MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl2and Structured version   Visualization version   GIF version

Theorem syl2and 608
Description: A syllogism deduction. (Contributed by NM, 15-Dec-2004.)
Hypotheses
Ref Expression
syl2and.1 (𝜑 → (𝜓𝜒))
syl2and.2 (𝜑 → (𝜃𝜏))
syl2and.3 (𝜑 → ((𝜒𝜏) → 𝜂))
Assertion
Ref Expression
syl2and (𝜑 → ((𝜓𝜃) → 𝜂))

Proof of Theorem syl2and
StepHypRef Expression
1 syl2and.1 . 2 (𝜑 → (𝜓𝜒))
2 syl2and.2 . . 3 (𝜑 → (𝜃𝜏))
3 syl2and.3 . . 3 (𝜑 → ((𝜒𝜏) → 𝜂))
42, 3sylan2d 605 . 2 (𝜑 → ((𝜒𝜃) → 𝜂))
51, 4syland 603 1 (𝜑 → ((𝜓𝜃) → 𝜂))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  anim12d  609  ax7  2015  dffi3  9441  cflim2  10275  axpre-sup  11181  xle2add  13273  fzen  13556  rpmulgcd2  16673  pcqmul  16871  sbcie2s  17178  initoeu1  18022  termoeu1  18029  plttr  18350  pospo  18353  lublecllem  18368  latjlej12  18463  latmlem12  18479  hausnei2  23289  uncmp  23339  itgsubst  26006  mpodvdsmulf1o  27154  dvdsmulf1o  27156  2sqlem8a  27386  precsexlem10  28157  axcontlem9  28897  uspgr2wlkeq  29572  shintcli  31256  cvntr  32219  cdj3i  32368  f1resrcmplf1dlem  35063  satffunlem  35369  bj-bary1  37276  heicant  37625  itg2addnc  37644  dihmeetlem1N  41255  modelaxreplem1  44951  fmtnofac2lem  47530  2itscp  48709  mofsn  48770
  Copyright terms: Public domain W3C validator