Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl2and | Structured version Visualization version GIF version |
Description: A syllogism deduction. (Contributed by NM, 15-Dec-2004.) |
Ref | Expression |
---|---|
syl2and.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
syl2and.2 | ⊢ (𝜑 → (𝜃 → 𝜏)) |
syl2and.3 | ⊢ (𝜑 → ((𝜒 ∧ 𝜏) → 𝜂)) |
Ref | Expression |
---|---|
syl2and | ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → 𝜂)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2and.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | syl2and.2 | . . 3 ⊢ (𝜑 → (𝜃 → 𝜏)) | |
3 | syl2and.3 | . . 3 ⊢ (𝜑 → ((𝜒 ∧ 𝜏) → 𝜂)) | |
4 | 2, 3 | sylan2d 604 | . 2 ⊢ (𝜑 → ((𝜒 ∧ 𝜃) → 𝜂)) |
5 | 1, 4 | syland 602 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → 𝜂)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: anim12d 608 ax7 2020 dffi3 9120 cflim2 9950 axpre-sup 10856 xle2add 12922 fzen 13202 rpmulgcd2 16289 pcqmul 16482 initoeu1 17642 termoeu1 17649 plttr 17975 pospo 17978 lublecllem 17993 latjlej12 18088 latmlem12 18104 cygablOLD 19407 hausnei2 22412 uncmp 22462 itgsubst 25118 dvdsmulf1o 26248 2sqlem8a 26478 axcontlem9 27243 uspgr2wlkeq 27915 shintcli 29592 cvntr 30555 cdj3i 30704 f1resrcmplf1dlem 32958 satffunlem 33263 bj-bary1 35410 heicant 35739 itg2addnc 35758 dihmeetlem1N 39231 fmtnofac2lem 44908 2itscp 46015 mofsn 46059 |
Copyright terms: Public domain | W3C validator |