| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl2and | Structured version Visualization version GIF version | ||
| Description: A syllogism deduction. (Contributed by NM, 15-Dec-2004.) |
| Ref | Expression |
|---|---|
| syl2and.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| syl2and.2 | ⊢ (𝜑 → (𝜃 → 𝜏)) |
| syl2and.3 | ⊢ (𝜑 → ((𝜒 ∧ 𝜏) → 𝜂)) |
| Ref | Expression |
|---|---|
| syl2and | ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → 𝜂)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2and.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | syl2and.2 | . . 3 ⊢ (𝜑 → (𝜃 → 𝜏)) | |
| 3 | syl2and.3 | . . 3 ⊢ (𝜑 → ((𝜒 ∧ 𝜏) → 𝜂)) | |
| 4 | 2, 3 | sylan2d 605 | . 2 ⊢ (𝜑 → ((𝜒 ∧ 𝜃) → 𝜂)) |
| 5 | 1, 4 | syland 603 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → 𝜂)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: anim12d 609 ax7 2016 dffi3 9340 cflim2 10176 axpre-sup 11082 xle2add 13179 fzen 13462 rpmulgcd2 16585 pcqmul 16783 sbcie2s 17090 initoeu1 17936 termoeu1 17943 plttr 18264 pospo 18267 lublecllem 18282 latjlej12 18379 latmlem12 18395 hausnei2 23256 uncmp 23306 itgsubst 25972 mpodvdsmulf1o 27120 dvdsmulf1o 27122 2sqlem8a 27352 precsexlem10 28141 axcontlem9 28935 uspgr2wlkeq 29609 shintcli 31291 cvntr 32254 cdj3i 32403 f1resrcmplf1dlem 35052 satffunlem 35373 bj-bary1 37285 heicant 37634 itg2addnc 37653 dihmeetlem1N 41269 modelaxreplem1 44952 fmtnofac2lem 47553 2itscp 48754 mofsn 48816 |
| Copyright terms: Public domain | W3C validator |