| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl2and | Structured version Visualization version GIF version | ||
| Description: A syllogism deduction. (Contributed by NM, 15-Dec-2004.) |
| Ref | Expression |
|---|---|
| syl2and.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| syl2and.2 | ⊢ (𝜑 → (𝜃 → 𝜏)) |
| syl2and.3 | ⊢ (𝜑 → ((𝜒 ∧ 𝜏) → 𝜂)) |
| Ref | Expression |
|---|---|
| syl2and | ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → 𝜂)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2and.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | syl2and.2 | . . 3 ⊢ (𝜑 → (𝜃 → 𝜏)) | |
| 3 | syl2and.3 | . . 3 ⊢ (𝜑 → ((𝜒 ∧ 𝜏) → 𝜂)) | |
| 4 | 2, 3 | sylan2d 605 | . 2 ⊢ (𝜑 → ((𝜒 ∧ 𝜃) → 𝜂)) |
| 5 | 1, 4 | syland 603 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → 𝜂)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: anim12d 609 ax7 2015 dffi3 9441 cflim2 10275 axpre-sup 11181 xle2add 13273 fzen 13556 rpmulgcd2 16673 pcqmul 16871 sbcie2s 17178 initoeu1 18022 termoeu1 18029 plttr 18350 pospo 18353 lublecllem 18368 latjlej12 18463 latmlem12 18479 hausnei2 23289 uncmp 23339 itgsubst 26006 mpodvdsmulf1o 27154 dvdsmulf1o 27156 2sqlem8a 27386 precsexlem10 28157 axcontlem9 28897 uspgr2wlkeq 29572 shintcli 31256 cvntr 32219 cdj3i 32368 f1resrcmplf1dlem 35063 satffunlem 35369 bj-bary1 37276 heicant 37625 itg2addnc 37644 dihmeetlem1N 41255 modelaxreplem1 44951 fmtnofac2lem 47530 2itscp 48709 mofsn 48770 |
| Copyright terms: Public domain | W3C validator |