Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cgrxfr Structured version   Visualization version   GIF version

Theorem cgrxfr 36050
Description: A line segment can be divided at the same place as a congruent line segment is divided. Theorem 4.5 of [Schwabhauser] p. 35. (Contributed by Scott Fenton, 4-Oct-2013.)
Assertion
Ref Expression
cgrxfr ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) → ∃𝑒 ∈ (𝔼‘𝑁)(𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)))
Distinct variable groups:   𝐴,𝑒   𝐵,𝑒   𝐶,𝑒   𝐷,𝑒   𝑒,𝐹   𝑒,𝑁

Proof of Theorem cgrxfr
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1 1192 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩)) → 𝑁 ∈ ℕ)
2 simpl3r 1230 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩)) → 𝐹 ∈ (𝔼‘𝑁))
3 simpl3l 1229 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩)) → 𝐷 ∈ (𝔼‘𝑁))
4 btwndiff 36022 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐹 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → ∃𝑔 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔))
51, 2, 3, 4syl3anc 1373 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩)) → ∃𝑔 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔))
6 simpl1 1192 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑔 ∈ (𝔼‘𝑁)) → 𝑁 ∈ ℕ)
7 simpr 484 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑔 ∈ (𝔼‘𝑁)) → 𝑔 ∈ (𝔼‘𝑁))
8 simpl3l 1229 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑔 ∈ (𝔼‘𝑁)) → 𝐷 ∈ (𝔼‘𝑁))
9 simpl21 1252 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑔 ∈ (𝔼‘𝑁)) → 𝐴 ∈ (𝔼‘𝑁))
10 simpl22 1253 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑔 ∈ (𝔼‘𝑁)) → 𝐵 ∈ (𝔼‘𝑁))
11 axsegcon 28861 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → ∃𝑒 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩))
126, 7, 8, 9, 10, 11syl122anc 1381 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑔 ∈ (𝔼‘𝑁)) → ∃𝑒 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩))
1312adantr 480 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑔 ∈ (𝔼‘𝑁)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔))) → ∃𝑒 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩))
14 anass 468 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑔 ∈ (𝔼‘𝑁)) ∧ 𝑒 ∈ (𝔼‘𝑁)) ↔ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))))
15 simpl1 1192 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ)
16 simprl 770 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) → 𝑔 ∈ (𝔼‘𝑁))
17 simprr 772 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) → 𝑒 ∈ (𝔼‘𝑁))
18 simpl22 1253 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁))
19 simpl23 1254 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) → 𝐶 ∈ (𝔼‘𝑁))
20 axsegcon 28861 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ∃𝑓 ∈ (𝔼‘𝑁)(𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))
2115, 16, 17, 18, 19, 20syl122anc 1381 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) → ∃𝑓 ∈ (𝔼‘𝑁)(𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))
2221adantr 480 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) ∧ (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩))) → ∃𝑓 ∈ (𝔼‘𝑁)(𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))
23 anass 468 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) ↔ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ ((𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ 𝑓 ∈ (𝔼‘𝑁))))
24 df-3an 1088 . . . . . . . . . . . . . . . . 17 ((𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁)) ↔ ((𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ 𝑓 ∈ (𝔼‘𝑁)))
2524anbi2i 623 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ↔ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ ((𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ 𝑓 ∈ (𝔼‘𝑁))))
2623, 25bitr4i 278 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) ↔ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))))
27 simplrr 777 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) → 𝐷𝑔)
2827ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → 𝐷𝑔)
2928necomd 2981 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → 𝑔𝐷)
30 simpl1 1192 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ)
31 simpr1 1195 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → 𝑔 ∈ (𝔼‘𝑁))
32 simpl3l 1229 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → 𝐷 ∈ (𝔼‘𝑁))
33 simpr2 1196 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → 𝑒 ∈ (𝔼‘𝑁))
34 simpr3 1197 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → 𝑓 ∈ (𝔼‘𝑁))
35 simprl 770 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) → 𝐷 Btwn ⟨𝑔, 𝑒⟩)
3635ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → 𝐷 Btwn ⟨𝑔, 𝑒⟩)
37 simprrl 780 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → 𝑒 Btwn ⟨𝑔, 𝑓⟩)
3830, 31, 32, 33, 34, 36, 37btwnexchand 36021 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → 𝐷 Btwn ⟨𝑔, 𝑓⟩)
39 simpl21 1252 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁))
40 simpl22 1253 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁))
41 simpl23 1254 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → 𝐶 ∈ (𝔼‘𝑁))
4230, 31, 32, 33, 34, 36, 37btwnexch3and 36016 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → 𝑒 Btwn ⟨𝐷, 𝑓⟩)
43 simplll 774 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) → 𝐵 Btwn ⟨𝐴, 𝐶⟩)
4443ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → 𝐵 Btwn ⟨𝐴, 𝐶⟩)
45 simprr 772 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) → ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)
4645ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)
47 simprrr 781 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩)
4830, 32, 33, 34, 39, 40, 41, 42, 44, 46, 47cgrextendand 36004 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → ⟨𝐷, 𝑓⟩Cgr⟨𝐴, 𝐶⟩)
4938, 48jca 511 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → (𝐷 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝐷, 𝑓⟩Cgr⟨𝐴, 𝐶⟩))
50 simpl3r 1230 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → 𝐹 ∈ (𝔼‘𝑁))
51 simplrl 776 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) → 𝐷 Btwn ⟨𝐹, 𝑔⟩)
5251ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → 𝐷 Btwn ⟨𝐹, 𝑔⟩)
5330, 32, 50, 31, 52btwncomand 36010 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → 𝐷 Btwn ⟨𝑔, 𝐹⟩)
54 simpllr 775 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) → ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩)
5554ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩)
5630, 39, 41, 32, 50, 55cgrcomand 35986 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → ⟨𝐷, 𝐹⟩Cgr⟨𝐴, 𝐶⟩)
5753, 56jca 511 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → (𝐷 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝐷, 𝐹⟩Cgr⟨𝐴, 𝐶⟩))
5829, 49, 573jca 1128 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → (𝑔𝐷 ∧ (𝐷 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝐷, 𝑓⟩Cgr⟨𝐴, 𝐶⟩) ∧ (𝐷 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝐷, 𝐹⟩Cgr⟨𝐴, 𝐶⟩)))
5958ex 412 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → (((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩)) → (𝑔𝐷 ∧ (𝐷 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝐷, 𝑓⟩Cgr⟨𝐴, 𝐶⟩) ∧ (𝐷 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝐷, 𝐹⟩Cgr⟨𝐴, 𝐶⟩))))
60 segconeq 36005 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → ((𝑔𝐷 ∧ (𝐷 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝐷, 𝑓⟩Cgr⟨𝐴, 𝐶⟩) ∧ (𝐷 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝐷, 𝐹⟩Cgr⟨𝐴, 𝐶⟩)) → 𝑓 = 𝐹))
6130, 32, 39, 41, 31, 34, 50, 60syl133anc 1395 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → ((𝑔𝐷 ∧ (𝐷 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝐷, 𝑓⟩Cgr⟨𝐴, 𝐶⟩) ∧ (𝐷 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝐷, 𝐹⟩Cgr⟨𝐴, 𝐶⟩)) → 𝑓 = 𝐹))
6259, 61syld 47 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → (((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩)) → 𝑓 = 𝐹))
6362imp 406 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → 𝑓 = 𝐹)
64 opeq2 4841 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 = 𝐹 → ⟨𝑔, 𝑓⟩ = ⟨𝑔, 𝐹⟩)
6564breq2d 5122 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 = 𝐹 → (𝑒 Btwn ⟨𝑔, 𝑓⟩ ↔ 𝑒 Btwn ⟨𝑔, 𝐹⟩))
66 opeq2 4841 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 = 𝐹 → ⟨𝑒, 𝑓⟩ = ⟨𝑒, 𝐹⟩)
6766breq1d 5120 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓 = 𝐹 → (⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩ ↔ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩))
6865, 67anbi12d 632 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 = 𝐹 → ((𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩) ↔ (𝑒 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩)))
6968biimpa 476 . . . . . . . . . . . . . . . . . . . 20 ((𝑓 = 𝐹 ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩)) → (𝑒 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩))
70 simpl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑒 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩) → 𝑒 Btwn ⟨𝑔, 𝐹⟩)
71 btwnexch3 36015 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 ∈ ℕ ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → ((𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ 𝑒 Btwn ⟨𝑔, 𝐹⟩) → 𝑒 Btwn ⟨𝐷, 𝐹⟩))
7230, 31, 32, 33, 50, 71syl122anc 1381 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → ((𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ 𝑒 Btwn ⟨𝑔, 𝐹⟩) → 𝑒 Btwn ⟨𝐷, 𝐹⟩))
7335, 70, 72syl2ani 607 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → (((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩)) → 𝑒 Btwn ⟨𝐷, 𝐹⟩))
7473imp 406 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩))) → 𝑒 Btwn ⟨𝐷, 𝐹⟩)
75 simplrr 777 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩)) → ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)
7675adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩))) → ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)
7730, 32, 33, 39, 40, 76cgrcomand 35986 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩))) → ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝑒⟩)
7854ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩))) → ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩)
79 simprrr 781 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩))) → ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩)
8030, 33, 50, 40, 41, 79cgrcomand 35986 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩))) → ⟨𝐵, 𝐶⟩Cgr⟨𝑒, 𝐹⟩)
81 brcgr3 36041 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → (⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩ ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝑒⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑒, 𝐹⟩)))
8230, 39, 40, 41, 32, 33, 50, 81syl133anc 1395 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → (⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩ ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝑒⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑒, 𝐹⟩)))
8382adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩))) → (⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩ ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝑒⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑒, 𝐹⟩)))
8477, 78, 80, 83mpbir3and 1343 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩))) → ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)
8574, 84jca 511 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩))) → (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩))
8685expr 456 . . . . . . . . . . . . . . . . . . . 20 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩))) → ((𝑒 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩) → (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)))
8769, 86syl5 34 . . . . . . . . . . . . . . . . . . 19 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩))) → ((𝑓 = 𝐹 ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩)) → (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)))
8887expcomd 416 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩))) → ((𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩) → (𝑓 = 𝐹 → (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩))))
8988impr 454 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → (𝑓 = 𝐹 → (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)))
9063, 89mpd 15 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩))
9190expr 456 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩))) → ((𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩) → (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)))
9226, 91sylanb 581 . . . . . . . . . . . . . 14 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) ∧ (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩))) → ((𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩) → (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)))
9392an32s 652 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) ∧ (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩))) ∧ 𝑓 ∈ (𝔼‘𝑁)) → ((𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩) → (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)))
9493rexlimdva 3135 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) ∧ (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩))) → (∃𝑓 ∈ (𝔼‘𝑁)(𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩) → (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)))
9522, 94mpd 15 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) ∧ (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩))) → (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩))
9695expr 456 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔))) → ((𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩) → (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)))
9714, 96sylanb 581 . . . . . . . . 9 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑔 ∈ (𝔼‘𝑁)) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔))) → ((𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩) → (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)))
9897an32s 652 . . . . . . . 8 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑔 ∈ (𝔼‘𝑁)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → ((𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩) → (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)))
9998reximdva 3147 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑔 ∈ (𝔼‘𝑁)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔))) → (∃𝑒 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩) → ∃𝑒 ∈ (𝔼‘𝑁)(𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)))
10013, 99mpd 15 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑔 ∈ (𝔼‘𝑁)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔))) → ∃𝑒 ∈ (𝔼‘𝑁)(𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩))
101100expr 456 . . . . 5 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑔 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩)) → ((𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔) → ∃𝑒 ∈ (𝔼‘𝑁)(𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)))
102101an32s 652 . . . 4 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩)) ∧ 𝑔 ∈ (𝔼‘𝑁)) → ((𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔) → ∃𝑒 ∈ (𝔼‘𝑁)(𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)))
103102rexlimdva 3135 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩)) → (∃𝑔 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷𝑔) → ∃𝑒 ∈ (𝔼‘𝑁)(𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)))
1045, 103mpd 15 . 2 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩)) → ∃𝑒 ∈ (𝔼‘𝑁)(𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩))
105104ex 412 1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) → ∃𝑒 ∈ (𝔼‘𝑁)(𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wrex 3054  cop 4598   class class class wbr 5110  cfv 6514  cn 12193  𝔼cee 28822   Btwn cbtwn 28823  Cgrccgr 28824  Cgr3ccgr3 36031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-sum 15660  df-ee 28825  df-btwn 28826  df-cgr 28827  df-ofs 35978  df-cgr3 36036
This theorem is referenced by:  btwnxfr  36051  lineext  36071  seglecgr12im  36105  segletr  36109
  Copyright terms: Public domain W3C validator