![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl2and | Structured version Visualization version GIF version |
Description: A syllogism deduction. (Contributed by NM, 15-Dec-2004.) |
Ref | Expression |
---|---|
syl2and.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
syl2and.2 | ⊢ (𝜑 → (𝜃 → 𝜏)) |
syl2and.3 | ⊢ (𝜑 → ((𝜒 ∧ 𝜏) → 𝜂)) |
Ref | Expression |
---|---|
syl2and | ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → 𝜂)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2and.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | syl2and.2 | . . 3 ⊢ (𝜑 → (𝜃 → 𝜏)) | |
3 | syl2and.3 | . . 3 ⊢ (𝜑 → ((𝜒 ∧ 𝜏) → 𝜂)) | |
4 | 2, 3 | sylan2d 605 | . 2 ⊢ (𝜑 → ((𝜒 ∧ 𝜃) → 𝜂)) |
5 | 1, 4 | syland 603 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → 𝜂)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: anim12d 609 ax7 2012 dffi3 9468 cflim2 10300 axpre-sup 11206 xle2add 13297 fzen 13577 rpmulgcd2 16689 pcqmul 16886 sbcie2s 17194 initoeu1 18064 termoeu1 18071 plttr 18399 pospo 18402 lublecllem 18417 latjlej12 18512 latmlem12 18528 hausnei2 23376 uncmp 23426 itgsubst 26104 mpodvdsmulf1o 27251 dvdsmulf1o 27253 2sqlem8a 27483 precsexlem10 28254 axcontlem9 29001 uspgr2wlkeq 29678 shintcli 31357 cvntr 32320 cdj3i 32469 f1resrcmplf1dlem 35078 satffunlem 35385 bj-bary1 37294 heicant 37641 itg2addnc 37660 dihmeetlem1N 41272 modelaxreplem1 44942 fmtnofac2lem 47492 2itscp 48630 mofsn 48673 |
Copyright terms: Public domain | W3C validator |