Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl2and | Structured version Visualization version GIF version |
Description: A syllogism deduction. (Contributed by NM, 15-Dec-2004.) |
Ref | Expression |
---|---|
syl2and.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
syl2and.2 | ⊢ (𝜑 → (𝜃 → 𝜏)) |
syl2and.3 | ⊢ (𝜑 → ((𝜒 ∧ 𝜏) → 𝜂)) |
Ref | Expression |
---|---|
syl2and | ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → 𝜂)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2and.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | syl2and.2 | . . 3 ⊢ (𝜑 → (𝜃 → 𝜏)) | |
3 | syl2and.3 | . . 3 ⊢ (𝜑 → ((𝜒 ∧ 𝜏) → 𝜂)) | |
4 | 2, 3 | sylan2d 605 | . 2 ⊢ (𝜑 → ((𝜒 ∧ 𝜃) → 𝜂)) |
5 | 1, 4 | syland 603 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → 𝜂)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: anim12d 609 ax7 2019 dffi3 9190 cflim2 10019 axpre-sup 10925 xle2add 12993 fzen 13273 rpmulgcd2 16361 pcqmul 16554 initoeu1 17726 termoeu1 17733 plttr 18060 pospo 18063 lublecllem 18078 latjlej12 18173 latmlem12 18189 cygablOLD 19492 hausnei2 22504 uncmp 22554 itgsubst 25213 dvdsmulf1o 26343 2sqlem8a 26573 axcontlem9 27340 uspgr2wlkeq 28013 shintcli 29691 cvntr 30654 cdj3i 30803 f1resrcmplf1dlem 33058 satffunlem 33363 bj-bary1 35483 heicant 35812 itg2addnc 35831 dihmeetlem1N 39304 fmtnofac2lem 45020 2itscp 46127 mofsn 46171 |
Copyright terms: Public domain | W3C validator |