![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl2and | Structured version Visualization version GIF version |
Description: A syllogism deduction. (Contributed by NM, 15-Dec-2004.) |
Ref | Expression |
---|---|
syl2and.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
syl2and.2 | ⊢ (𝜑 → (𝜃 → 𝜏)) |
syl2and.3 | ⊢ (𝜑 → ((𝜒 ∧ 𝜏) → 𝜂)) |
Ref | Expression |
---|---|
syl2and | ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → 𝜂)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2and.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | syl2and.2 | . . 3 ⊢ (𝜑 → (𝜃 → 𝜏)) | |
3 | syl2and.3 | . . 3 ⊢ (𝜑 → ((𝜒 ∧ 𝜏) → 𝜂)) | |
4 | 2, 3 | sylan2d 604 | . 2 ⊢ (𝜑 → ((𝜒 ∧ 𝜃) → 𝜂)) |
5 | 1, 4 | syland 602 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → 𝜂)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: anim12d 608 ax7 2015 dffi3 9500 cflim2 10332 axpre-sup 11238 xle2add 13321 fzen 13601 rpmulgcd2 16703 pcqmul 16900 sbcie2s 17208 initoeu1 18078 termoeu1 18085 plttr 18412 pospo 18415 lublecllem 18430 latjlej12 18525 latmlem12 18541 hausnei2 23382 uncmp 23432 itgsubst 26110 mpodvdsmulf1o 27255 dvdsmulf1o 27257 2sqlem8a 27487 precsexlem10 28258 axcontlem9 29005 uspgr2wlkeq 29682 shintcli 31361 cvntr 32324 cdj3i 32473 f1resrcmplf1dlem 35062 satffunlem 35369 bj-bary1 37278 heicant 37615 itg2addnc 37634 dihmeetlem1N 41247 fmtnofac2lem 47442 2itscp 48515 mofsn 48557 |
Copyright terms: Public domain | W3C validator |