| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl2and | Structured version Visualization version GIF version | ||
| Description: A syllogism deduction. (Contributed by NM, 15-Dec-2004.) |
| Ref | Expression |
|---|---|
| syl2and.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| syl2and.2 | ⊢ (𝜑 → (𝜃 → 𝜏)) |
| syl2and.3 | ⊢ (𝜑 → ((𝜒 ∧ 𝜏) → 𝜂)) |
| Ref | Expression |
|---|---|
| syl2and | ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → 𝜂)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2and.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | syl2and.2 | . . 3 ⊢ (𝜑 → (𝜃 → 𝜏)) | |
| 3 | syl2and.3 | . . 3 ⊢ (𝜑 → ((𝜒 ∧ 𝜏) → 𝜂)) | |
| 4 | 2, 3 | sylan2d 605 | . 2 ⊢ (𝜑 → ((𝜒 ∧ 𝜃) → 𝜂)) |
| 5 | 1, 4 | syland 603 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → 𝜂)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: anim12d 609 ax7 2017 dffi3 9310 cflim2 10146 axpre-sup 11052 xle2add 13150 fzen 13433 rpmulgcd2 16559 pcqmul 16757 sbcie2s 17064 initoeu1 17910 termoeu1 17917 plttr 18238 pospo 18241 lublecllem 18256 latjlej12 18353 latmlem12 18369 hausnei2 23261 uncmp 23311 itgsubst 25976 mpodvdsmulf1o 27124 dvdsmulf1o 27126 2sqlem8a 27356 precsexlem10 28147 axcontlem9 28943 uspgr2wlkeq 29617 shintcli 31299 cvntr 32262 cdj3i 32411 f1resrcmplf1dlem 35088 satffunlem 35413 bj-bary1 37325 heicant 37674 itg2addnc 37693 dihmeetlem1N 41308 modelaxreplem1 44990 fmtnofac2lem 47578 2itscp 48792 mofsn 48854 |
| Copyright terms: Public domain | W3C validator |