MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psss Structured version   Visualization version   GIF version

Theorem psss 18530
Description: Any subset of a partially ordered set is partially ordered. (Contributed by FL, 24-Jan-2010.)
Assertion
Ref Expression
psss (𝑅 ∈ PosetRel → (𝑅 ∩ (𝐴 × 𝐴)) ∈ PosetRel)

Proof of Theorem psss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 4228 . . 3 (𝑅 ∩ (𝐴 × 𝐴)) ⊆ 𝑅
2 psrel 18519 . . 3 (𝑅 ∈ PosetRel → Rel 𝑅)
3 relss 5780 . . 3 ((𝑅 ∩ (𝐴 × 𝐴)) ⊆ 𝑅 → (Rel 𝑅 → Rel (𝑅 ∩ (𝐴 × 𝐴))))
41, 2, 3mpsyl 68 . 2 (𝑅 ∈ PosetRel → Rel (𝑅 ∩ (𝐴 × 𝐴)))
5 pstr2 18521 . . 3 (𝑅 ∈ PosetRel → (𝑅𝑅) ⊆ 𝑅)
6 trinxp 6124 . . 3 ((𝑅𝑅) ⊆ 𝑅 → ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) ⊆ (𝑅 ∩ (𝐴 × 𝐴)))
75, 6syl 17 . 2 (𝑅 ∈ PosetRel → ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) ⊆ (𝑅 ∩ (𝐴 × 𝐴)))
8 uniin 4935 . . . . . 6 (𝑅 ∩ (𝐴 × 𝐴)) ⊆ ( 𝑅 (𝐴 × 𝐴))
98unissi 4917 . . . . 5 (𝑅 ∩ (𝐴 × 𝐴)) ⊆ ( 𝑅 (𝐴 × 𝐴))
10 uniin 4935 . . . . 5 ( 𝑅 (𝐴 × 𝐴)) ⊆ ( 𝑅 (𝐴 × 𝐴))
119, 10sstri 3991 . . . 4 (𝑅 ∩ (𝐴 × 𝐴)) ⊆ ( 𝑅 (𝐴 × 𝐴))
12 elin 3964 . . . . . 6 (𝑥 ∈ ( 𝑅 (𝐴 × 𝐴)) ↔ (𝑥 𝑅𝑥 (𝐴 × 𝐴)))
13 unixpid 6281 . . . . . . . . 9 (𝐴 × 𝐴) = 𝐴
1413eleq2i 2826 . . . . . . . 8 (𝑥 (𝐴 × 𝐴) ↔ 𝑥𝐴)
15 simprr 772 . . . . . . . . . 10 ((𝑅 ∈ PosetRel ∧ (𝑥 𝑅𝑥𝐴)) → 𝑥𝐴)
16 psdmrn 18523 . . . . . . . . . . . . . . 15 (𝑅 ∈ PosetRel → (dom 𝑅 = 𝑅 ∧ ran 𝑅 = 𝑅))
1716simpld 496 . . . . . . . . . . . . . 14 (𝑅 ∈ PosetRel → dom 𝑅 = 𝑅)
1817eleq2d 2820 . . . . . . . . . . . . 13 (𝑅 ∈ PosetRel → (𝑥 ∈ dom 𝑅𝑥 𝑅))
1918biimpar 479 . . . . . . . . . . . 12 ((𝑅 ∈ PosetRel ∧ 𝑥 𝑅) → 𝑥 ∈ dom 𝑅)
20 eqid 2733 . . . . . . . . . . . . 13 dom 𝑅 = dom 𝑅
2120psref 18524 . . . . . . . . . . . 12 ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ dom 𝑅) → 𝑥𝑅𝑥)
2219, 21syldan 592 . . . . . . . . . . 11 ((𝑅 ∈ PosetRel ∧ 𝑥 𝑅) → 𝑥𝑅𝑥)
2322adantrr 716 . . . . . . . . . 10 ((𝑅 ∈ PosetRel ∧ (𝑥 𝑅𝑥𝐴)) → 𝑥𝑅𝑥)
24 brinxp2 5752 . . . . . . . . . 10 (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥 ↔ ((𝑥𝐴𝑥𝐴) ∧ 𝑥𝑅𝑥))
2515, 15, 23, 24syl21anbrc 1345 . . . . . . . . 9 ((𝑅 ∈ PosetRel ∧ (𝑥 𝑅𝑥𝐴)) → 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥)
2625expr 458 . . . . . . . 8 ((𝑅 ∈ PosetRel ∧ 𝑥 𝑅) → (𝑥𝐴𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥))
2714, 26biimtrid 241 . . . . . . 7 ((𝑅 ∈ PosetRel ∧ 𝑥 𝑅) → (𝑥 (𝐴 × 𝐴) → 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥))
2827expimpd 455 . . . . . 6 (𝑅 ∈ PosetRel → ((𝑥 𝑅𝑥 (𝐴 × 𝐴)) → 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥))
2912, 28biimtrid 241 . . . . 5 (𝑅 ∈ PosetRel → (𝑥 ∈ ( 𝑅 (𝐴 × 𝐴)) → 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥))
3029ralrimiv 3146 . . . 4 (𝑅 ∈ PosetRel → ∀𝑥 ∈ ( 𝑅 (𝐴 × 𝐴))𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥)
31 ssralv 4050 . . . 4 ( (𝑅 ∩ (𝐴 × 𝐴)) ⊆ ( 𝑅 (𝐴 × 𝐴)) → (∀𝑥 ∈ ( 𝑅 (𝐴 × 𝐴))𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥 → ∀𝑥 (𝑅 ∩ (𝐴 × 𝐴))𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥))
3211, 30, 31mpsyl 68 . . 3 (𝑅 ∈ PosetRel → ∀𝑥 (𝑅 ∩ (𝐴 × 𝐴))𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥)
331ssbri 5193 . . . . 5 (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦𝑥𝑅𝑦)
341ssbri 5193 . . . . 5 (𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥𝑦𝑅𝑥)
35 psasym 18526 . . . . . 6 ((𝑅 ∈ PosetRel ∧ 𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦)
36353expib 1123 . . . . 5 (𝑅 ∈ PosetRel → ((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦))
3733, 34, 36syl2ani 608 . . . 4 (𝑅 ∈ PosetRel → ((𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥) → 𝑥 = 𝑦))
3837alrimivv 1932 . . 3 (𝑅 ∈ PosetRel → ∀𝑥𝑦((𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥) → 𝑥 = 𝑦))
39 asymref2 6116 . . 3 (((𝑅 ∩ (𝐴 × 𝐴)) ∩ (𝑅 ∩ (𝐴 × 𝐴))) = ( I ↾ (𝑅 ∩ (𝐴 × 𝐴))) ↔ (∀𝑥 (𝑅 ∩ (𝐴 × 𝐴))𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥 ∧ ∀𝑥𝑦((𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥) → 𝑥 = 𝑦)))
4032, 38, 39sylanbrc 584 . 2 (𝑅 ∈ PosetRel → ((𝑅 ∩ (𝐴 × 𝐴)) ∩ (𝑅 ∩ (𝐴 × 𝐴))) = ( I ↾ (𝑅 ∩ (𝐴 × 𝐴))))
41 inex1g 5319 . . 3 (𝑅 ∈ PosetRel → (𝑅 ∩ (𝐴 × 𝐴)) ∈ V)
42 isps 18518 . . 3 ((𝑅 ∩ (𝐴 × 𝐴)) ∈ V → ((𝑅 ∩ (𝐴 × 𝐴)) ∈ PosetRel ↔ (Rel (𝑅 ∩ (𝐴 × 𝐴)) ∧ ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) ⊆ (𝑅 ∩ (𝐴 × 𝐴)) ∧ ((𝑅 ∩ (𝐴 × 𝐴)) ∩ (𝑅 ∩ (𝐴 × 𝐴))) = ( I ↾ (𝑅 ∩ (𝐴 × 𝐴))))))
4341, 42syl 17 . 2 (𝑅 ∈ PosetRel → ((𝑅 ∩ (𝐴 × 𝐴)) ∈ PosetRel ↔ (Rel (𝑅 ∩ (𝐴 × 𝐴)) ∧ ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) ⊆ (𝑅 ∩ (𝐴 × 𝐴)) ∧ ((𝑅 ∩ (𝐴 × 𝐴)) ∩ (𝑅 ∩ (𝐴 × 𝐴))) = ( I ↾ (𝑅 ∩ (𝐴 × 𝐴))))))
444, 7, 40, 43mpbir3and 1343 1 (𝑅 ∈ PosetRel → (𝑅 ∩ (𝐴 × 𝐴)) ∈ PosetRel)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088  wal 1540   = wceq 1542  wcel 2107  wral 3062  Vcvv 3475  cin 3947  wss 3948   cuni 4908   class class class wbr 5148   I cid 5573   × cxp 5674  ccnv 5675  dom cdm 5676  ran crn 5677  cres 5678  ccom 5680  Rel wrel 5681  PosetRelcps 18514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ps 18516
This theorem is referenced by:  tsrss  18539  ordtrest2  22700
  Copyright terms: Public domain W3C validator