Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl2and | Structured version Visualization version GIF version |
Description: A syllogism deduction. (Contributed by NM, 15-Dec-2004.) |
Ref | Expression |
---|---|
syl2and.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
syl2and.2 | ⊢ (𝜑 → (𝜃 → 𝜏)) |
syl2and.3 | ⊢ (𝜑 → ((𝜒 ∧ 𝜏) → 𝜂)) |
Ref | Expression |
---|---|
syl2and | ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → 𝜂)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2and.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | syl2and.2 | . . 3 ⊢ (𝜑 → (𝜃 → 𝜏)) | |
3 | syl2and.3 | . . 3 ⊢ (𝜑 → ((𝜒 ∧ 𝜏) → 𝜂)) | |
4 | 2, 3 | sylan2d 606 | . 2 ⊢ (𝜑 → ((𝜒 ∧ 𝜃) → 𝜂)) |
5 | 1, 4 | syland 604 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → 𝜂)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: anim12d 610 ax7 2019 dffi3 9292 cflim2 10124 axpre-sup 11030 xle2add 13098 fzen 13378 rpmulgcd2 16458 pcqmul 16651 initoeu1 17823 termoeu1 17830 plttr 18157 pospo 18160 lublecllem 18175 latjlej12 18270 latmlem12 18286 hausnei2 22609 uncmp 22659 itgsubst 25318 dvdsmulf1o 26448 2sqlem8a 26678 axcontlem9 27628 uspgr2wlkeq 28301 shintcli 29978 cvntr 30941 cdj3i 31090 f1resrcmplf1dlem 33355 satffunlem 33660 bj-bary1 35637 heicant 35968 itg2addnc 35987 dihmeetlem1N 39609 fmtnofac2lem 45438 2itscp 46545 mofsn 46589 |
Copyright terms: Public domain | W3C validator |