| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl2and | Structured version Visualization version GIF version | ||
| Description: A syllogism deduction. (Contributed by NM, 15-Dec-2004.) |
| Ref | Expression |
|---|---|
| syl2and.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| syl2and.2 | ⊢ (𝜑 → (𝜃 → 𝜏)) |
| syl2and.3 | ⊢ (𝜑 → ((𝜒 ∧ 𝜏) → 𝜂)) |
| Ref | Expression |
|---|---|
| syl2and | ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → 𝜂)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2and.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | syl2and.2 | . . 3 ⊢ (𝜑 → (𝜃 → 𝜏)) | |
| 3 | syl2and.3 | . . 3 ⊢ (𝜑 → ((𝜒 ∧ 𝜏) → 𝜂)) | |
| 4 | 2, 3 | sylan2d 605 | . 2 ⊢ (𝜑 → ((𝜒 ∧ 𝜃) → 𝜂)) |
| 5 | 1, 4 | syland 603 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → 𝜂)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: anim12d 609 ax7 2016 dffi3 9382 cflim2 10216 axpre-sup 11122 xle2add 13219 fzen 13502 rpmulgcd2 16626 pcqmul 16824 sbcie2s 17131 initoeu1 17973 termoeu1 17980 plttr 18301 pospo 18304 lublecllem 18319 latjlej12 18414 latmlem12 18430 hausnei2 23240 uncmp 23290 itgsubst 25956 mpodvdsmulf1o 27104 dvdsmulf1o 27106 2sqlem8a 27336 precsexlem10 28118 axcontlem9 28899 uspgr2wlkeq 29574 shintcli 31258 cvntr 32221 cdj3i 32370 f1resrcmplf1dlem 35076 satffunlem 35388 bj-bary1 37300 heicant 37649 itg2addnc 37668 dihmeetlem1N 41284 modelaxreplem1 44968 fmtnofac2lem 47569 2itscp 48770 mofsn 48832 |
| Copyright terms: Public domain | W3C validator |