| Step | Hyp | Ref
| Expression |
| 1 | | inss1 4217 |
. . 3
⊢ (𝑅 ∩ (𝐴 × 𝐴)) ⊆ 𝑅 |
| 2 | | psrel 18584 |
. . 3
⊢ (𝑅 ∈ PosetRel → Rel
𝑅) |
| 3 | | relss 5771 |
. . 3
⊢ ((𝑅 ∩ (𝐴 × 𝐴)) ⊆ 𝑅 → (Rel 𝑅 → Rel (𝑅 ∩ (𝐴 × 𝐴)))) |
| 4 | 1, 2, 3 | mpsyl 68 |
. 2
⊢ (𝑅 ∈ PosetRel → Rel
(𝑅 ∩ (𝐴 × 𝐴))) |
| 5 | | pstr2 18586 |
. . 3
⊢ (𝑅 ∈ PosetRel → (𝑅 ∘ 𝑅) ⊆ 𝑅) |
| 6 | | trinxp 6125 |
. . 3
⊢ ((𝑅 ∘ 𝑅) ⊆ 𝑅 → ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) ⊆ (𝑅 ∩ (𝐴 × 𝐴))) |
| 7 | 5, 6 | syl 17 |
. 2
⊢ (𝑅 ∈ PosetRel → ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) ⊆ (𝑅 ∩ (𝐴 × 𝐴))) |
| 8 | | uniin 4911 |
. . . . . 6
⊢ ∪ (𝑅
∩ (𝐴 × 𝐴)) ⊆ (∪ 𝑅
∩ ∪ (𝐴 × 𝐴)) |
| 9 | 8 | unissi 4896 |
. . . . 5
⊢ ∪ ∪ (𝑅 ∩ (𝐴 × 𝐴)) ⊆ ∪
(∪ 𝑅 ∩ ∪ (𝐴 × 𝐴)) |
| 10 | | uniin 4911 |
. . . . 5
⊢ ∪ (∪ 𝑅 ∩ ∪ (𝐴 × 𝐴)) ⊆ (∪
∪ 𝑅 ∩ ∪ ∪ (𝐴
× 𝐴)) |
| 11 | 9, 10 | sstri 3973 |
. . . 4
⊢ ∪ ∪ (𝑅 ∩ (𝐴 × 𝐴)) ⊆ (∪
∪ 𝑅 ∩ ∪ ∪ (𝐴
× 𝐴)) |
| 12 | | elin 3947 |
. . . . . 6
⊢ (𝑥 ∈ (∪ ∪ 𝑅 ∩ ∪ ∪ (𝐴
× 𝐴)) ↔ (𝑥 ∈ ∪ ∪ 𝑅 ∧ 𝑥 ∈ ∪ ∪ (𝐴
× 𝐴))) |
| 13 | | unixpid 6284 |
. . . . . . . . 9
⊢ ∪ ∪ (𝐴 × 𝐴) = 𝐴 |
| 14 | 13 | eleq2i 2825 |
. . . . . . . 8
⊢ (𝑥 ∈ ∪ ∪ (𝐴 × 𝐴) ↔ 𝑥 ∈ 𝐴) |
| 15 | | simprr 772 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ PosetRel ∧ (𝑥 ∈ ∪ ∪ 𝑅 ∧ 𝑥 ∈ 𝐴)) → 𝑥 ∈ 𝐴) |
| 16 | | psdmrn 18588 |
. . . . . . . . . . . . . . 15
⊢ (𝑅 ∈ PosetRel → (dom
𝑅 = ∪ ∪ 𝑅 ∧ ran 𝑅 = ∪ ∪ 𝑅)) |
| 17 | 16 | simpld 494 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ PosetRel → dom
𝑅 = ∪ ∪ 𝑅) |
| 18 | 17 | eleq2d 2819 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ PosetRel → (𝑥 ∈ dom 𝑅 ↔ 𝑥 ∈ ∪ ∪ 𝑅)) |
| 19 | 18 | biimpar 477 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ ∪ ∪ 𝑅) → 𝑥 ∈ dom 𝑅) |
| 20 | | eqid 2734 |
. . . . . . . . . . . . 13
⊢ dom 𝑅 = dom 𝑅 |
| 21 | 20 | psref 18589 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ dom 𝑅) → 𝑥𝑅𝑥) |
| 22 | 19, 21 | syldan 591 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ ∪ ∪ 𝑅) → 𝑥𝑅𝑥) |
| 23 | 22 | adantrr 717 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ PosetRel ∧ (𝑥 ∈ ∪ ∪ 𝑅 ∧ 𝑥 ∈ 𝐴)) → 𝑥𝑅𝑥) |
| 24 | | brinxp2 5743 |
. . . . . . . . . 10
⊢ (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥 ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝑥𝑅𝑥)) |
| 25 | 15, 15, 23, 24 | syl21anbrc 1344 |
. . . . . . . . 9
⊢ ((𝑅 ∈ PosetRel ∧ (𝑥 ∈ ∪ ∪ 𝑅 ∧ 𝑥 ∈ 𝐴)) → 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥) |
| 26 | 25 | expr 456 |
. . . . . . . 8
⊢ ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ ∪ ∪ 𝑅) → (𝑥 ∈ 𝐴 → 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥)) |
| 27 | 14, 26 | biimtrid 242 |
. . . . . . 7
⊢ ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ ∪ ∪ 𝑅) → (𝑥 ∈ ∪ ∪ (𝐴
× 𝐴) → 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥)) |
| 28 | 27 | expimpd 453 |
. . . . . 6
⊢ (𝑅 ∈ PosetRel → ((𝑥 ∈ ∪ ∪ 𝑅 ∧ 𝑥 ∈ ∪ ∪ (𝐴
× 𝐴)) → 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥)) |
| 29 | 12, 28 | biimtrid 242 |
. . . . 5
⊢ (𝑅 ∈ PosetRel → (𝑥 ∈ (∪ ∪ 𝑅 ∩ ∪ ∪ (𝐴
× 𝐴)) → 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥)) |
| 30 | 29 | ralrimiv 3132 |
. . . 4
⊢ (𝑅 ∈ PosetRel →
∀𝑥 ∈ (∪ ∪ 𝑅 ∩ ∪ ∪ (𝐴
× 𝐴))𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥) |
| 31 | | ssralv 4032 |
. . . 4
⊢ (∪ ∪ (𝑅 ∩ (𝐴 × 𝐴)) ⊆ (∪
∪ 𝑅 ∩ ∪ ∪ (𝐴
× 𝐴)) →
(∀𝑥 ∈ (∪ ∪ 𝑅 ∩ ∪ ∪ (𝐴
× 𝐴))𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥 → ∀𝑥 ∈ ∪ ∪ (𝑅
∩ (𝐴 × 𝐴))𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥)) |
| 32 | 11, 30, 31 | mpsyl 68 |
. . 3
⊢ (𝑅 ∈ PosetRel →
∀𝑥 ∈ ∪ ∪ (𝑅 ∩ (𝐴 × 𝐴))𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥) |
| 33 | 1 | ssbri 5168 |
. . . . 5
⊢ (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦 → 𝑥𝑅𝑦) |
| 34 | 1 | ssbri 5168 |
. . . . 5
⊢ (𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥 → 𝑦𝑅𝑥) |
| 35 | | psasym 18591 |
. . . . . 6
⊢ ((𝑅 ∈ PosetRel ∧ 𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦) |
| 36 | 35 | 3expib 1122 |
. . . . 5
⊢ (𝑅 ∈ PosetRel → ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) → 𝑥 = 𝑦)) |
| 37 | 33, 34, 36 | syl2ani 607 |
. . . 4
⊢ (𝑅 ∈ PosetRel → ((𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦 ∧ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥) → 𝑥 = 𝑦)) |
| 38 | 37 | alrimivv 1927 |
. . 3
⊢ (𝑅 ∈ PosetRel →
∀𝑥∀𝑦((𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦 ∧ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥) → 𝑥 = 𝑦)) |
| 39 | | asymref2 6117 |
. . 3
⊢ (((𝑅 ∩ (𝐴 × 𝐴)) ∩ ◡(𝑅 ∩ (𝐴 × 𝐴))) = ( I ↾ ∪ ∪ (𝑅 ∩ (𝐴 × 𝐴))) ↔ (∀𝑥 ∈ ∪ ∪ (𝑅
∩ (𝐴 × 𝐴))𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥 ∧ ∀𝑥∀𝑦((𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦 ∧ 𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥) → 𝑥 = 𝑦))) |
| 40 | 32, 38, 39 | sylanbrc 583 |
. 2
⊢ (𝑅 ∈ PosetRel → ((𝑅 ∩ (𝐴 × 𝐴)) ∩ ◡(𝑅 ∩ (𝐴 × 𝐴))) = ( I ↾ ∪ ∪ (𝑅 ∩ (𝐴 × 𝐴)))) |
| 41 | | inex1g 5299 |
. . 3
⊢ (𝑅 ∈ PosetRel → (𝑅 ∩ (𝐴 × 𝐴)) ∈ V) |
| 42 | | isps 18583 |
. . 3
⊢ ((𝑅 ∩ (𝐴 × 𝐴)) ∈ V → ((𝑅 ∩ (𝐴 × 𝐴)) ∈ PosetRel ↔ (Rel (𝑅 ∩ (𝐴 × 𝐴)) ∧ ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) ⊆ (𝑅 ∩ (𝐴 × 𝐴)) ∧ ((𝑅 ∩ (𝐴 × 𝐴)) ∩ ◡(𝑅 ∩ (𝐴 × 𝐴))) = ( I ↾ ∪ ∪ (𝑅 ∩ (𝐴 × 𝐴)))))) |
| 43 | 41, 42 | syl 17 |
. 2
⊢ (𝑅 ∈ PosetRel → ((𝑅 ∩ (𝐴 × 𝐴)) ∈ PosetRel ↔ (Rel (𝑅 ∩ (𝐴 × 𝐴)) ∧ ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) ⊆ (𝑅 ∩ (𝐴 × 𝐴)) ∧ ((𝑅 ∩ (𝐴 × 𝐴)) ∩ ◡(𝑅 ∩ (𝐴 × 𝐴))) = ( I ↾ ∪ ∪ (𝑅 ∩ (𝐴 × 𝐴)))))) |
| 44 | 4, 7, 40, 43 | mpbir3and 1342 |
1
⊢ (𝑅 ∈ PosetRel → (𝑅 ∩ (𝐴 × 𝐴)) ∈ PosetRel) |