Step | Hyp | Ref
| Expression |
1 | | simpl1 1192 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩)) → 𝑁 ∈ ℕ) |
2 | | simpl3r 1230 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩)) → 𝐹 ∈ (𝔼‘𝑁)) |
3 | | simpl3l 1229 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩)) → 𝐷 ∈ (𝔼‘𝑁)) |
4 | | btwndiff 34658 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝐹 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → ∃𝑔 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷 ≠ 𝑔)) |
5 | 1, 2, 3, 4 | syl3anc 1372 |
. . 3
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩)) → ∃𝑔 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷 ≠ 𝑔)) |
6 | | simpl1 1192 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑔 ∈ (𝔼‘𝑁)) → 𝑁 ∈ ℕ) |
7 | | simpr 486 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑔 ∈ (𝔼‘𝑁)) → 𝑔 ∈ (𝔼‘𝑁)) |
8 | | simpl3l 1229 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑔 ∈ (𝔼‘𝑁)) → 𝐷 ∈ (𝔼‘𝑁)) |
9 | | simpl21 1252 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑔 ∈ (𝔼‘𝑁)) → 𝐴 ∈ (𝔼‘𝑁)) |
10 | | simpl22 1253 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑔 ∈ (𝔼‘𝑁)) → 𝐵 ∈ (𝔼‘𝑁)) |
11 | | axsegcon 27918 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → ∃𝑒 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) |
12 | 6, 7, 8, 9, 10, 11 | syl122anc 1380 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑔 ∈ (𝔼‘𝑁)) → ∃𝑒 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) |
13 | 12 | adantr 482 |
. . . . . . 7
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑔 ∈ (𝔼‘𝑁)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷 ≠ 𝑔))) → ∃𝑒 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) |
14 | | anass 470 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑔 ∈ (𝔼‘𝑁)) ∧ 𝑒 ∈ (𝔼‘𝑁)) ↔ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁)))) |
15 | | simpl1 1192 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ) |
16 | | simprl 770 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) → 𝑔 ∈ (𝔼‘𝑁)) |
17 | | simprr 772 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) → 𝑒 ∈ (𝔼‘𝑁)) |
18 | | simpl22 1253 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁)) |
19 | | simpl23 1254 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) → 𝐶 ∈ (𝔼‘𝑁)) |
20 | | axsegcon 27918 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ∃𝑓 ∈ (𝔼‘𝑁)(𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩)) |
21 | 15, 16, 17, 18, 19, 20 | syl122anc 1380 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) → ∃𝑓 ∈ (𝔼‘𝑁)(𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩)) |
22 | 21 | adantr 482 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) ∧ (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷 ≠ 𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩))) → ∃𝑓 ∈ (𝔼‘𝑁)(𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩)) |
23 | | anass 470 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) ↔ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ ((𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ 𝑓 ∈ (𝔼‘𝑁)))) |
24 | | df-3an 1090 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁)) ↔ ((𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ 𝑓 ∈ (𝔼‘𝑁))) |
25 | 24 | anbi2i 624 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ↔ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ ((𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁)) ∧ 𝑓 ∈ (𝔼‘𝑁)))) |
26 | 23, 25 | bitr4i 278 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) ∧ 𝑓 ∈ (𝔼‘𝑁)) ↔ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁)))) |
27 | | simplrr 777 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷 ≠ 𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) → 𝐷 ≠ 𝑔) |
28 | 27 | ad2antrl 727 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷 ≠ 𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → 𝐷 ≠ 𝑔) |
29 | 28 | necomd 2996 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷 ≠ 𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → 𝑔 ≠ 𝐷) |
30 | | simpl1 1192 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ) |
31 | | simpr1 1195 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → 𝑔 ∈ (𝔼‘𝑁)) |
32 | | simpl3l 1229 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → 𝐷 ∈ (𝔼‘𝑁)) |
33 | | simpr2 1196 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → 𝑒 ∈ (𝔼‘𝑁)) |
34 | | simpr3 1197 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → 𝑓 ∈ (𝔼‘𝑁)) |
35 | | simprl 770 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷 ≠ 𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) → 𝐷 Btwn ⟨𝑔, 𝑒⟩) |
36 | 35 | ad2antrl 727 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷 ≠ 𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → 𝐷 Btwn ⟨𝑔, 𝑒⟩) |
37 | | simprrl 780 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷 ≠ 𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → 𝑒 Btwn ⟨𝑔, 𝑓⟩) |
38 | 30, 31, 32, 33, 34, 36, 37 | btwnexchand 34657 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷 ≠ 𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → 𝐷 Btwn ⟨𝑔, 𝑓⟩) |
39 | | simpl21 1252 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁)) |
40 | | simpl22 1253 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁)) |
41 | | simpl23 1254 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → 𝐶 ∈ (𝔼‘𝑁)) |
42 | 30, 31, 32, 33, 34, 36, 37 | btwnexch3and 34652 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷 ≠ 𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → 𝑒 Btwn ⟨𝐷, 𝑓⟩) |
43 | | simplll 774 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷 ≠ 𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) → 𝐵 Btwn ⟨𝐴, 𝐶⟩) |
44 | 43 | ad2antrl 727 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷 ≠ 𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → 𝐵 Btwn ⟨𝐴, 𝐶⟩) |
45 | | simprr 772 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷 ≠ 𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) → ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩) |
46 | 45 | ad2antrl 727 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷 ≠ 𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩) |
47 | | simprrr 781 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷 ≠ 𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩) |
48 | 30, 32, 33, 34, 39, 40, 41, 42, 44, 46, 47 | cgrextendand 34640 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷 ≠ 𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → ⟨𝐷, 𝑓⟩Cgr⟨𝐴, 𝐶⟩) |
49 | 38, 48 | jca 513 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷 ≠ 𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → (𝐷 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝐷, 𝑓⟩Cgr⟨𝐴, 𝐶⟩)) |
50 | | simpl3r 1230 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → 𝐹 ∈ (𝔼‘𝑁)) |
51 | | simplrl 776 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷 ≠ 𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) → 𝐷 Btwn ⟨𝐹, 𝑔⟩) |
52 | 51 | ad2antrl 727 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷 ≠ 𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → 𝐷 Btwn ⟨𝐹, 𝑔⟩) |
53 | 30, 32, 50, 31, 52 | btwncomand 34646 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷 ≠ 𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → 𝐷 Btwn ⟨𝑔, 𝐹⟩) |
54 | | simpllr 775 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷 ≠ 𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) → ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) |
55 | 54 | ad2antrl 727 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷 ≠ 𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) |
56 | 30, 39, 41, 32, 50, 55 | cgrcomand 34622 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷 ≠ 𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → ⟨𝐷, 𝐹⟩Cgr⟨𝐴, 𝐶⟩) |
57 | 53, 56 | jca 513 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷 ≠ 𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → (𝐷 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝐷, 𝐹⟩Cgr⟨𝐴, 𝐶⟩)) |
58 | 29, 49, 57 | 3jca 1129 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷 ≠ 𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → (𝑔 ≠ 𝐷 ∧ (𝐷 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝐷, 𝑓⟩Cgr⟨𝐴, 𝐶⟩) ∧ (𝐷 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝐷, 𝐹⟩Cgr⟨𝐴, 𝐶⟩))) |
59 | 58 | ex 414 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → (((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷 ≠ 𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩)) → (𝑔 ≠ 𝐷 ∧ (𝐷 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝐷, 𝑓⟩Cgr⟨𝐴, 𝐶⟩) ∧ (𝐷 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝐷, 𝐹⟩Cgr⟨𝐴, 𝐶⟩)))) |
60 | | segconeq 34641 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑁 ∈ ℕ ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → ((𝑔 ≠ 𝐷 ∧ (𝐷 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝐷, 𝑓⟩Cgr⟨𝐴, 𝐶⟩) ∧ (𝐷 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝐷, 𝐹⟩Cgr⟨𝐴, 𝐶⟩)) → 𝑓 = 𝐹)) |
61 | 30, 32, 39, 41, 31, 34, 50, 60 | syl133anc 1394 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → ((𝑔 ≠ 𝐷 ∧ (𝐷 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝐷, 𝑓⟩Cgr⟨𝐴, 𝐶⟩) ∧ (𝐷 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝐷, 𝐹⟩Cgr⟨𝐴, 𝐶⟩)) → 𝑓 = 𝐹)) |
62 | 59, 61 | syld 47 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → (((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷 ≠ 𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩)) → 𝑓 = 𝐹)) |
63 | 62 | imp 408 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷 ≠ 𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → 𝑓 = 𝐹) |
64 | | opeq2 4832 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑓 = 𝐹 → ⟨𝑔, 𝑓⟩ = ⟨𝑔, 𝐹⟩) |
65 | 64 | breq2d 5118 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑓 = 𝐹 → (𝑒 Btwn ⟨𝑔, 𝑓⟩ ↔ 𝑒 Btwn ⟨𝑔, 𝐹⟩)) |
66 | | opeq2 4832 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑓 = 𝐹 → ⟨𝑒, 𝑓⟩ = ⟨𝑒, 𝐹⟩) |
67 | 66 | breq1d 5116 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑓 = 𝐹 → (⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩ ↔ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩)) |
68 | 65, 67 | anbi12d 632 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑓 = 𝐹 → ((𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩) ↔ (𝑒 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩))) |
69 | 68 | biimpa 478 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑓 = 𝐹 ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩)) → (𝑒 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩)) |
70 | | simpl 484 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑒 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩) → 𝑒 Btwn ⟨𝑔, 𝐹⟩) |
71 | | btwnexch3 34651 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑁 ∈ ℕ ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝑒 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → ((𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ 𝑒 Btwn ⟨𝑔, 𝐹⟩) → 𝑒 Btwn ⟨𝐷, 𝐹⟩)) |
72 | 30, 31, 32, 33, 50, 71 | syl122anc 1380 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → ((𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ 𝑒 Btwn ⟨𝑔, 𝐹⟩) → 𝑒 Btwn ⟨𝐷, 𝐹⟩)) |
73 | 35, 70, 72 | syl2ani 608 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → (((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷 ≠ 𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩)) → 𝑒 Btwn ⟨𝐷, 𝐹⟩)) |
74 | 73 | imp 408 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷 ≠ 𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩))) → 𝑒 Btwn ⟨𝐷, 𝐹⟩) |
75 | | simplrr 777 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝐵 Btwn
⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷 ≠ 𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩)) → ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩) |
76 | 75 | adantl 483 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷 ≠ 𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩))) → ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩) |
77 | 30, 32, 33, 39, 40, 76 | cgrcomand 34622 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷 ≠ 𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩))) → ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝑒⟩) |
78 | 54 | ad2antrl 727 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷 ≠ 𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩))) → ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) |
79 | | simprrr 781 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷 ≠ 𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩))) → ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩) |
80 | 30, 33, 50, 40, 41, 79 | cgrcomand 34622 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷 ≠ 𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩))) → ⟨𝐵, 𝐶⟩Cgr⟨𝑒, 𝐹⟩) |
81 | | brcgr3 34677 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → (⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩ ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝑒⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑒, 𝐹⟩))) |
82 | 30, 39, 40, 41, 32, 33, 50, 81 | syl133anc 1394 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) → (⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩ ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝑒⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑒, 𝐹⟩))) |
83 | 82 | adantr 482 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷 ≠ 𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩))) → (⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩ ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝑒⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑒, 𝐹⟩))) |
84 | 77, 78, 80, 83 | mpbir3and 1343 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷 ≠ 𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩))) → ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩) |
85 | 74, 84 | jca 513 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷 ≠ 𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩))) → (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)) |
86 | 85 | expr 458 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷 ≠ 𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩))) → ((𝑒 Btwn ⟨𝑔, 𝐹⟩ ∧ ⟨𝑒, 𝐹⟩Cgr⟨𝐵, 𝐶⟩) → (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩))) |
87 | 69, 86 | syl5 34 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷 ≠ 𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩))) → ((𝑓 = 𝐹 ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩)) → (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩))) |
88 | 87 | expcomd 418 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷 ≠ 𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩))) → ((𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩) → (𝑓 = 𝐹 → (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)))) |
89 | 88 | impr 456 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷 ≠ 𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → (𝑓 = 𝐹 → (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩))) |
90 | 63, 89 | mpd 15 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ ((((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷 ≠ 𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩)) ∧ (𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩))) → (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)) |
91 | 90 | expr 458 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁) ∧ 𝑓 ∈ (𝔼‘𝑁))) ∧ (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷 ≠ 𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩))) → ((𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩) → (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩))) |
92 | 26, 91 | sylanb 582 |
. . . . . . . . . . . . . 14
⊢
(((((𝑁 ∈
ℕ ∧ (𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁) ∧
𝐶 ∈
(𝔼‘𝑁)) ∧
(𝐷 ∈
(𝔼‘𝑁) ∧
𝐹 ∈
(𝔼‘𝑁))) ∧
(𝑔 ∈
(𝔼‘𝑁) ∧
𝑒 ∈
(𝔼‘𝑁))) ∧
𝑓 ∈
(𝔼‘𝑁)) ∧
(((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷 ≠ 𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩))) → ((𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩) → (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩))) |
93 | 92 | an32s 651 |
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈
ℕ ∧ (𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁) ∧
𝐶 ∈
(𝔼‘𝑁)) ∧
(𝐷 ∈
(𝔼‘𝑁) ∧
𝐹 ∈
(𝔼‘𝑁))) ∧
(𝑔 ∈
(𝔼‘𝑁) ∧
𝑒 ∈
(𝔼‘𝑁))) ∧
(((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷 ≠ 𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩))) ∧ 𝑓 ∈ (𝔼‘𝑁)) → ((𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩) → (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩))) |
94 | 93 | rexlimdva 3149 |
. . . . . . . . . . . 12
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) ∧ (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷 ≠ 𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩))) → (∃𝑓 ∈ (𝔼‘𝑁)(𝑒 Btwn ⟨𝑔, 𝑓⟩ ∧ ⟨𝑒, 𝑓⟩Cgr⟨𝐵, 𝐶⟩) → (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩))) |
95 | 22, 94 | mpd 15 |
. . . . . . . . . . 11
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) ∧ (((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷 ≠ 𝑔)) ∧ (𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩))) → (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)) |
96 | 95 | expr 458 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝑔 ∈ (𝔼‘𝑁) ∧ 𝑒 ∈ (𝔼‘𝑁))) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷 ≠ 𝑔))) → ((𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩) → (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩))) |
97 | 14, 96 | sylanb 582 |
. . . . . . . . 9
⊢
(((((𝑁 ∈
ℕ ∧ (𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁) ∧
𝐶 ∈
(𝔼‘𝑁)) ∧
(𝐷 ∈
(𝔼‘𝑁) ∧
𝐹 ∈
(𝔼‘𝑁))) ∧
𝑔 ∈
(𝔼‘𝑁)) ∧
𝑒 ∈
(𝔼‘𝑁)) ∧
((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷 ≠ 𝑔))) → ((𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩) → (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩))) |
98 | 97 | an32s 651 |
. . . . . . . 8
⊢
(((((𝑁 ∈
ℕ ∧ (𝐴 ∈
(𝔼‘𝑁) ∧
𝐵 ∈
(𝔼‘𝑁) ∧
𝐶 ∈
(𝔼‘𝑁)) ∧
(𝐷 ∈
(𝔼‘𝑁) ∧
𝐹 ∈
(𝔼‘𝑁))) ∧
𝑔 ∈
(𝔼‘𝑁)) ∧
((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷 ≠ 𝑔))) ∧ 𝑒 ∈ (𝔼‘𝑁)) → ((𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩) → (𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩))) |
99 | 98 | reximdva 3162 |
. . . . . . 7
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑔 ∈ (𝔼‘𝑁)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷 ≠ 𝑔))) → (∃𝑒 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝑔, 𝑒⟩ ∧ ⟨𝐷, 𝑒⟩Cgr⟨𝐴, 𝐵⟩) → ∃𝑒 ∈ (𝔼‘𝑁)(𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩))) |
100 | 13, 99 | mpd 15 |
. . . . . 6
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑔 ∈ (𝔼‘𝑁)) ∧ ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) ∧ (𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷 ≠ 𝑔))) → ∃𝑒 ∈ (𝔼‘𝑁)(𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)) |
101 | 100 | expr 458 |
. . . . 5
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ 𝑔 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩)) → ((𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷 ≠ 𝑔) → ∃𝑒 ∈ (𝔼‘𝑁)(𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩))) |
102 | 101 | an32s 651 |
. . . 4
⊢ ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩)) ∧ 𝑔 ∈ (𝔼‘𝑁)) → ((𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷 ≠ 𝑔) → ∃𝑒 ∈ (𝔼‘𝑁)(𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩))) |
103 | 102 | rexlimdva 3149 |
. . 3
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩)) → (∃𝑔 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐹, 𝑔⟩ ∧ 𝐷 ≠ 𝑔) → ∃𝑒 ∈ (𝔼‘𝑁)(𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩))) |
104 | 5, 103 | mpd 15 |
. 2
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) ∧ (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩)) → ∃𝑒 ∈ (𝔼‘𝑁)(𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩)) |
105 | 104 | ex 414 |
1
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩) → ∃𝑒 ∈ (𝔼‘𝑁)(𝑒 Btwn ⟨𝐷, 𝐹⟩ ∧ ⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝑒, 𝐹⟩⟩))) |