MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psss Structured version   Visualization version   GIF version

Theorem psss 18621
Description: Any subset of a partially ordered set is partially ordered. (Contributed by FL, 24-Jan-2010.)
Assertion
Ref Expression
psss (𝑅 ∈ PosetRel → (𝑅 ∩ (𝐴 × 𝐴)) ∈ PosetRel)

Proof of Theorem psss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 4236 . . 3 (𝑅 ∩ (𝐴 × 𝐴)) ⊆ 𝑅
2 psrel 18610 . . 3 (𝑅 ∈ PosetRel → Rel 𝑅)
3 relss 5789 . . 3 ((𝑅 ∩ (𝐴 × 𝐴)) ⊆ 𝑅 → (Rel 𝑅 → Rel (𝑅 ∩ (𝐴 × 𝐴))))
41, 2, 3mpsyl 68 . 2 (𝑅 ∈ PosetRel → Rel (𝑅 ∩ (𝐴 × 𝐴)))
5 pstr2 18612 . . 3 (𝑅 ∈ PosetRel → (𝑅𝑅) ⊆ 𝑅)
6 trinxp 6143 . . 3 ((𝑅𝑅) ⊆ 𝑅 → ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) ⊆ (𝑅 ∩ (𝐴 × 𝐴)))
75, 6syl 17 . 2 (𝑅 ∈ PosetRel → ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) ⊆ (𝑅 ∩ (𝐴 × 𝐴)))
8 uniin 4929 . . . . . 6 (𝑅 ∩ (𝐴 × 𝐴)) ⊆ ( 𝑅 (𝐴 × 𝐴))
98unissi 4914 . . . . 5 (𝑅 ∩ (𝐴 × 𝐴)) ⊆ ( 𝑅 (𝐴 × 𝐴))
10 uniin 4929 . . . . 5 ( 𝑅 (𝐴 × 𝐴)) ⊆ ( 𝑅 (𝐴 × 𝐴))
119, 10sstri 3992 . . . 4 (𝑅 ∩ (𝐴 × 𝐴)) ⊆ ( 𝑅 (𝐴 × 𝐴))
12 elin 3966 . . . . . 6 (𝑥 ∈ ( 𝑅 (𝐴 × 𝐴)) ↔ (𝑥 𝑅𝑥 (𝐴 × 𝐴)))
13 unixpid 6302 . . . . . . . . 9 (𝐴 × 𝐴) = 𝐴
1413eleq2i 2832 . . . . . . . 8 (𝑥 (𝐴 × 𝐴) ↔ 𝑥𝐴)
15 simprr 773 . . . . . . . . . 10 ((𝑅 ∈ PosetRel ∧ (𝑥 𝑅𝑥𝐴)) → 𝑥𝐴)
16 psdmrn 18614 . . . . . . . . . . . . . . 15 (𝑅 ∈ PosetRel → (dom 𝑅 = 𝑅 ∧ ran 𝑅 = 𝑅))
1716simpld 494 . . . . . . . . . . . . . 14 (𝑅 ∈ PosetRel → dom 𝑅 = 𝑅)
1817eleq2d 2826 . . . . . . . . . . . . 13 (𝑅 ∈ PosetRel → (𝑥 ∈ dom 𝑅𝑥 𝑅))
1918biimpar 477 . . . . . . . . . . . 12 ((𝑅 ∈ PosetRel ∧ 𝑥 𝑅) → 𝑥 ∈ dom 𝑅)
20 eqid 2736 . . . . . . . . . . . . 13 dom 𝑅 = dom 𝑅
2120psref 18615 . . . . . . . . . . . 12 ((𝑅 ∈ PosetRel ∧ 𝑥 ∈ dom 𝑅) → 𝑥𝑅𝑥)
2219, 21syldan 591 . . . . . . . . . . 11 ((𝑅 ∈ PosetRel ∧ 𝑥 𝑅) → 𝑥𝑅𝑥)
2322adantrr 717 . . . . . . . . . 10 ((𝑅 ∈ PosetRel ∧ (𝑥 𝑅𝑥𝐴)) → 𝑥𝑅𝑥)
24 brinxp2 5761 . . . . . . . . . 10 (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥 ↔ ((𝑥𝐴𝑥𝐴) ∧ 𝑥𝑅𝑥))
2515, 15, 23, 24syl21anbrc 1345 . . . . . . . . 9 ((𝑅 ∈ PosetRel ∧ (𝑥 𝑅𝑥𝐴)) → 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥)
2625expr 456 . . . . . . . 8 ((𝑅 ∈ PosetRel ∧ 𝑥 𝑅) → (𝑥𝐴𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥))
2714, 26biimtrid 242 . . . . . . 7 ((𝑅 ∈ PosetRel ∧ 𝑥 𝑅) → (𝑥 (𝐴 × 𝐴) → 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥))
2827expimpd 453 . . . . . 6 (𝑅 ∈ PosetRel → ((𝑥 𝑅𝑥 (𝐴 × 𝐴)) → 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥))
2912, 28biimtrid 242 . . . . 5 (𝑅 ∈ PosetRel → (𝑥 ∈ ( 𝑅 (𝐴 × 𝐴)) → 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥))
3029ralrimiv 3144 . . . 4 (𝑅 ∈ PosetRel → ∀𝑥 ∈ ( 𝑅 (𝐴 × 𝐴))𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥)
31 ssralv 4051 . . . 4 ( (𝑅 ∩ (𝐴 × 𝐴)) ⊆ ( 𝑅 (𝐴 × 𝐴)) → (∀𝑥 ∈ ( 𝑅 (𝐴 × 𝐴))𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥 → ∀𝑥 (𝑅 ∩ (𝐴 × 𝐴))𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥))
3211, 30, 31mpsyl 68 . . 3 (𝑅 ∈ PosetRel → ∀𝑥 (𝑅 ∩ (𝐴 × 𝐴))𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥)
331ssbri 5186 . . . . 5 (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦𝑥𝑅𝑦)
341ssbri 5186 . . . . 5 (𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥𝑦𝑅𝑥)
35 psasym 18617 . . . . . 6 ((𝑅 ∈ PosetRel ∧ 𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦)
36353expib 1123 . . . . 5 (𝑅 ∈ PosetRel → ((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦))
3733, 34, 36syl2ani 607 . . . 4 (𝑅 ∈ PosetRel → ((𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥) → 𝑥 = 𝑦))
3837alrimivv 1928 . . 3 (𝑅 ∈ PosetRel → ∀𝑥𝑦((𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥) → 𝑥 = 𝑦))
39 asymref2 6135 . . 3 (((𝑅 ∩ (𝐴 × 𝐴)) ∩ (𝑅 ∩ (𝐴 × 𝐴))) = ( I ↾ (𝑅 ∩ (𝐴 × 𝐴))) ↔ (∀𝑥 (𝑅 ∩ (𝐴 × 𝐴))𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥 ∧ ∀𝑥𝑦((𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑥) → 𝑥 = 𝑦)))
4032, 38, 39sylanbrc 583 . 2 (𝑅 ∈ PosetRel → ((𝑅 ∩ (𝐴 × 𝐴)) ∩ (𝑅 ∩ (𝐴 × 𝐴))) = ( I ↾ (𝑅 ∩ (𝐴 × 𝐴))))
41 inex1g 5317 . . 3 (𝑅 ∈ PosetRel → (𝑅 ∩ (𝐴 × 𝐴)) ∈ V)
42 isps 18609 . . 3 ((𝑅 ∩ (𝐴 × 𝐴)) ∈ V → ((𝑅 ∩ (𝐴 × 𝐴)) ∈ PosetRel ↔ (Rel (𝑅 ∩ (𝐴 × 𝐴)) ∧ ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) ⊆ (𝑅 ∩ (𝐴 × 𝐴)) ∧ ((𝑅 ∩ (𝐴 × 𝐴)) ∩ (𝑅 ∩ (𝐴 × 𝐴))) = ( I ↾ (𝑅 ∩ (𝐴 × 𝐴))))))
4341, 42syl 17 . 2 (𝑅 ∈ PosetRel → ((𝑅 ∩ (𝐴 × 𝐴)) ∈ PosetRel ↔ (Rel (𝑅 ∩ (𝐴 × 𝐴)) ∧ ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) ⊆ (𝑅 ∩ (𝐴 × 𝐴)) ∧ ((𝑅 ∩ (𝐴 × 𝐴)) ∩ (𝑅 ∩ (𝐴 × 𝐴))) = ( I ↾ (𝑅 ∩ (𝐴 × 𝐴))))))
444, 7, 40, 43mpbir3and 1343 1 (𝑅 ∈ PosetRel → (𝑅 ∩ (𝐴 × 𝐴)) ∈ PosetRel)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087  wal 1538   = wceq 1540  wcel 2108  wral 3060  Vcvv 3479  cin 3949  wss 3950   cuni 4905   class class class wbr 5141   I cid 5575   × cxp 5681  ccnv 5682  dom cdm 5683  ran crn 5684  cres 5685  ccom 5687  Rel wrel 5688  PosetRelcps 18605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5294  ax-nul 5304  ax-pr 5430
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2728  df-clel 2815  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4906  df-br 5142  df-opab 5204  df-id 5576  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-res 5695  df-ps 18607
This theorem is referenced by:  tsrss  18630  ordtrest2  23202
  Copyright terms: Public domain W3C validator