expression |
| 1 | | simpl 482 |
. . . . 5
⊢ (((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) → (𝑢 + 𝑥) = 𝑥) |
| 2 | 1 | ralimi 3083 |
. . . 4
⊢
(∀𝑥 ∈
𝐵 ((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) → ∀𝑥 ∈ 𝐵 (𝑢 + 𝑥) = 𝑥) |
| 3 | | simpr 484 |
. . . . 5
⊢ (((𝑤 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑤) = 𝑥) → (𝑥 + 𝑤) = 𝑥) |
| 4 | 3 | ralimi 3083 |
. . . 4
⊢
(∀𝑥 ∈
𝐵 ((𝑤 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑤) = 𝑥) → ∀𝑥 ∈ 𝐵 (𝑥 + 𝑤) = 𝑥) |
| 5 | | oveq1 7438 |
. . . . . . . . 9
⊢ (𝑥 = 𝑢 → (𝑥 + 𝑤) = (𝑢 + 𝑤)) |
| 6 | | id 22 |
. . . . . . . . 9
⊢ (𝑥 = 𝑢 → 𝑥 = 𝑢) |
| 7 | 5, 6 | eqeq12d 2753 |
. . . . . . . 8
⊢ (𝑥 = 𝑢 → ((𝑥 + 𝑤) = 𝑥 ↔ (𝑢 + 𝑤) = 𝑢)) |
| 8 | 7 | rspcva 3620 |
. . . . . . 7
⊢ ((𝑢 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 (𝑥 + 𝑤) = 𝑥) → (𝑢 + 𝑤) = 𝑢) |
| 9 | | oveq2 7439 |
. . . . . . . . 9
⊢ (𝑥 = 𝑤 → (𝑢 + 𝑥) = (𝑢 + 𝑤)) |
| 10 | | id 22 |
. . . . . . . . 9
⊢ (𝑥 = 𝑤 → 𝑥 = 𝑤) |
| 11 | 9, 10 | eqeq12d 2753 |
. . . . . . . 8
⊢ (𝑥 = 𝑤 → ((𝑢 + 𝑥) = 𝑥 ↔ (𝑢 + 𝑤) = 𝑤)) |
| 12 | 11 | rspcva 3620 |
. . . . . . 7
⊢ ((𝑤 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 (𝑢 + 𝑥) = 𝑥) → (𝑢 + 𝑤) = 𝑤) |
| 13 | 8, 12 | sylan9req 2798 |
. . . . . 6
⊢ (((𝑢 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 (𝑥 + 𝑤) = 𝑥) ∧ (𝑤 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 (𝑢 + 𝑥) = 𝑥)) → 𝑢 = 𝑤) |
| 14 | 13 | an42s 661 |
. . . . 5
⊢ (((𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ∧ (∀𝑥 ∈ 𝐵 (𝑢 + 𝑥) = 𝑥 ∧ ∀𝑥 ∈ 𝐵 (𝑥 + 𝑤) = 𝑥)) → 𝑢 = 𝑤) |
| 15 | 14 | ex 412 |
. . . 4
⊢ ((𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) → ((∀𝑥 ∈ 𝐵 (𝑢 + 𝑥) = 𝑥 ∧ ∀𝑥 ∈ 𝐵 (𝑥 + 𝑤) = 𝑥) → 𝑢 = 𝑤)) |
| 16 | 2, 4, 15 | syl2ani 607 |
. . 3
⊢ ((𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) → ((∀𝑥 ∈ 𝐵 ((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) ∧ ∀𝑥 ∈ 𝐵 ((𝑤 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑤) = 𝑥)) → 𝑢 = 𝑤)) |
| 17 | 16 | rgen2 3199 |
. 2
⊢
∀𝑢 ∈
𝐵 ∀𝑤 ∈ 𝐵 ((∀𝑥 ∈ 𝐵 ((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) ∧ ∀𝑥 ∈ 𝐵 ((𝑤 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑤) = 𝑥)) → 𝑢 = 𝑤) |
| 18 | | oveq1 7438 |
. . . . 5
⊢ (𝑢 = 𝑤 → (𝑢 + 𝑥) = (𝑤 + 𝑥)) |
| 19 | 18 | eqeq1d 2739 |
. . . 4
⊢ (𝑢 = 𝑤 → ((𝑢 + 𝑥) = 𝑥 ↔ (𝑤 + 𝑥) = 𝑥)) |
| 20 | 19 | ovanraleqv 7455 |
. . 3
⊢ (𝑢 = 𝑤 → (∀𝑥 ∈ 𝐵 ((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) ↔ ∀𝑥 ∈ 𝐵 ((𝑤 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑤) = 𝑥))) |
| 21 | 20 | rmo4 3736 |
. 2
⊢
(∃*𝑢 ∈
𝐵 ∀𝑥 ∈ 𝐵 ((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) ↔ ∀𝑢 ∈ 𝐵 ∀𝑤 ∈ 𝐵 ((∀𝑥 ∈ 𝐵 ((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) ∧ ∀𝑥 ∈ 𝐵 ((𝑤 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑤) = 𝑥)) → 𝑢 = 𝑤)) |
| 22 | 17, 21 | mpbir 231 |
1
⊢
∃*𝑢 ∈
𝐵 ∀𝑥 ∈ 𝐵 ((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) |