MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl2and Structured version   Visualization version   GIF version

Theorem syl2and 608
Description: A syllogism deduction. (Contributed by NM, 15-Dec-2004.)
Hypotheses
Ref Expression
syl2and.1 (𝜑 → (𝜓𝜒))
syl2and.2 (𝜑 → (𝜃𝜏))
syl2and.3 (𝜑 → ((𝜒𝜏) → 𝜂))
Assertion
Ref Expression
syl2and (𝜑 → ((𝜓𝜃) → 𝜂))

Proof of Theorem syl2and
StepHypRef Expression
1 syl2and.1 . 2 (𝜑 → (𝜓𝜒))
2 syl2and.2 . . 3 (𝜑 → (𝜃𝜏))
3 syl2and.3 . . 3 (𝜑 → ((𝜒𝜏) → 𝜂))
42, 3sylan2d 605 . 2 (𝜑 → ((𝜒𝜃) → 𝜂))
51, 4syland 603 1 (𝜑 → ((𝜓𝜃) → 𝜂))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397
This theorem is referenced by:  anim12d  609  ax7  2019  dffi3  9422  cflim2  10254  axpre-sup  11160  xle2add  13234  fzen  13514  rpmulgcd2  16589  pcqmul  16782  sbcie2s  17090  initoeu1  17957  termoeu1  17964  plttr  18291  pospo  18294  lublecllem  18309  latjlej12  18404  latmlem12  18420  hausnei2  22848  uncmp  22898  itgsubst  25557  dvdsmulf1o  26687  2sqlem8a  26917  precsexlem10  27651  axcontlem9  28219  uspgr2wlkeq  28892  shintcli  30569  cvntr  31532  cdj3i  31681  f1resrcmplf1dlem  34077  satffunlem  34380  bj-bary1  36181  heicant  36511  itg2addnc  36530  dihmeetlem1N  40149  fmtnofac2lem  46222  2itscp  47420  mofsn  47463
  Copyright terms: Public domain W3C validator