MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psss Structured version   Visualization version   GIF version

Theorem psss 18279
Description: Any subset of a partially ordered set is partially ordered. (Contributed by FL, 24-Jan-2010.)
Assertion
Ref Expression
psss (𝑅 ∈ PosetRel → (𝑅 ∩ (𝐴 × 𝐴)) ∈ PosetRel)

Proof of Theorem psss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 4167 . . 3 (𝑅 ∩ (𝐴 × 𝐴)) ⊆ 𝑅
2 psrel 18268 . . 3 (𝑅 ∈ PosetRel → Rel 𝑅)
3 relss 5690 . . 3 ((𝑅 ∩ (𝐴 × 𝐴)) ⊆ 𝑅 → (Rel 𝑅 → Rel (𝑅 ∩ (𝐴 × 𝐴))))
41, 2, 3mpsyl 68 . 2 (𝑅 ∈ PosetRel → Rel (𝑅 ∩ (𝐴 × 𝐴)))
5 pstr2 18270 . . 3 (𝑅 ∈ PosetRel → (𝑅𝑅) ⊆ 𝑅)
6 trinxp 6027 . . 3 ((𝑅𝑅) ⊆ 𝑅 → ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) ⊆ (𝑅 ∩ (𝐴 × 𝐴)))
75, 6syl 17 . 2 (𝑅 ∈ PosetRel → ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) ⊆ (𝑅 ∩ (𝐴 × 𝐴)))
8 uniin 4870 . . . . . 6 (𝑅 ∩ (𝐴 × 𝐴)) ⊆ ( 𝑅 (𝐴 × 𝐴))
98unissi 4853 . . . . 5 (𝑅 ∩ (𝐴 × 𝐴)) ⊆ ( 𝑅 (𝐴 × 𝐴))
10 uniin 4870 . . . . 5 ( 𝑅 (𝐴 × 𝐴)) ⊆ ( 𝑅 (𝐴 × 𝐴))
119, 10sstri 3934 . . . 4 (𝑅 ∩ (𝐴 × 𝐴)) ⊆ ( 𝑅 (𝐴 × 𝐴))
12 elin 3907 . . . . . 6 (𝑥 ∈ ( 𝑅 (𝐴 × 𝐴)) ↔ (𝑥 𝑅𝑥 (𝐴 × 𝐴)))
13 unixpid 6184 . . . . . . . . 9 (𝐴 × 𝐴) = 𝐴
1413eleq2i 2831 . . . . . . . 8 (𝑥 (𝐴 × 𝐴) ↔ 𝑥𝐴)
15 simprr 769 . . . . . . . . . 10 ((𝑅 ∈ PosetRel ∧ (𝑥 𝑅𝑥𝐴)) → 𝑥𝐴)
16 psdmrn 18272 . . . . . . . . . . . . . . 15 (𝑅 ∈ PosetRel → (dom 𝑅 = 𝑅 ∧ ran 𝑅 = 𝑅))
1716simpld 494 . . . . . . . . . . . . . 14 (𝑅 ∈ PosetRel → dom 𝑅 = 𝑅)
1817eleq2d 2825 . . . . . . . . . . . . 13 (𝑅 ∈ PosetRel → (𝑥 ∈ dom 𝑅𝑥 𝑅))
1918biimpar 477 . . . . . . . . . . . 12 ((𝑅 ∈ PosetRel ∧ 𝑥 𝑅) → 𝑥 ∈ dom 𝑅)
20 eqid 2739 . . . . . . . . . . . . 13 dom 𝑅 = dom 𝑅
2120psref 18273 . . . . . . . . . . . 12 ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ dom 𝑅) → 𝑥𝑅𝑥)
2219, 21syldan 590 . . . . . . . . . . 11 ((𝑅 ∈ PosetRel ∧ 𝑥 𝑅) → 𝑥𝑅𝑥)
2322adantrr 713 . . . . . . . . . 10 ((𝑅 ∈ PosetRel ∧ (𝑥 𝑅𝑥𝐴)) → 𝑥𝑅𝑥)
24 brinxp2 5663 . . . . . . . . . 10 (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥 ↔ ((𝑥𝐴𝑥𝐴) ∧ 𝑥𝑅𝑥))
2515, 15, 23, 24syl21anbrc 1342 . . . . . . . . 9 ((𝑅 ∈ PosetRel ∧ (𝑥 𝑅𝑥𝐴)) → 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥)
2625expr 456 . . . . . . . 8 ((𝑅 ∈ PosetRel ∧ 𝑥 𝑅) → (𝑥𝐴𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥))
2714, 26syl5bi 241 . . . . . . 7 ((𝑅 ∈ PosetRel ∧ 𝑥 𝑅) → (𝑥 (𝐴 × 𝐴) → 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥))
2827expimpd 453 . . . . . 6 (𝑅 ∈ PosetRel → ((𝑥 𝑅𝑥 (𝐴 × 𝐴)) → 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥))
2912, 28syl5bi 241 . . . . 5 (𝑅 ∈ PosetRel → (𝑥 ∈ ( 𝑅 (𝐴 × 𝐴)) → 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥))
3029ralrimiv 3108 . . . 4 (𝑅 ∈ PosetRel → ∀𝑥 ∈ ( 𝑅 (𝐴 × 𝐴))𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥)
31 ssralv 3991 . . . 4 ( (𝑅 ∩ (𝐴 × 𝐴)) ⊆ ( 𝑅 (𝐴 × 𝐴)) → (∀𝑥 ∈ ( 𝑅 (𝐴 × 𝐴))𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥 → ∀𝑥 (𝑅 ∩ (𝐴 × 𝐴))𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥))
3211, 30, 31mpsyl 68 . . 3 (𝑅 ∈ PosetRel → ∀𝑥 (𝑅 ∩ (𝐴 × 𝐴))𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥)
331ssbri 5123 . . . . 5 (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦𝑥𝑅𝑦)
341ssbri 5123 . . . . 5 (𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥𝑦𝑅𝑥)
35 psasym 18275 . . . . . 6 ((𝑅 ∈ PosetRel ∧ 𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦)
36353expib 1120 . . . . 5 (𝑅 ∈ PosetRel → ((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦))
3733, 34, 36syl2ani 606 . . . 4 (𝑅 ∈ PosetRel → ((𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥) → 𝑥 = 𝑦))
3837alrimivv 1934 . . 3 (𝑅 ∈ PosetRel → ∀𝑥𝑦((𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥) → 𝑥 = 𝑦))
39 asymref2 6019 . . 3 (((𝑅 ∩ (𝐴 × 𝐴)) ∩ (𝑅 ∩ (𝐴 × 𝐴))) = ( I ↾ (𝑅 ∩ (𝐴 × 𝐴))) ↔ (∀𝑥 (𝑅 ∩ (𝐴 × 𝐴))𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥 ∧ ∀𝑥𝑦((𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥) → 𝑥 = 𝑦)))
4032, 38, 39sylanbrc 582 . 2 (𝑅 ∈ PosetRel → ((𝑅 ∩ (𝐴 × 𝐴)) ∩ (𝑅 ∩ (𝐴 × 𝐴))) = ( I ↾ (𝑅 ∩ (𝐴 × 𝐴))))
41 inex1g 5246 . . 3 (𝑅 ∈ PosetRel → (𝑅 ∩ (𝐴 × 𝐴)) ∈ V)
42 isps 18267 . . 3 ((𝑅 ∩ (𝐴 × 𝐴)) ∈ V → ((𝑅 ∩ (𝐴 × 𝐴)) ∈ PosetRel ↔ (Rel (𝑅 ∩ (𝐴 × 𝐴)) ∧ ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) ⊆ (𝑅 ∩ (𝐴 × 𝐴)) ∧ ((𝑅 ∩ (𝐴 × 𝐴)) ∩ (𝑅 ∩ (𝐴 × 𝐴))) = ( I ↾ (𝑅 ∩ (𝐴 × 𝐴))))))
4341, 42syl 17 . 2 (𝑅 ∈ PosetRel → ((𝑅 ∩ (𝐴 × 𝐴)) ∈ PosetRel ↔ (Rel (𝑅 ∩ (𝐴 × 𝐴)) ∧ ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) ⊆ (𝑅 ∩ (𝐴 × 𝐴)) ∧ ((𝑅 ∩ (𝐴 × 𝐴)) ∩ (𝑅 ∩ (𝐴 × 𝐴))) = ( I ↾ (𝑅 ∩ (𝐴 × 𝐴))))))
444, 7, 40, 43mpbir3and 1340 1 (𝑅 ∈ PosetRel → (𝑅 ∩ (𝐴 × 𝐴)) ∈ PosetRel)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085  wal 1539   = wceq 1541  wcel 2109  wral 3065  Vcvv 3430  cin 3890  wss 3891   cuni 4844   class class class wbr 5078   I cid 5487   × cxp 5586  ccnv 5587  dom cdm 5588  ran crn 5589  cres 5590  ccom 5592  Rel wrel 5593  PosetRelcps 18263
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ps 18265
This theorem is referenced by:  tsrss  18288  ordtrest2  22336
  Copyright terms: Public domain W3C validator