MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aannenlem1 Structured version   Visualization version   GIF version

Theorem aannenlem1 25079
Description: Lemma for aannen 25082. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Hypothesis
Ref Expression
aannenlem.a 𝐻 = (𝑎 ∈ ℕ0 ↦ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0})
Assertion
Ref Expression
aannenlem1 (𝐴 ∈ ℕ0 → (𝐻𝐴) ∈ Fin)
Distinct variable group:   𝐴,𝑎,𝑏,𝑐,𝑑,𝑒
Allowed substitution hints:   𝐻(𝑒,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem aannenlem1
StepHypRef Expression
1 breq2 5035 . . . . . . 7 (𝑎 = 𝐴 → ((deg‘𝑑) ≤ 𝑎 ↔ (deg‘𝑑) ≤ 𝐴))
2 breq2 5035 . . . . . . . 8 (𝑎 = 𝐴 → ((abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎 ↔ (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴))
32ralbidv 3110 . . . . . . 7 (𝑎 = 𝐴 → (∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎 ↔ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴))
41, 33anbi23d 1440 . . . . . 6 (𝑎 = 𝐴 → ((𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎) ↔ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)))
54rabbidv 3382 . . . . 5 (𝑎 = 𝐴 → {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} = {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)})
65rexeqdv 3318 . . . 4 (𝑎 = 𝐴 → (∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0 ↔ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} (𝑐𝑏) = 0))
76rabbidv 3382 . . 3 (𝑎 = 𝐴 → {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0} = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} (𝑐𝑏) = 0})
8 aannenlem.a . . 3 𝐻 = (𝑎 ∈ ℕ0 ↦ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0})
9 cnex 10699 . . . 4 ℂ ∈ V
109rabex 5201 . . 3 {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} (𝑐𝑏) = 0} ∈ V
117, 8, 10fvmpt 6778 . 2 (𝐴 ∈ ℕ0 → (𝐻𝐴) = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} (𝑐𝑏) = 0})
12 iunrab 4939 . . 3 𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} {𝑏 ∈ ℂ ∣ (𝑐𝑏) = 0} = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} (𝑐𝑏) = 0}
13 fzfi 13434 . . . . . . 7 (-𝐴...𝐴) ∈ Fin
14 fzfi 13434 . . . . . . 7 (0...𝐴) ∈ Fin
15 mapfi 8896 . . . . . . 7 (((-𝐴...𝐴) ∈ Fin ∧ (0...𝐴) ∈ Fin) → ((-𝐴...𝐴) ↑m (0...𝐴)) ∈ Fin)
1613, 14, 15mp2an 692 . . . . . 6 ((-𝐴...𝐴) ↑m (0...𝐴)) ∈ Fin
1716a1i 11 . . . . 5 (𝐴 ∈ ℕ0 → ((-𝐴...𝐴) ↑m (0...𝐴)) ∈ Fin)
18 ovex 7206 . . . . . 6 ((-𝐴...𝐴) ↑m (0...𝐴)) ∈ V
19 neeq1 2997 . . . . . . . . . . 11 (𝑑 = 𝑎 → (𝑑 ≠ 0𝑝𝑎 ≠ 0𝑝))
20 fveq2 6677 . . . . . . . . . . . 12 (𝑑 = 𝑎 → (deg‘𝑑) = (deg‘𝑎))
2120breq1d 5041 . . . . . . . . . . 11 (𝑑 = 𝑎 → ((deg‘𝑑) ≤ 𝐴 ↔ (deg‘𝑎) ≤ 𝐴))
22 fveq2 6677 . . . . . . . . . . . . . . 15 (𝑑 = 𝑎 → (coeff‘𝑑) = (coeff‘𝑎))
2322fveq1d 6679 . . . . . . . . . . . . . 14 (𝑑 = 𝑎 → ((coeff‘𝑑)‘𝑒) = ((coeff‘𝑎)‘𝑒))
2423fveq2d 6681 . . . . . . . . . . . . 13 (𝑑 = 𝑎 → (abs‘((coeff‘𝑑)‘𝑒)) = (abs‘((coeff‘𝑎)‘𝑒)))
2524breq1d 5041 . . . . . . . . . . . 12 (𝑑 = 𝑎 → ((abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴 ↔ (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴))
2625ralbidv 3110 . . . . . . . . . . 11 (𝑑 = 𝑎 → (∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴 ↔ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴))
2719, 21, 263anbi123d 1437 . . . . . . . . . 10 (𝑑 = 𝑎 → ((𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴) ↔ (𝑎 ≠ 0𝑝 ∧ (deg‘𝑎) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴)))
2827elrab 3589 . . . . . . . . 9 (𝑎 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} ↔ (𝑎 ∈ (Poly‘ℤ) ∧ (𝑎 ≠ 0𝑝 ∧ (deg‘𝑎) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴)))
29 simp3 1139 . . . . . . . . . 10 ((𝑎 ≠ 0𝑝 ∧ (deg‘𝑎) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴) → ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴)
3029anim2i 620 . . . . . . . . 9 ((𝑎 ∈ (Poly‘ℤ) ∧ (𝑎 ≠ 0𝑝 ∧ (deg‘𝑎) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴)) → (𝑎 ∈ (Poly‘ℤ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴))
3128, 30sylbi 220 . . . . . . . 8 (𝑎 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} → (𝑎 ∈ (Poly‘ℤ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴))
32 0z 12076 . . . . . . . . . . . . . . 15 0 ∈ ℤ
33 eqid 2739 . . . . . . . . . . . . . . . 16 (coeff‘𝑎) = (coeff‘𝑎)
3433coef2 24983 . . . . . . . . . . . . . . 15 ((𝑎 ∈ (Poly‘ℤ) ∧ 0 ∈ ℤ) → (coeff‘𝑎):ℕ0⟶ℤ)
3532, 34mpan2 691 . . . . . . . . . . . . . 14 (𝑎 ∈ (Poly‘ℤ) → (coeff‘𝑎):ℕ0⟶ℤ)
3635ad2antrl 728 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ0 ∧ (𝑎 ∈ (Poly‘ℤ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴)) → (coeff‘𝑎):ℕ0⟶ℤ)
3736ffnd 6506 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0 ∧ (𝑎 ∈ (Poly‘ℤ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴)) → (coeff‘𝑎) Fn ℕ0)
3835adantl 485 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℕ0𝑎 ∈ (Poly‘ℤ)) → (coeff‘𝑎):ℕ0⟶ℤ)
3938ffvelrnda 6864 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℕ0𝑎 ∈ (Poly‘ℤ)) ∧ 𝑒 ∈ ℕ0) → ((coeff‘𝑎)‘𝑒) ∈ ℤ)
4039zred 12171 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℕ0𝑎 ∈ (Poly‘ℤ)) ∧ 𝑒 ∈ ℕ0) → ((coeff‘𝑎)‘𝑒) ∈ ℝ)
41 nn0re 11988 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
4241ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℕ0𝑎 ∈ (Poly‘ℤ)) ∧ 𝑒 ∈ ℕ0) → 𝐴 ∈ ℝ)
4340, 42absled 14883 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℕ0𝑎 ∈ (Poly‘ℤ)) ∧ 𝑒 ∈ ℕ0) → ((abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴 ↔ (-𝐴 ≤ ((coeff‘𝑎)‘𝑒) ∧ ((coeff‘𝑎)‘𝑒) ≤ 𝐴)))
44 nn0z 12089 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ ℕ0𝐴 ∈ ℤ)
4544ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℕ0𝑎 ∈ (Poly‘ℤ)) ∧ 𝑒 ∈ ℕ0) → 𝐴 ∈ ℤ)
4645znegcld 12173 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℕ0𝑎 ∈ (Poly‘ℤ)) ∧ 𝑒 ∈ ℕ0) → -𝐴 ∈ ℤ)
47 elfz 12990 . . . . . . . . . . . . . . . . . 18 ((((coeff‘𝑎)‘𝑒) ∈ ℤ ∧ -𝐴 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (((coeff‘𝑎)‘𝑒) ∈ (-𝐴...𝐴) ↔ (-𝐴 ≤ ((coeff‘𝑎)‘𝑒) ∧ ((coeff‘𝑎)‘𝑒) ≤ 𝐴)))
4839, 46, 45, 47syl3anc 1372 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℕ0𝑎 ∈ (Poly‘ℤ)) ∧ 𝑒 ∈ ℕ0) → (((coeff‘𝑎)‘𝑒) ∈ (-𝐴...𝐴) ↔ (-𝐴 ≤ ((coeff‘𝑎)‘𝑒) ∧ ((coeff‘𝑎)‘𝑒) ≤ 𝐴)))
4943, 48bitr4d 285 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℕ0𝑎 ∈ (Poly‘ℤ)) ∧ 𝑒 ∈ ℕ0) → ((abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴 ↔ ((coeff‘𝑎)‘𝑒) ∈ (-𝐴...𝐴)))
5049biimpd 232 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ0𝑎 ∈ (Poly‘ℤ)) ∧ 𝑒 ∈ ℕ0) → ((abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴 → ((coeff‘𝑎)‘𝑒) ∈ (-𝐴...𝐴)))
5150ralimdva 3092 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ0𝑎 ∈ (Poly‘ℤ)) → (∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴 → ∀𝑒 ∈ ℕ0 ((coeff‘𝑎)‘𝑒) ∈ (-𝐴...𝐴)))
5251impr 458 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ0 ∧ (𝑎 ∈ (Poly‘ℤ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴)) → ∀𝑒 ∈ ℕ0 ((coeff‘𝑎)‘𝑒) ∈ (-𝐴...𝐴))
53 fnfvrnss 6897 . . . . . . . . . . . . 13 (((coeff‘𝑎) Fn ℕ0 ∧ ∀𝑒 ∈ ℕ0 ((coeff‘𝑎)‘𝑒) ∈ (-𝐴...𝐴)) → ran (coeff‘𝑎) ⊆ (-𝐴...𝐴))
5437, 52, 53syl2anc 587 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0 ∧ (𝑎 ∈ (Poly‘ℤ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴)) → ran (coeff‘𝑎) ⊆ (-𝐴...𝐴))
55 df-f 6344 . . . . . . . . . . . 12 ((coeff‘𝑎):ℕ0⟶(-𝐴...𝐴) ↔ ((coeff‘𝑎) Fn ℕ0 ∧ ran (coeff‘𝑎) ⊆ (-𝐴...𝐴)))
5637, 54, 55sylanbrc 586 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0 ∧ (𝑎 ∈ (Poly‘ℤ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴)) → (coeff‘𝑎):ℕ0⟶(-𝐴...𝐴))
57 fz0ssnn0 13096 . . . . . . . . . . 11 (0...𝐴) ⊆ ℕ0
58 fssres 6545 . . . . . . . . . . 11 (((coeff‘𝑎):ℕ0⟶(-𝐴...𝐴) ∧ (0...𝐴) ⊆ ℕ0) → ((coeff‘𝑎) ↾ (0...𝐴)):(0...𝐴)⟶(-𝐴...𝐴))
5956, 57, 58sylancl 589 . . . . . . . . . 10 ((𝐴 ∈ ℕ0 ∧ (𝑎 ∈ (Poly‘ℤ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴)) → ((coeff‘𝑎) ↾ (0...𝐴)):(0...𝐴)⟶(-𝐴...𝐴))
60 ovex 7206 . . . . . . . . . . 11 (-𝐴...𝐴) ∈ V
61 ovex 7206 . . . . . . . . . . 11 (0...𝐴) ∈ V
6260, 61elmap 8484 . . . . . . . . . 10 (((coeff‘𝑎) ↾ (0...𝐴)) ∈ ((-𝐴...𝐴) ↑m (0...𝐴)) ↔ ((coeff‘𝑎) ↾ (0...𝐴)):(0...𝐴)⟶(-𝐴...𝐴))
6359, 62sylibr 237 . . . . . . . . 9 ((𝐴 ∈ ℕ0 ∧ (𝑎 ∈ (Poly‘ℤ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴)) → ((coeff‘𝑎) ↾ (0...𝐴)) ∈ ((-𝐴...𝐴) ↑m (0...𝐴)))
6463ex 416 . . . . . . . 8 (𝐴 ∈ ℕ0 → ((𝑎 ∈ (Poly‘ℤ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴) → ((coeff‘𝑎) ↾ (0...𝐴)) ∈ ((-𝐴...𝐴) ↑m (0...𝐴))))
6531, 64syl5 34 . . . . . . 7 (𝐴 ∈ ℕ0 → (𝑎 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} → ((coeff‘𝑎) ↾ (0...𝐴)) ∈ ((-𝐴...𝐴) ↑m (0...𝐴))))
66 simp2 1138 . . . . . . . . . 10 ((𝑎 ≠ 0𝑝 ∧ (deg‘𝑎) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴) → (deg‘𝑎) ≤ 𝐴)
6766anim2i 620 . . . . . . . . 9 ((𝑎 ∈ (Poly‘ℤ) ∧ (𝑎 ≠ 0𝑝 ∧ (deg‘𝑎) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴)) → (𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴))
6828, 67sylbi 220 . . . . . . . 8 (𝑎 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} → (𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴))
69 neeq1 2997 . . . . . . . . . . 11 (𝑑 = 𝑏 → (𝑑 ≠ 0𝑝𝑏 ≠ 0𝑝))
70 fveq2 6677 . . . . . . . . . . . 12 (𝑑 = 𝑏 → (deg‘𝑑) = (deg‘𝑏))
7170breq1d 5041 . . . . . . . . . . 11 (𝑑 = 𝑏 → ((deg‘𝑑) ≤ 𝐴 ↔ (deg‘𝑏) ≤ 𝐴))
72 fveq2 6677 . . . . . . . . . . . . . . 15 (𝑑 = 𝑏 → (coeff‘𝑑) = (coeff‘𝑏))
7372fveq1d 6679 . . . . . . . . . . . . . 14 (𝑑 = 𝑏 → ((coeff‘𝑑)‘𝑒) = ((coeff‘𝑏)‘𝑒))
7473fveq2d 6681 . . . . . . . . . . . . 13 (𝑑 = 𝑏 → (abs‘((coeff‘𝑑)‘𝑒)) = (abs‘((coeff‘𝑏)‘𝑒)))
7574breq1d 5041 . . . . . . . . . . . 12 (𝑑 = 𝑏 → ((abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴 ↔ (abs‘((coeff‘𝑏)‘𝑒)) ≤ 𝐴))
7675ralbidv 3110 . . . . . . . . . . 11 (𝑑 = 𝑏 → (∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴 ↔ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑏)‘𝑒)) ≤ 𝐴))
7769, 71, 763anbi123d 1437 . . . . . . . . . 10 (𝑑 = 𝑏 → ((𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴) ↔ (𝑏 ≠ 0𝑝 ∧ (deg‘𝑏) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑏)‘𝑒)) ≤ 𝐴)))
7877elrab 3589 . . . . . . . . 9 (𝑏 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} ↔ (𝑏 ∈ (Poly‘ℤ) ∧ (𝑏 ≠ 0𝑝 ∧ (deg‘𝑏) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑏)‘𝑒)) ≤ 𝐴)))
79 simp2 1138 . . . . . . . . . 10 ((𝑏 ≠ 0𝑝 ∧ (deg‘𝑏) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑏)‘𝑒)) ≤ 𝐴) → (deg‘𝑏) ≤ 𝐴)
8079anim2i 620 . . . . . . . . 9 ((𝑏 ∈ (Poly‘ℤ) ∧ (𝑏 ≠ 0𝑝 ∧ (deg‘𝑏) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑏)‘𝑒)) ≤ 𝐴)) → (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴))
8178, 80sylbi 220 . . . . . . . 8 (𝑏 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} → (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴))
82 simplll 775 . . . . . . . . . . . . 13 ((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) → 𝑎 ∈ (Poly‘ℤ))
83 plyf 24950 . . . . . . . . . . . . 13 (𝑎 ∈ (Poly‘ℤ) → 𝑎:ℂ⟶ℂ)
84 ffn 6505 . . . . . . . . . . . . 13 (𝑎:ℂ⟶ℂ → 𝑎 Fn ℂ)
8582, 83, 843syl 18 . . . . . . . . . . . 12 ((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) → 𝑎 Fn ℂ)
86 simplrl 777 . . . . . . . . . . . . 13 ((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) → 𝑏 ∈ (Poly‘ℤ))
87 plyf 24950 . . . . . . . . . . . . 13 (𝑏 ∈ (Poly‘ℤ) → 𝑏:ℂ⟶ℂ)
88 ffn 6505 . . . . . . . . . . . . 13 (𝑏:ℂ⟶ℂ → 𝑏 Fn ℂ)
8986, 87, 883syl 18 . . . . . . . . . . . 12 ((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) → 𝑏 Fn ℂ)
90 simplrr 778 . . . . . . . . . . . . . . . . . 18 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))
9190adantr 484 . . . . . . . . . . . . . . . . 17 ((((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) ∧ 𝑑 ∈ (0...𝐴)) → ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))
9291fveq1d 6679 . . . . . . . . . . . . . . . 16 ((((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) ∧ 𝑑 ∈ (0...𝐴)) → (((coeff‘𝑎) ↾ (0...𝐴))‘𝑑) = (((coeff‘𝑏) ↾ (0...𝐴))‘𝑑))
93 fvres 6696 . . . . . . . . . . . . . . . . 17 (𝑑 ∈ (0...𝐴) → (((coeff‘𝑎) ↾ (0...𝐴))‘𝑑) = ((coeff‘𝑎)‘𝑑))
9493adantl 485 . . . . . . . . . . . . . . . 16 ((((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) ∧ 𝑑 ∈ (0...𝐴)) → (((coeff‘𝑎) ↾ (0...𝐴))‘𝑑) = ((coeff‘𝑎)‘𝑑))
95 fvres 6696 . . . . . . . . . . . . . . . . 17 (𝑑 ∈ (0...𝐴) → (((coeff‘𝑏) ↾ (0...𝐴))‘𝑑) = ((coeff‘𝑏)‘𝑑))
9695adantl 485 . . . . . . . . . . . . . . . 16 ((((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) ∧ 𝑑 ∈ (0...𝐴)) → (((coeff‘𝑏) ↾ (0...𝐴))‘𝑑) = ((coeff‘𝑏)‘𝑑))
9792, 94, 963eqtr3d 2782 . . . . . . . . . . . . . . 15 ((((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) ∧ 𝑑 ∈ (0...𝐴)) → ((coeff‘𝑎)‘𝑑) = ((coeff‘𝑏)‘𝑑))
9897oveq1d 7188 . . . . . . . . . . . . . 14 ((((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) ∧ 𝑑 ∈ (0...𝐴)) → (((coeff‘𝑎)‘𝑑) · (𝑐𝑑)) = (((coeff‘𝑏)‘𝑑) · (𝑐𝑑)))
9998sumeq2dv 15156 . . . . . . . . . . . . 13 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → Σ𝑑 ∈ (0...𝐴)(((coeff‘𝑎)‘𝑑) · (𝑐𝑑)) = Σ𝑑 ∈ (0...𝐴)(((coeff‘𝑏)‘𝑑) · (𝑐𝑑)))
100 simp-4l 783 . . . . . . . . . . . . . 14 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → 𝑎 ∈ (Poly‘ℤ))
101 simp-4r 784 . . . . . . . . . . . . . . 15 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → (deg‘𝑎) ≤ 𝐴)
102 dgrcl 24985 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ (Poly‘ℤ) → (deg‘𝑎) ∈ ℕ0)
103 nn0z 12089 . . . . . . . . . . . . . . . . 17 ((deg‘𝑎) ∈ ℕ0 → (deg‘𝑎) ∈ ℤ)
104100, 102, 1033syl 18 . . . . . . . . . . . . . . . 16 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → (deg‘𝑎) ∈ ℤ)
105 simplrl 777 . . . . . . . . . . . . . . . . 17 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → 𝐴 ∈ ℕ0)
106105nn0zd 12169 . . . . . . . . . . . . . . . 16 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → 𝐴 ∈ ℤ)
107 eluz 12341 . . . . . . . . . . . . . . . 16 (((deg‘𝑎) ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐴 ∈ (ℤ‘(deg‘𝑎)) ↔ (deg‘𝑎) ≤ 𝐴))
108104, 106, 107syl2anc 587 . . . . . . . . . . . . . . 15 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → (𝐴 ∈ (ℤ‘(deg‘𝑎)) ↔ (deg‘𝑎) ≤ 𝐴))
109101, 108mpbird 260 . . . . . . . . . . . . . 14 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → 𝐴 ∈ (ℤ‘(deg‘𝑎)))
110 simpr 488 . . . . . . . . . . . . . 14 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → 𝑐 ∈ ℂ)
111 eqid 2739 . . . . . . . . . . . . . . 15 (deg‘𝑎) = (deg‘𝑎)
11233, 111coeid3 24992 . . . . . . . . . . . . . 14 ((𝑎 ∈ (Poly‘ℤ) ∧ 𝐴 ∈ (ℤ‘(deg‘𝑎)) ∧ 𝑐 ∈ ℂ) → (𝑎𝑐) = Σ𝑑 ∈ (0...𝐴)(((coeff‘𝑎)‘𝑑) · (𝑐𝑑)))
113100, 109, 110, 112syl3anc 1372 . . . . . . . . . . . . 13 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → (𝑎𝑐) = Σ𝑑 ∈ (0...𝐴)(((coeff‘𝑎)‘𝑑) · (𝑐𝑑)))
114 simp1rl 1239 . . . . . . . . . . . . . . 15 ((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴))) ∧ 𝑐 ∈ ℂ) → 𝑏 ∈ (Poly‘ℤ))
1151143expa 1119 . . . . . . . . . . . . . 14 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → 𝑏 ∈ (Poly‘ℤ))
116 simplrr 778 . . . . . . . . . . . . . . . 16 ((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) → (deg‘𝑏) ≤ 𝐴)
117116adantr 484 . . . . . . . . . . . . . . 15 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → (deg‘𝑏) ≤ 𝐴)
118 dgrcl 24985 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ (Poly‘ℤ) → (deg‘𝑏) ∈ ℕ0)
119 nn0z 12089 . . . . . . . . . . . . . . . . 17 ((deg‘𝑏) ∈ ℕ0 → (deg‘𝑏) ∈ ℤ)
120115, 118, 1193syl 18 . . . . . . . . . . . . . . . 16 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → (deg‘𝑏) ∈ ℤ)
121 eluz 12341 . . . . . . . . . . . . . . . 16 (((deg‘𝑏) ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐴 ∈ (ℤ‘(deg‘𝑏)) ↔ (deg‘𝑏) ≤ 𝐴))
122120, 106, 121syl2anc 587 . . . . . . . . . . . . . . 15 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → (𝐴 ∈ (ℤ‘(deg‘𝑏)) ↔ (deg‘𝑏) ≤ 𝐴))
123117, 122mpbird 260 . . . . . . . . . . . . . 14 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → 𝐴 ∈ (ℤ‘(deg‘𝑏)))
124 eqid 2739 . . . . . . . . . . . . . . 15 (coeff‘𝑏) = (coeff‘𝑏)
125 eqid 2739 . . . . . . . . . . . . . . 15 (deg‘𝑏) = (deg‘𝑏)
126124, 125coeid3 24992 . . . . . . . . . . . . . 14 ((𝑏 ∈ (Poly‘ℤ) ∧ 𝐴 ∈ (ℤ‘(deg‘𝑏)) ∧ 𝑐 ∈ ℂ) → (𝑏𝑐) = Σ𝑑 ∈ (0...𝐴)(((coeff‘𝑏)‘𝑑) · (𝑐𝑑)))
127115, 123, 110, 126syl3anc 1372 . . . . . . . . . . . . 13 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → (𝑏𝑐) = Σ𝑑 ∈ (0...𝐴)(((coeff‘𝑏)‘𝑑) · (𝑐𝑑)))
12899, 113, 1273eqtr4d 2784 . . . . . . . . . . . 12 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → (𝑎𝑐) = (𝑏𝑐))
12985, 89, 128eqfnfvd 6815 . . . . . . . . . . 11 ((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) → 𝑎 = 𝑏)
130129expr 460 . . . . . . . . . 10 ((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ 𝐴 ∈ ℕ0) → (((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)) → 𝑎 = 𝑏))
131 fveq2 6677 . . . . . . . . . . 11 (𝑎 = 𝑏 → (coeff‘𝑎) = (coeff‘𝑏))
132131reseq1d 5825 . . . . . . . . . 10 (𝑎 = 𝑏 → ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))
133130, 132impbid1 228 . . . . . . . . 9 ((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ 𝐴 ∈ ℕ0) → (((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)) ↔ 𝑎 = 𝑏))
134133expcom 417 . . . . . . . 8 (𝐴 ∈ ℕ0 → (((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) → (((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)) ↔ 𝑎 = 𝑏)))
13568, 81, 134syl2ani 610 . . . . . . 7 (𝐴 ∈ ℕ0 → ((𝑎 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} ∧ 𝑏 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)}) → (((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)) ↔ 𝑎 = 𝑏)))
13665, 135dom2d 8599 . . . . . 6 (𝐴 ∈ ℕ0 → (((-𝐴...𝐴) ↑m (0...𝐴)) ∈ V → {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} ≼ ((-𝐴...𝐴) ↑m (0...𝐴))))
13718, 136mpi 20 . . . . 5 (𝐴 ∈ ℕ0 → {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} ≼ ((-𝐴...𝐴) ↑m (0...𝐴)))
138 domfi 8820 . . . . 5 ((((-𝐴...𝐴) ↑m (0...𝐴)) ∈ Fin ∧ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} ≼ ((-𝐴...𝐴) ↑m (0...𝐴))) → {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} ∈ Fin)
13917, 137, 138syl2anc 587 . . . 4 (𝐴 ∈ ℕ0 → {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} ∈ Fin)
140 neeq1 2997 . . . . . . . . 9 (𝑑 = 𝑐 → (𝑑 ≠ 0𝑝𝑐 ≠ 0𝑝))
141 fveq2 6677 . . . . . . . . . 10 (𝑑 = 𝑐 → (deg‘𝑑) = (deg‘𝑐))
142141breq1d 5041 . . . . . . . . 9 (𝑑 = 𝑐 → ((deg‘𝑑) ≤ 𝐴 ↔ (deg‘𝑐) ≤ 𝐴))
143 fveq2 6677 . . . . . . . . . . . . 13 (𝑑 = 𝑐 → (coeff‘𝑑) = (coeff‘𝑐))
144143fveq1d 6679 . . . . . . . . . . . 12 (𝑑 = 𝑐 → ((coeff‘𝑑)‘𝑒) = ((coeff‘𝑐)‘𝑒))
145144fveq2d 6681 . . . . . . . . . . 11 (𝑑 = 𝑐 → (abs‘((coeff‘𝑑)‘𝑒)) = (abs‘((coeff‘𝑐)‘𝑒)))
146145breq1d 5041 . . . . . . . . . 10 (𝑑 = 𝑐 → ((abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴 ↔ (abs‘((coeff‘𝑐)‘𝑒)) ≤ 𝐴))
147146ralbidv 3110 . . . . . . . . 9 (𝑑 = 𝑐 → (∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴 ↔ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑐)‘𝑒)) ≤ 𝐴))
148140, 142, 1473anbi123d 1437 . . . . . . . 8 (𝑑 = 𝑐 → ((𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴) ↔ (𝑐 ≠ 0𝑝 ∧ (deg‘𝑐) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑐)‘𝑒)) ≤ 𝐴)))
149148elrab 3589 . . . . . . 7 (𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} ↔ (𝑐 ∈ (Poly‘ℤ) ∧ (𝑐 ≠ 0𝑝 ∧ (deg‘𝑐) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑐)‘𝑒)) ≤ 𝐴)))
150 simp1 1137 . . . . . . . 8 ((𝑐 ≠ 0𝑝 ∧ (deg‘𝑐) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑐)‘𝑒)) ≤ 𝐴) → 𝑐 ≠ 0𝑝)
151150anim2i 620 . . . . . . 7 ((𝑐 ∈ (Poly‘ℤ) ∧ (𝑐 ≠ 0𝑝 ∧ (deg‘𝑐) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑐)‘𝑒)) ≤ 𝐴)) → (𝑐 ∈ (Poly‘ℤ) ∧ 𝑐 ≠ 0𝑝))
152149, 151sylbi 220 . . . . . 6 (𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} → (𝑐 ∈ (Poly‘ℤ) ∧ 𝑐 ≠ 0𝑝))
153 fveqeq2 6686 . . . . . . . . . . 11 (𝑏 = 𝑎 → ((𝑐𝑏) = 0 ↔ (𝑐𝑎) = 0))
154153elrab 3589 . . . . . . . . . 10 (𝑎 ∈ {𝑏 ∈ ℂ ∣ (𝑐𝑏) = 0} ↔ (𝑎 ∈ ℂ ∧ (𝑐𝑎) = 0))
155 plyf 24950 . . . . . . . . . . . . 13 (𝑐 ∈ (Poly‘ℤ) → 𝑐:ℂ⟶ℂ)
156155ffnd 6506 . . . . . . . . . . . 12 (𝑐 ∈ (Poly‘ℤ) → 𝑐 Fn ℂ)
157156adantr 484 . . . . . . . . . . 11 ((𝑐 ∈ (Poly‘ℤ) ∧ 𝑐 ≠ 0𝑝) → 𝑐 Fn ℂ)
158 fniniseg 6840 . . . . . . . . . . 11 (𝑐 Fn ℂ → (𝑎 ∈ (𝑐 “ {0}) ↔ (𝑎 ∈ ℂ ∧ (𝑐𝑎) = 0)))
159157, 158syl 17 . . . . . . . . . 10 ((𝑐 ∈ (Poly‘ℤ) ∧ 𝑐 ≠ 0𝑝) → (𝑎 ∈ (𝑐 “ {0}) ↔ (𝑎 ∈ ℂ ∧ (𝑐𝑎) = 0)))
160154, 159bitr4id 293 . . . . . . . . 9 ((𝑐 ∈ (Poly‘ℤ) ∧ 𝑐 ≠ 0𝑝) → (𝑎 ∈ {𝑏 ∈ ℂ ∣ (𝑐𝑏) = 0} ↔ 𝑎 ∈ (𝑐 “ {0})))
161160eqrdv 2737 . . . . . . . 8 ((𝑐 ∈ (Poly‘ℤ) ∧ 𝑐 ≠ 0𝑝) → {𝑏 ∈ ℂ ∣ (𝑐𝑏) = 0} = (𝑐 “ {0}))
162 eqid 2739 . . . . . . . . . 10 (𝑐 “ {0}) = (𝑐 “ {0})
163162fta1 25059 . . . . . . . . 9 ((𝑐 ∈ (Poly‘ℤ) ∧ 𝑐 ≠ 0𝑝) → ((𝑐 “ {0}) ∈ Fin ∧ (♯‘(𝑐 “ {0})) ≤ (deg‘𝑐)))
164163simpld 498 . . . . . . . 8 ((𝑐 ∈ (Poly‘ℤ) ∧ 𝑐 ≠ 0𝑝) → (𝑐 “ {0}) ∈ Fin)
165161, 164eqeltrd 2834 . . . . . . 7 ((𝑐 ∈ (Poly‘ℤ) ∧ 𝑐 ≠ 0𝑝) → {𝑏 ∈ ℂ ∣ (𝑐𝑏) = 0} ∈ Fin)
166165a1i 11 . . . . . 6 (𝐴 ∈ ℕ0 → ((𝑐 ∈ (Poly‘ℤ) ∧ 𝑐 ≠ 0𝑝) → {𝑏 ∈ ℂ ∣ (𝑐𝑏) = 0} ∈ Fin))
167152, 166syl5 34 . . . . 5 (𝐴 ∈ ℕ0 → (𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} → {𝑏 ∈ ℂ ∣ (𝑐𝑏) = 0} ∈ Fin))
168167ralrimiv 3096 . . . 4 (𝐴 ∈ ℕ0 → ∀𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} {𝑏 ∈ ℂ ∣ (𝑐𝑏) = 0} ∈ Fin)
169 iunfi 8888 . . . 4 (({𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} ∈ Fin ∧ ∀𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} {𝑏 ∈ ℂ ∣ (𝑐𝑏) = 0} ∈ Fin) → 𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} {𝑏 ∈ ℂ ∣ (𝑐𝑏) = 0} ∈ Fin)
170139, 168, 169syl2anc 587 . . 3 (𝐴 ∈ ℕ0 𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} {𝑏 ∈ ℂ ∣ (𝑐𝑏) = 0} ∈ Fin)
17112, 170eqeltrrid 2839 . 2 (𝐴 ∈ ℕ0 → {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} (𝑐𝑏) = 0} ∈ Fin)
17211, 171eqeltrd 2834 1 (𝐴 ∈ ℕ0 → (𝐻𝐴) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1088   = wceq 1542  wcel 2114  wne 2935  wral 3054  wrex 3055  {crab 3058  Vcvv 3399  wss 3844  {csn 4517   ciun 4882   class class class wbr 5031  cmpt 5111  ccnv 5525  ran crn 5527  cres 5528  cima 5529   Fn wfn 6335  wf 6336  cfv 6340  (class class class)co 7173  m cmap 8440  cdom 8556  Fincfn 8558  cc 10616  cr 10617  0cc0 10618   · cmul 10623  cle 10757  -cneg 10952  0cn0 11979  cz 12065  cuz 12327  ...cfz 12984  cexp 13524  chash 13785  abscabs 14686  Σcsu 15138  0𝑝c0p 24424  Polycply 24936  coeffccoe 24938  degcdgr 24939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5233  ax-pr 5297  ax-un 7482  ax-inf2 9180  ax-cnex 10674  ax-resscn 10675  ax-1cn 10676  ax-icn 10677  ax-addcl 10678  ax-addrcl 10679  ax-mulcl 10680  ax-mulrcl 10681  ax-mulcom 10682  ax-addass 10683  ax-mulass 10684  ax-distr 10685  ax-i2m1 10686  ax-1ne0 10687  ax-1rid 10688  ax-rnegex 10689  ax-rrecex 10690  ax-cnre 10691  ax-pre-lttri 10692  ax-pre-lttrn 10693  ax-pre-ltadd 10694  ax-pre-mulgt0 10695  ax-pre-sup 10696
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3401  df-sbc 3682  df-csb 3792  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-pss 3863  df-nul 4213  df-if 4416  df-pw 4491  df-sn 4518  df-pr 4520  df-tp 4522  df-op 4524  df-uni 4798  df-int 4838  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5484  df-se 5485  df-we 5486  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-isom 6349  df-riota 7130  df-ov 7176  df-oprab 7177  df-mpo 7178  df-of 7428  df-om 7603  df-1st 7717  df-2nd 7718  df-wrecs 7979  df-recs 8040  df-rdg 8078  df-1o 8134  df-oadd 8138  df-er 8323  df-map 8442  df-pm 8443  df-en 8559  df-dom 8560  df-sdom 8561  df-fin 8562  df-sup 8982  df-inf 8983  df-oi 9050  df-dju 9406  df-card 9444  df-pnf 10758  df-mnf 10759  df-xr 10760  df-ltxr 10761  df-le 10762  df-sub 10953  df-neg 10954  df-div 11379  df-nn 11720  df-2 11782  df-3 11783  df-n0 11980  df-xnn0 12052  df-z 12066  df-uz 12328  df-rp 12476  df-fz 12985  df-fzo 13128  df-fl 13256  df-seq 13464  df-exp 13525  df-hash 13786  df-cj 14551  df-re 14552  df-im 14553  df-sqrt 14687  df-abs 14688  df-clim 14938  df-rlim 14939  df-sum 15139  df-0p 24425  df-ply 24940  df-idp 24941  df-coe 24942  df-dgr 24943  df-quot 25042
This theorem is referenced by:  aannenlem3  25081
  Copyright terms: Public domain W3C validator