| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl2and | Structured version Visualization version GIF version | ||
| Description: A syllogism deduction. (Contributed by NM, 15-Dec-2004.) |
| Ref | Expression |
|---|---|
| syl2and.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| syl2and.2 | ⊢ (𝜑 → (𝜃 → 𝜏)) |
| syl2and.3 | ⊢ (𝜑 → ((𝜒 ∧ 𝜏) → 𝜂)) |
| Ref | Expression |
|---|---|
| syl2and | ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → 𝜂)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2and.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | syl2and.2 | . . 3 ⊢ (𝜑 → (𝜃 → 𝜏)) | |
| 3 | syl2and.3 | . . 3 ⊢ (𝜑 → ((𝜒 ∧ 𝜏) → 𝜂)) | |
| 4 | 2, 3 | sylan2d 605 | . 2 ⊢ (𝜑 → ((𝜒 ∧ 𝜃) → 𝜂)) |
| 5 | 1, 4 | syland 603 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → 𝜂)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: anim12d 609 ax7 2017 dffi3 9325 cflim2 10164 axpre-sup 11070 xle2add 13168 fzen 13451 rpmulgcd2 16577 pcqmul 16775 sbcie2s 17082 initoeu1 17928 termoeu1 17935 plttr 18256 pospo 18259 lublecllem 18274 latjlej12 18371 latmlem12 18387 hausnei2 23278 uncmp 23328 itgsubst 25993 mpodvdsmulf1o 27141 dvdsmulf1o 27143 2sqlem8a 27373 precsexlem10 28164 axcontlem9 28961 uspgr2wlkeq 29635 shintcli 31320 cvntr 32283 cdj3i 32432 f1resrcmplf1dlem 35109 satffunlem 35456 bj-bary1 37367 heicant 37705 itg2addnc 37724 dihmeetlem1N 41399 modelaxreplem1 45085 fmtnofac2lem 47682 2itscp 48896 mofsn 48958 |
| Copyright terms: Public domain | W3C validator |