| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl2and | Structured version Visualization version GIF version | ||
| Description: A syllogism deduction. (Contributed by NM, 15-Dec-2004.) |
| Ref | Expression |
|---|---|
| syl2and.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| syl2and.2 | ⊢ (𝜑 → (𝜃 → 𝜏)) |
| syl2and.3 | ⊢ (𝜑 → ((𝜒 ∧ 𝜏) → 𝜂)) |
| Ref | Expression |
|---|---|
| syl2and | ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → 𝜂)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2and.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | syl2and.2 | . . 3 ⊢ (𝜑 → (𝜃 → 𝜏)) | |
| 3 | syl2and.3 | . . 3 ⊢ (𝜑 → ((𝜒 ∧ 𝜏) → 𝜂)) | |
| 4 | 2, 3 | sylan2d 605 | . 2 ⊢ (𝜑 → ((𝜒 ∧ 𝜃) → 𝜂)) |
| 5 | 1, 4 | syland 603 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → 𝜂)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: anim12d 609 ax7 2016 dffi3 9389 cflim2 10223 axpre-sup 11129 xle2add 13226 fzen 13509 rpmulgcd2 16633 pcqmul 16831 sbcie2s 17138 initoeu1 17980 termoeu1 17987 plttr 18308 pospo 18311 lublecllem 18326 latjlej12 18421 latmlem12 18437 hausnei2 23247 uncmp 23297 itgsubst 25963 mpodvdsmulf1o 27111 dvdsmulf1o 27113 2sqlem8a 27343 precsexlem10 28125 axcontlem9 28906 uspgr2wlkeq 29581 shintcli 31265 cvntr 32228 cdj3i 32377 f1resrcmplf1dlem 35083 satffunlem 35395 bj-bary1 37307 heicant 37656 itg2addnc 37675 dihmeetlem1N 41291 modelaxreplem1 44975 fmtnofac2lem 47573 2itscp 48774 mofsn 48836 |
| Copyright terms: Public domain | W3C validator |