MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapen Structured version   Visualization version   GIF version

Theorem mapen 8665
Description: Two set exponentiations are equinumerous when their bases and exponents are equinumerous. Theorem 6H(c) of [Enderton] p. 139. (Contributed by NM, 16-Dec-2003.) (Proof shortened by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
mapen ((𝐴𝐵𝐶𝐷) → (𝐴m 𝐶) ≈ (𝐵m 𝐷))

Proof of Theorem mapen
Dummy variables 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bren 8501 . 2 (𝐴𝐵 ↔ ∃𝑓 𝑓:𝐴1-1-onto𝐵)
2 bren 8501 . 2 (𝐶𝐷 ↔ ∃𝑔 𝑔:𝐶1-1-onto𝐷)
3 exdistrv 1956 . . 3 (∃𝑓𝑔(𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) ↔ (∃𝑓 𝑓:𝐴1-1-onto𝐵 ∧ ∃𝑔 𝑔:𝐶1-1-onto𝐷))
4 ovexd 7170 . . . . 5 ((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) → (𝐴m 𝐶) ∈ V)
5 ovexd 7170 . . . . 5 ((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) → (𝐵m 𝐷) ∈ V)
6 elmapi 8411 . . . . . . 7 (𝑥 ∈ (𝐴m 𝐶) → 𝑥:𝐶𝐴)
7 f1of 6590 . . . . . . . . . . 11 (𝑓:𝐴1-1-onto𝐵𝑓:𝐴𝐵)
87adantr 484 . . . . . . . . . 10 ((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) → 𝑓:𝐴𝐵)
9 fco 6505 . . . . . . . . . 10 ((𝑓:𝐴𝐵𝑥:𝐶𝐴) → (𝑓𝑥):𝐶𝐵)
108, 9sylan 583 . . . . . . . . 9 (((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) ∧ 𝑥:𝐶𝐴) → (𝑓𝑥):𝐶𝐵)
11 f1ocnv 6602 . . . . . . . . . . . 12 (𝑔:𝐶1-1-onto𝐷𝑔:𝐷1-1-onto𝐶)
1211adantl 485 . . . . . . . . . . 11 ((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) → 𝑔:𝐷1-1-onto𝐶)
13 f1of 6590 . . . . . . . . . . 11 (𝑔:𝐷1-1-onto𝐶𝑔:𝐷𝐶)
1412, 13syl 17 . . . . . . . . . 10 ((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) → 𝑔:𝐷𝐶)
1514adantr 484 . . . . . . . . 9 (((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) ∧ 𝑥:𝐶𝐴) → 𝑔:𝐷𝐶)
16 fco 6505 . . . . . . . . 9 (((𝑓𝑥):𝐶𝐵𝑔:𝐷𝐶) → ((𝑓𝑥) ∘ 𝑔):𝐷𝐵)
1710, 15, 16syl2anc 587 . . . . . . . 8 (((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) ∧ 𝑥:𝐶𝐴) → ((𝑓𝑥) ∘ 𝑔):𝐷𝐵)
1817ex 416 . . . . . . 7 ((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) → (𝑥:𝐶𝐴 → ((𝑓𝑥) ∘ 𝑔):𝐷𝐵))
196, 18syl5 34 . . . . . 6 ((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) → (𝑥 ∈ (𝐴m 𝐶) → ((𝑓𝑥) ∘ 𝑔):𝐷𝐵))
20 f1ofo 6597 . . . . . . . . . 10 (𝑓:𝐴1-1-onto𝐵𝑓:𝐴onto𝐵)
2120adantr 484 . . . . . . . . 9 ((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) → 𝑓:𝐴onto𝐵)
22 forn 6568 . . . . . . . . 9 (𝑓:𝐴onto𝐵 → ran 𝑓 = 𝐵)
2321, 22syl 17 . . . . . . . 8 ((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) → ran 𝑓 = 𝐵)
24 vex 3444 . . . . . . . . 9 𝑓 ∈ V
2524rnex 7599 . . . . . . . 8 ran 𝑓 ∈ V
2623, 25eqeltrrdi 2899 . . . . . . 7 ((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) → 𝐵 ∈ V)
27 f1ofo 6597 . . . . . . . . . 10 (𝑔:𝐶1-1-onto𝐷𝑔:𝐶onto𝐷)
2827adantl 485 . . . . . . . . 9 ((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) → 𝑔:𝐶onto𝐷)
29 forn 6568 . . . . . . . . 9 (𝑔:𝐶onto𝐷 → ran 𝑔 = 𝐷)
3028, 29syl 17 . . . . . . . 8 ((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) → ran 𝑔 = 𝐷)
31 vex 3444 . . . . . . . . 9 𝑔 ∈ V
3231rnex 7599 . . . . . . . 8 ran 𝑔 ∈ V
3330, 32eqeltrrdi 2899 . . . . . . 7 ((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) → 𝐷 ∈ V)
3426, 33elmapd 8403 . . . . . 6 ((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) → (((𝑓𝑥) ∘ 𝑔) ∈ (𝐵m 𝐷) ↔ ((𝑓𝑥) ∘ 𝑔):𝐷𝐵))
3519, 34sylibrd 262 . . . . 5 ((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) → (𝑥 ∈ (𝐴m 𝐶) → ((𝑓𝑥) ∘ 𝑔) ∈ (𝐵m 𝐷)))
36 elmapi 8411 . . . . . . 7 (𝑦 ∈ (𝐵m 𝐷) → 𝑦:𝐷𝐵)
37 f1ocnv 6602 . . . . . . . . . . . 12 (𝑓:𝐴1-1-onto𝐵𝑓:𝐵1-1-onto𝐴)
3837adantr 484 . . . . . . . . . . 11 ((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) → 𝑓:𝐵1-1-onto𝐴)
39 f1of 6590 . . . . . . . . . . 11 (𝑓:𝐵1-1-onto𝐴𝑓:𝐵𝐴)
4038, 39syl 17 . . . . . . . . . 10 ((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) → 𝑓:𝐵𝐴)
4140adantr 484 . . . . . . . . 9 (((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) ∧ 𝑦:𝐷𝐵) → 𝑓:𝐵𝐴)
42 id 22 . . . . . . . . . 10 (𝑦:𝐷𝐵𝑦:𝐷𝐵)
43 f1of 6590 . . . . . . . . . . 11 (𝑔:𝐶1-1-onto𝐷𝑔:𝐶𝐷)
4443adantl 485 . . . . . . . . . 10 ((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) → 𝑔:𝐶𝐷)
45 fco 6505 . . . . . . . . . 10 ((𝑦:𝐷𝐵𝑔:𝐶𝐷) → (𝑦𝑔):𝐶𝐵)
4642, 44, 45syl2anr 599 . . . . . . . . 9 (((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) ∧ 𝑦:𝐷𝐵) → (𝑦𝑔):𝐶𝐵)
47 fco 6505 . . . . . . . . 9 ((𝑓:𝐵𝐴 ∧ (𝑦𝑔):𝐶𝐵) → (𝑓 ∘ (𝑦𝑔)):𝐶𝐴)
4841, 46, 47syl2anc 587 . . . . . . . 8 (((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) ∧ 𝑦:𝐷𝐵) → (𝑓 ∘ (𝑦𝑔)):𝐶𝐴)
4948ex 416 . . . . . . 7 ((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) → (𝑦:𝐷𝐵 → (𝑓 ∘ (𝑦𝑔)):𝐶𝐴))
5036, 49syl5 34 . . . . . 6 ((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) → (𝑦 ∈ (𝐵m 𝐷) → (𝑓 ∘ (𝑦𝑔)):𝐶𝐴))
51 f1odm 6594 . . . . . . . . 9 (𝑓:𝐴1-1-onto𝐵 → dom 𝑓 = 𝐴)
5251adantr 484 . . . . . . . 8 ((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) → dom 𝑓 = 𝐴)
5324dmex 7598 . . . . . . . 8 dom 𝑓 ∈ V
5452, 53eqeltrrdi 2899 . . . . . . 7 ((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) → 𝐴 ∈ V)
55 f1odm 6594 . . . . . . . . 9 (𝑔:𝐶1-1-onto𝐷 → dom 𝑔 = 𝐶)
5655adantl 485 . . . . . . . 8 ((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) → dom 𝑔 = 𝐶)
5731dmex 7598 . . . . . . . 8 dom 𝑔 ∈ V
5856, 57eqeltrrdi 2899 . . . . . . 7 ((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) → 𝐶 ∈ V)
5954, 58elmapd 8403 . . . . . 6 ((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) → ((𝑓 ∘ (𝑦𝑔)) ∈ (𝐴m 𝐶) ↔ (𝑓 ∘ (𝑦𝑔)):𝐶𝐴))
6050, 59sylibrd 262 . . . . 5 ((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) → (𝑦 ∈ (𝐵m 𝐷) → (𝑓 ∘ (𝑦𝑔)) ∈ (𝐴m 𝐶)))
61 coass 6085 . . . . . . . . . . 11 ((𝑓𝑓) ∘ (𝑦𝑔)) = (𝑓 ∘ (𝑓 ∘ (𝑦𝑔)))
62 f1ococnv2 6616 . . . . . . . . . . . . . 14 (𝑓:𝐴1-1-onto𝐵 → (𝑓𝑓) = ( I ↾ 𝐵))
6362ad2antrr 725 . . . . . . . . . . . . 13 (((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) ∧ (𝑥:𝐶𝐴𝑦:𝐷𝐵)) → (𝑓𝑓) = ( I ↾ 𝐵))
6463coeq1d 5696 . . . . . . . . . . . 12 (((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) ∧ (𝑥:𝐶𝐴𝑦:𝐷𝐵)) → ((𝑓𝑓) ∘ (𝑦𝑔)) = (( I ↾ 𝐵) ∘ (𝑦𝑔)))
6546adantrl 715 . . . . . . . . . . . . 13 (((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) ∧ (𝑥:𝐶𝐴𝑦:𝐷𝐵)) → (𝑦𝑔):𝐶𝐵)
66 fcoi2 6527 . . . . . . . . . . . . 13 ((𝑦𝑔):𝐶𝐵 → (( I ↾ 𝐵) ∘ (𝑦𝑔)) = (𝑦𝑔))
6765, 66syl 17 . . . . . . . . . . . 12 (((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) ∧ (𝑥:𝐶𝐴𝑦:𝐷𝐵)) → (( I ↾ 𝐵) ∘ (𝑦𝑔)) = (𝑦𝑔))
6864, 67eqtrd 2833 . . . . . . . . . . 11 (((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) ∧ (𝑥:𝐶𝐴𝑦:𝐷𝐵)) → ((𝑓𝑓) ∘ (𝑦𝑔)) = (𝑦𝑔))
6961, 68syl5eqr 2847 . . . . . . . . . 10 (((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) ∧ (𝑥:𝐶𝐴𝑦:𝐷𝐵)) → (𝑓 ∘ (𝑓 ∘ (𝑦𝑔))) = (𝑦𝑔))
7069eqeq2d 2809 . . . . . . . . 9 (((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) ∧ (𝑥:𝐶𝐴𝑦:𝐷𝐵)) → ((𝑓𝑥) = (𝑓 ∘ (𝑓 ∘ (𝑦𝑔))) ↔ (𝑓𝑥) = (𝑦𝑔)))
71 coass 6085 . . . . . . . . . . . 12 (((𝑓𝑥) ∘ 𝑔) ∘ 𝑔) = ((𝑓𝑥) ∘ (𝑔𝑔))
72 f1ococnv1 6618 . . . . . . . . . . . . . . 15 (𝑔:𝐶1-1-onto𝐷 → (𝑔𝑔) = ( I ↾ 𝐶))
7372ad2antlr 726 . . . . . . . . . . . . . 14 (((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) ∧ (𝑥:𝐶𝐴𝑦:𝐷𝐵)) → (𝑔𝑔) = ( I ↾ 𝐶))
7473coeq2d 5697 . . . . . . . . . . . . 13 (((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) ∧ (𝑥:𝐶𝐴𝑦:𝐷𝐵)) → ((𝑓𝑥) ∘ (𝑔𝑔)) = ((𝑓𝑥) ∘ ( I ↾ 𝐶)))
7510adantrr 716 . . . . . . . . . . . . . 14 (((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) ∧ (𝑥:𝐶𝐴𝑦:𝐷𝐵)) → (𝑓𝑥):𝐶𝐵)
76 fcoi1 6526 . . . . . . . . . . . . . 14 ((𝑓𝑥):𝐶𝐵 → ((𝑓𝑥) ∘ ( I ↾ 𝐶)) = (𝑓𝑥))
7775, 76syl 17 . . . . . . . . . . . . 13 (((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) ∧ (𝑥:𝐶𝐴𝑦:𝐷𝐵)) → ((𝑓𝑥) ∘ ( I ↾ 𝐶)) = (𝑓𝑥))
7874, 77eqtrd 2833 . . . . . . . . . . . 12 (((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) ∧ (𝑥:𝐶𝐴𝑦:𝐷𝐵)) → ((𝑓𝑥) ∘ (𝑔𝑔)) = (𝑓𝑥))
7971, 78syl5eq 2845 . . . . . . . . . . 11 (((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) ∧ (𝑥:𝐶𝐴𝑦:𝐷𝐵)) → (((𝑓𝑥) ∘ 𝑔) ∘ 𝑔) = (𝑓𝑥))
8079eqeq2d 2809 . . . . . . . . . 10 (((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) ∧ (𝑥:𝐶𝐴𝑦:𝐷𝐵)) → ((𝑦𝑔) = (((𝑓𝑥) ∘ 𝑔) ∘ 𝑔) ↔ (𝑦𝑔) = (𝑓𝑥)))
81 eqcom 2805 . . . . . . . . . 10 ((𝑦𝑔) = (𝑓𝑥) ↔ (𝑓𝑥) = (𝑦𝑔))
8280, 81syl6bb 290 . . . . . . . . 9 (((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) ∧ (𝑥:𝐶𝐴𝑦:𝐷𝐵)) → ((𝑦𝑔) = (((𝑓𝑥) ∘ 𝑔) ∘ 𝑔) ↔ (𝑓𝑥) = (𝑦𝑔)))
8370, 82bitr4d 285 . . . . . . . 8 (((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) ∧ (𝑥:𝐶𝐴𝑦:𝐷𝐵)) → ((𝑓𝑥) = (𝑓 ∘ (𝑓 ∘ (𝑦𝑔))) ↔ (𝑦𝑔) = (((𝑓𝑥) ∘ 𝑔) ∘ 𝑔)))
84 f1of1 6589 . . . . . . . . . 10 (𝑓:𝐴1-1-onto𝐵𝑓:𝐴1-1𝐵)
8584ad2antrr 725 . . . . . . . . 9 (((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) ∧ (𝑥:𝐶𝐴𝑦:𝐷𝐵)) → 𝑓:𝐴1-1𝐵)
86 simprl 770 . . . . . . . . 9 (((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) ∧ (𝑥:𝐶𝐴𝑦:𝐷𝐵)) → 𝑥:𝐶𝐴)
8748adantrl 715 . . . . . . . . 9 (((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) ∧ (𝑥:𝐶𝐴𝑦:𝐷𝐵)) → (𝑓 ∘ (𝑦𝑔)):𝐶𝐴)
88 cocan1 7025 . . . . . . . . 9 ((𝑓:𝐴1-1𝐵𝑥:𝐶𝐴 ∧ (𝑓 ∘ (𝑦𝑔)):𝐶𝐴) → ((𝑓𝑥) = (𝑓 ∘ (𝑓 ∘ (𝑦𝑔))) ↔ 𝑥 = (𝑓 ∘ (𝑦𝑔))))
8985, 86, 87, 88syl3anc 1368 . . . . . . . 8 (((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) ∧ (𝑥:𝐶𝐴𝑦:𝐷𝐵)) → ((𝑓𝑥) = (𝑓 ∘ (𝑓 ∘ (𝑦𝑔))) ↔ 𝑥 = (𝑓 ∘ (𝑦𝑔))))
9028adantr 484 . . . . . . . . 9 (((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) ∧ (𝑥:𝐶𝐴𝑦:𝐷𝐵)) → 𝑔:𝐶onto𝐷)
91 ffn 6487 . . . . . . . . . 10 (𝑦:𝐷𝐵𝑦 Fn 𝐷)
9291ad2antll 728 . . . . . . . . 9 (((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) ∧ (𝑥:𝐶𝐴𝑦:𝐷𝐵)) → 𝑦 Fn 𝐷)
9317adantrr 716 . . . . . . . . . 10 (((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) ∧ (𝑥:𝐶𝐴𝑦:𝐷𝐵)) → ((𝑓𝑥) ∘ 𝑔):𝐷𝐵)
9493ffnd 6488 . . . . . . . . 9 (((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) ∧ (𝑥:𝐶𝐴𝑦:𝐷𝐵)) → ((𝑓𝑥) ∘ 𝑔) Fn 𝐷)
95 cocan2 7026 . . . . . . . . 9 ((𝑔:𝐶onto𝐷𝑦 Fn 𝐷 ∧ ((𝑓𝑥) ∘ 𝑔) Fn 𝐷) → ((𝑦𝑔) = (((𝑓𝑥) ∘ 𝑔) ∘ 𝑔) ↔ 𝑦 = ((𝑓𝑥) ∘ 𝑔)))
9690, 92, 94, 95syl3anc 1368 . . . . . . . 8 (((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) ∧ (𝑥:𝐶𝐴𝑦:𝐷𝐵)) → ((𝑦𝑔) = (((𝑓𝑥) ∘ 𝑔) ∘ 𝑔) ↔ 𝑦 = ((𝑓𝑥) ∘ 𝑔)))
9783, 89, 963bitr3d 312 . . . . . . 7 (((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) ∧ (𝑥:𝐶𝐴𝑦:𝐷𝐵)) → (𝑥 = (𝑓 ∘ (𝑦𝑔)) ↔ 𝑦 = ((𝑓𝑥) ∘ 𝑔)))
9897ex 416 . . . . . 6 ((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) → ((𝑥:𝐶𝐴𝑦:𝐷𝐵) → (𝑥 = (𝑓 ∘ (𝑦𝑔)) ↔ 𝑦 = ((𝑓𝑥) ∘ 𝑔))))
996, 36, 98syl2ani 609 . . . . 5 ((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) → ((𝑥 ∈ (𝐴m 𝐶) ∧ 𝑦 ∈ (𝐵m 𝐷)) → (𝑥 = (𝑓 ∘ (𝑦𝑔)) ↔ 𝑦 = ((𝑓𝑥) ∘ 𝑔))))
1004, 5, 35, 60, 99en3d 8529 . . . 4 ((𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) → (𝐴m 𝐶) ≈ (𝐵m 𝐷))
101100exlimivv 1933 . . 3 (∃𝑓𝑔(𝑓:𝐴1-1-onto𝐵𝑔:𝐶1-1-onto𝐷) → (𝐴m 𝐶) ≈ (𝐵m 𝐷))
1023, 101sylbir 238 . 2 ((∃𝑓 𝑓:𝐴1-1-onto𝐵 ∧ ∃𝑔 𝑔:𝐶1-1-onto𝐷) → (𝐴m 𝐶) ≈ (𝐵m 𝐷))
1031, 2, 102syl2anb 600 1 ((𝐴𝐵𝐶𝐷) → (𝐴m 𝐶) ≈ (𝐵m 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wex 1781  wcel 2111  Vcvv 3441   class class class wbr 5030   I cid 5424  ccnv 5518  dom cdm 5519  ran crn 5520  cres 5521  ccom 5523   Fn wfn 6319  wf 6320  1-1wf1 6321  ontowfo 6322  1-1-ontowf1o 6323  (class class class)co 7135  m cmap 8389  cen 8489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-map 8391  df-en 8493
This theorem is referenced by:  mapdom1  8666  mapdom2  8672  pwen  8674  mappwen  9523  mapdjuen  9591  cfpwsdom  9995  rpnnen  15572  rexpen  15573  enrelmap  40698
  Copyright terms: Public domain W3C validator