Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cgrxfr Structured version   Visualization version   GIF version

Theorem cgrxfr 34043
Description: A line segment can be divided at the same place as a congruent line segment is divided. Theorem 4.5 of [Schwabhauser] p. 35. (Contributed by Scott Fenton, 4-Oct-2013.)
Assertion
Ref Expression
cgrxfr ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) → ∃𝑒 ∈ (𝔼‘𝑁)(𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)))
Distinct variable groups:   𝐴,𝑒   𝐵,𝑒   𝐶,𝑒   𝐷,𝑒   𝑒,𝐹   𝑒,𝑁

Proof of Theorem cgrxfr
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 1193 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩)) → 𝑁 ∈ ℕ)
2 simpl3r 1231 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩)) → 𝐹 ∈ (𝔼‘𝑁))
3 simpl3l 1230 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩)) → 𝐷 ∈ (𝔼‘𝑁))
4 btwndiff 34015 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐹 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → ∃𝑔 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔))
51, 2, 3, 4syl3anc 1373 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩)) → ∃𝑔 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔))
6 simpl1 1193 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑔 ∈ (𝔼‘𝑁)) → 𝑁 ∈ ℕ)
7 simpr 488 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑔 ∈ (𝔼‘𝑁)) → 𝑔 ∈ (𝔼‘𝑁))
8 simpl3l 1230 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑔 ∈ (𝔼‘𝑁)) → 𝐷 ∈ (𝔼‘𝑁))
9 simpl21 1253 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑔 ∈ (𝔼‘𝑁)) → 𝐴 ∈ (𝔼‘𝑁))
10 simpl22 1254 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑔 ∈ (𝔼‘𝑁)) → 𝐵 ∈ (𝔼‘𝑁))
11 axsegcon 26972 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → ∃𝑒 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩))
126, 7, 8, 9, 10, 11syl122anc 1381 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑔 ∈ (𝔼‘𝑁)) → ∃𝑒 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩))
1312adantr 484 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑔 ∈ (𝔼‘𝑁)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔))) → ∃𝑒 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩))
14 anass 472 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑔 ∈ (𝔼‘𝑁)) ∧ 𝑒 ∈ (𝔼‘𝑁)) ↔ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))))
15 simpl1 1193 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ)
16 simprl 771 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) → 𝑔 ∈ (𝔼‘𝑁))
17 simprr 773 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) → 𝑒 ∈ (𝔼‘𝑁))
18 simpl22 1254 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁))
19 simpl23 1255 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) → 𝐶 ∈ (𝔼‘𝑁))
20 axsegcon 26972 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ∃𝑓 ∈ (𝔼‘𝑁)(𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))
2115, 16, 17, 18, 19, 20syl122anc 1381 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) → ∃𝑓 ∈ (𝔼‘𝑁)(𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))
2221adantr 484 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) ∧ (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩))) → ∃𝑓 ∈ (𝔼‘𝑁)(𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))
23 anass 472 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) ↔ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ ((𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ 𝑓 ∈ (𝔼‘𝑁))))
24 df-3an 1091 . . . . . . . . . . . . . . . . 17 ((𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁)) ↔ ((𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ 𝑓 ∈ (𝔼‘𝑁)))
2524anbi2i 626 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ↔ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ ((𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ 𝑓 ∈ (𝔼‘𝑁))))
2623, 25bitr4i 281 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) ↔ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))))
27 simplrr 778 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) → 𝐷𝑔)
2827ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → 𝐷𝑔)
2928necomd 2987 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → 𝑔𝐷)
30 simpl1 1193 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ)
31 simpr1 1196 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → 𝑔 ∈ (𝔼‘𝑁))
32 simpl3l 1230 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → 𝐷 ∈ (𝔼‘𝑁))
33 simpr2 1197 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → 𝑒 ∈ (𝔼‘𝑁))
34 simpr3 1198 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → 𝑓 ∈ (𝔼‘𝑁))
35 simprl 771 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) → 𝐷 Btwn ⟨𝑔, 𝑒⟩)
3635ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → 𝐷 Btwn ⟨𝑔, 𝑒⟩)
37 simprrl 781 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → 𝑒 Btwn ⟨𝑔, 𝑓⟩)
3830, 31, 32, 33, 34, 36, 37btwnexchand 34014 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → 𝐷 Btwn ⟨𝑔, 𝑓⟩)
39 simpl21 1253 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁))
40 simpl22 1254 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁))
41 simpl23 1255 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → 𝐶 ∈ (𝔼‘𝑁))
4230, 31, 32, 33, 34, 36, 37btwnexch3and 34009 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → 𝑒 Btwn ⟨𝐷, 𝑓⟩)
43 simplll 775 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) → 𝐵 Btwn ⟨𝐴, 𝐶⟩)
4443ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → 𝐵 Btwn ⟨𝐴, 𝐶⟩)
45 simprr 773 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) → ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)
4645ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)
47 simprrr 782 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩)
4830, 32, 33, 34, 39, 40, 41, 42, 44, 46, 47cgrextendand 33997 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → ⟨𝐷, 𝑓⟩Cgr⟨𝐴, 𝐶⟩)
4938, 48jca 515 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → (𝐷 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝐷, 𝑓⟩Cgr⟨𝐴, 𝐶⟩))
50 simpl3r 1231 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → 𝐹 ∈ (𝔼‘𝑁))
51 simplrl 777 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) → 𝐷 Btwn ⟨𝐹, 𝑔⟩)
5251ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → 𝐷 Btwn ⟨𝐹, 𝑔⟩)
5330, 32, 50, 31, 52btwncomand 34003 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → 𝐷 Btwn ⟨𝑔, 𝐹⟩)
54 simpllr 776 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) → ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩)
5554ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩)
5630, 39, 41, 32, 50, 55cgrcomand 33979 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → ⟨𝐷, 𝐹⟩Cgr⟨𝐴, 𝐶⟩)
5753, 56jca 515 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → (𝐷 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝐷, 𝐹⟩Cgr⟨𝐴, 𝐶⟩))
5829, 49, 573jca 1130 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → (𝑔𝐷 ∧ (𝐷 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝐷, 𝑓⟩Cgr⟨𝐴, 𝐶⟩) ∧ (𝐷 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝐷, 𝐹⟩Cgr⟨𝐴, 𝐶⟩)))
5958ex 416 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → (((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩)) → (𝑔𝐷 ∧ (𝐷 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝐷, 𝑓⟩Cgr⟨𝐴, 𝐶⟩) ∧ (𝐷 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝐷, 𝐹⟩Cgr⟨𝐴, 𝐶⟩))))
60 segconeq 33998 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → ((𝑔𝐷 ∧ (𝐷 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝐷, 𝑓⟩Cgr⟨𝐴, 𝐶⟩) ∧ (𝐷 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝐷, 𝐹⟩Cgr⟨𝐴, 𝐶⟩)) → 𝑓 = 𝐹))
6130, 32, 39, 41, 31, 34, 50, 60syl133anc 1395 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → ((𝑔𝐷 ∧ (𝐷 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝐷, 𝑓⟩Cgr⟨𝐴, 𝐶⟩) ∧ (𝐷 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝐷, 𝐹⟩Cgr⟨𝐴, 𝐶⟩)) → 𝑓 = 𝐹))
6259, 61syld 47 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → (((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩)) → 𝑓 = 𝐹))
6362imp 410 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → 𝑓 = 𝐹)
64 opeq2 4771 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 = 𝐹 → ⟨𝑔, 𝑓⟩ = ⟨𝑔, 𝐹⟩)
6564breq2d 5051 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 = 𝐹 → (𝑒 Btwn ⟨𝑔, 𝑓⟩ ↔ 𝑒 Btwn ⟨𝑔, 𝐹⟩))
66 opeq2 4771 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 = 𝐹 → ⟨𝑒, 𝑓⟩ = ⟨𝑒, 𝐹⟩)
6766breq1d 5049 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 = 𝐹 → (⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩ ↔ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩))
6865, 67anbi12d 634 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = 𝐹 → ((𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩) ↔ (𝑒 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩)))
6968biimpa 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑓 = 𝐹 ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩)) → (𝑒 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩))
70 simpl 486 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑒 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩) → 𝑒 Btwn ⟨𝑔, 𝐹⟩)
71 btwnexch3 34008 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 ∈ ℕ ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → ((𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ 𝑒 Btwn ⟨𝑔, 𝐹⟩) → 𝑒 Btwn ⟨𝐷, 𝐹⟩))
7230, 31, 32, 33, 50, 71syl122anc 1381 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → ((𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ 𝑒 Btwn ⟨𝑔, 𝐹⟩) → 𝑒 Btwn ⟨𝐷, 𝐹⟩))
7335, 70, 72syl2ani 610 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → (((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩)) → 𝑒 Btwn ⟨𝐷, 𝐹⟩))
7473imp 410 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩))) → 𝑒 Btwn ⟨𝐷, 𝐹⟩)
75 simplrr 778 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩)) → ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)
7675adantl 485 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩))) → ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)
7730, 32, 33, 39, 40, 76cgrcomand 33979 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩))) → ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝑒⟩)
7854ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩))) → ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩)
79 simprrr 782 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩))) → ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩)
8030, 33, 50, 40, 41, 79cgrcomand 33979 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩))) → ⟨𝐵, 𝐶⟩Cgr⟨𝑒, 𝐹⟩)
81 brcgr3 34034 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → (⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩ ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝑒⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑒, 𝐹⟩)))
8230, 39, 40, 41, 32, 33, 50, 81syl133anc 1395 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → (⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩ ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝑒⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑒, 𝐹⟩)))
8382adantr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩))) → (⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩ ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝑒⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑒, 𝐹⟩)))
8477, 78, 80, 83mpbir3and 1344 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩))) → ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)
8574, 84jca 515 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩))) → (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩))
8685expr 460 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩))) → ((𝑒 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩) → (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)))
8769, 86syl5 34 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩))) → ((𝑓 = 𝐹 ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩)) → (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)))
8887expcomd 420 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩))) → ((𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩) → (𝑓 = 𝐹 → (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩))))
8988impr 458 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → (𝑓 = 𝐹 → (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)))
9063, 89mpd 15 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩))
9190expr 460 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩))) → ((𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩) → (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)))
9226, 91sylanb 584 . . . . . . . . . . . . . 14 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) ∧ (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩))) → ((𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩) → (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)))
9392an32s 652 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) ∧ (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩))) ∧ 𝑓 ∈ (𝔼‘𝑁)) → ((𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩) → (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)))
9493rexlimdva 3193 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) ∧ (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩))) → (∃𝑓 ∈ (𝔼‘𝑁)(𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩) → (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)))
9522, 94mpd 15 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) ∧ (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩))) → (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩))
9695expr 460 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔))) → ((𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩) → (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)))
9714, 96sylanb 584 . . . . . . . . 9 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑔 ∈ (𝔼‘𝑁)) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔))) → ((𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩) → (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)))
9897an32s 652 . . . . . . . 8 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑔 ∈ (𝔼‘𝑁)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → ((𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩) → (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)))
9998reximdva 3183 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑔 ∈ (𝔼‘𝑁)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔))) → (∃𝑒 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩) → ∃𝑒 ∈ (𝔼‘𝑁)(𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)))
10013, 99mpd 15 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑔 ∈ (𝔼‘𝑁)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔))) → ∃𝑒 ∈ (𝔼‘𝑁)(𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩))
101100expr 460 . . . . 5 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑔 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩)) → ((𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔) → ∃𝑒 ∈ (𝔼‘𝑁)(𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)))
102101an32s 652 . . . 4 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩)) ∧ 𝑔 ∈ (𝔼‘𝑁)) → ((𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔) → ∃𝑒 ∈ (𝔼‘𝑁)(𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)))
103102rexlimdva 3193 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩)) → (∃𝑔 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔) → ∃𝑒 ∈ (𝔼‘𝑁)(𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)))
1045, 103mpd 15 . 2 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩)) → ∃𝑒 ∈ (𝔼‘𝑁)(𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩))
105104ex 416 1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) → ∃𝑒 ∈ (𝔼‘𝑁)(𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2112  wne 2932  wrex 3052  cop 4533   class class class wbr 5039  cfv 6358  cn 11795  𝔼cee 26933   Btwn cbtwn 26934  Cgrccgr 26935  Cgr3ccgr3 34024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-inf2 9234  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-pre-sup 10772
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-se 5495  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-er 8369  df-map 8488  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-sup 9036  df-oi 9104  df-card 9520  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-2 11858  df-3 11859  df-n0 12056  df-z 12142  df-uz 12404  df-rp 12552  df-ico 12906  df-icc 12907  df-fz 13061  df-fzo 13204  df-seq 13540  df-exp 13601  df-hash 13862  df-cj 14627  df-re 14628  df-im 14629  df-sqrt 14763  df-abs 14764  df-clim 15014  df-sum 15215  df-ee 26936  df-btwn 26937  df-cgr 26938  df-ofs 33971  df-cgr3 34029
This theorem is referenced by:  btwnxfr  34044  lineext  34064  seglecgr12im  34098  segletr  34102
  Copyright terms: Public domain W3C validator