MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mgmidmo Structured version   Visualization version   GIF version

Theorem mgmidmo 18627
Description: A two-sided identity element is unique (if it exists) in any magma. (Contributed by Mario Carneiro, 7-Dec-2014.) (Revised by NM, 17-Jun-2017.)
Assertion
Ref Expression
mgmidmo ∃*𝑢𝐵𝑥𝐵 ((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥)
Distinct variable groups:   𝑥,𝑢,𝐵   𝑢, + ,𝑥

Proof of Theorem mgmidmo
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 simpl 481 . . . . 5 (((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) → (𝑢 + 𝑥) = 𝑥)
21ralimi 3080 . . . 4 (∀𝑥𝐵 ((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) → ∀𝑥𝐵 (𝑢 + 𝑥) = 𝑥)
3 simpr 483 . . . . 5 (((𝑤 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑤) = 𝑥) → (𝑥 + 𝑤) = 𝑥)
43ralimi 3080 . . . 4 (∀𝑥𝐵 ((𝑤 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑤) = 𝑥) → ∀𝑥𝐵 (𝑥 + 𝑤) = 𝑥)
5 oveq1 7433 . . . . . . . . 9 (𝑥 = 𝑢 → (𝑥 + 𝑤) = (𝑢 + 𝑤))
6 id 22 . . . . . . . . 9 (𝑥 = 𝑢𝑥 = 𝑢)
75, 6eqeq12d 2744 . . . . . . . 8 (𝑥 = 𝑢 → ((𝑥 + 𝑤) = 𝑥 ↔ (𝑢 + 𝑤) = 𝑢))
87rspcva 3609 . . . . . . 7 ((𝑢𝐵 ∧ ∀𝑥𝐵 (𝑥 + 𝑤) = 𝑥) → (𝑢 + 𝑤) = 𝑢)
9 oveq2 7434 . . . . . . . . 9 (𝑥 = 𝑤 → (𝑢 + 𝑥) = (𝑢 + 𝑤))
10 id 22 . . . . . . . . 9 (𝑥 = 𝑤𝑥 = 𝑤)
119, 10eqeq12d 2744 . . . . . . . 8 (𝑥 = 𝑤 → ((𝑢 + 𝑥) = 𝑥 ↔ (𝑢 + 𝑤) = 𝑤))
1211rspcva 3609 . . . . . . 7 ((𝑤𝐵 ∧ ∀𝑥𝐵 (𝑢 + 𝑥) = 𝑥) → (𝑢 + 𝑤) = 𝑤)
138, 12sylan9req 2789 . . . . . 6 (((𝑢𝐵 ∧ ∀𝑥𝐵 (𝑥 + 𝑤) = 𝑥) ∧ (𝑤𝐵 ∧ ∀𝑥𝐵 (𝑢 + 𝑥) = 𝑥)) → 𝑢 = 𝑤)
1413an42s 659 . . . . 5 (((𝑢𝐵𝑤𝐵) ∧ (∀𝑥𝐵 (𝑢 + 𝑥) = 𝑥 ∧ ∀𝑥𝐵 (𝑥 + 𝑤) = 𝑥)) → 𝑢 = 𝑤)
1514ex 411 . . . 4 ((𝑢𝐵𝑤𝐵) → ((∀𝑥𝐵 (𝑢 + 𝑥) = 𝑥 ∧ ∀𝑥𝐵 (𝑥 + 𝑤) = 𝑥) → 𝑢 = 𝑤))
162, 4, 15syl2ani 605 . . 3 ((𝑢𝐵𝑤𝐵) → ((∀𝑥𝐵 ((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) ∧ ∀𝑥𝐵 ((𝑤 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑤) = 𝑥)) → 𝑢 = 𝑤))
1716rgen2 3195 . 2 𝑢𝐵𝑤𝐵 ((∀𝑥𝐵 ((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) ∧ ∀𝑥𝐵 ((𝑤 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑤) = 𝑥)) → 𝑢 = 𝑤)
18 oveq1 7433 . . . . 5 (𝑢 = 𝑤 → (𝑢 + 𝑥) = (𝑤 + 𝑥))
1918eqeq1d 2730 . . . 4 (𝑢 = 𝑤 → ((𝑢 + 𝑥) = 𝑥 ↔ (𝑤 + 𝑥) = 𝑥))
2019ovanraleqv 7450 . . 3 (𝑢 = 𝑤 → (∀𝑥𝐵 ((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) ↔ ∀𝑥𝐵 ((𝑤 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑤) = 𝑥)))
2120rmo4 3727 . 2 (∃*𝑢𝐵𝑥𝐵 ((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) ↔ ∀𝑢𝐵𝑤𝐵 ((∀𝑥𝐵 ((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥) ∧ ∀𝑥𝐵 ((𝑤 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑤) = 𝑥)) → 𝑢 = 𝑤))
2217, 21mpbir 230 1 ∃*𝑢𝐵𝑥𝐵 ((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  wral 3058  ∃*wrmo 3373  (class class class)co 7426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-mo 2529  df-clab 2706  df-cleq 2720  df-clel 2806  df-ral 3059  df-rmo 3374  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-iota 6505  df-fv 6561  df-ov 7429
This theorem is referenced by:  ismgmid  18632  mndideu  18712
  Copyright terms: Public domain W3C validator