MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aannenlem1 Structured version   Visualization version   GIF version

Theorem aannenlem1 26269
Description: Lemma for aannen 26272. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Hypothesis
Ref Expression
aannenlem.a 𝐻 = (𝑎 ∈ ℕ0 ↦ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0})
Assertion
Ref Expression
aannenlem1 (𝐴 ∈ ℕ0 → (𝐻𝐴) ∈ Fin)
Distinct variable group:   𝐴,𝑎,𝑏,𝑐,𝑑,𝑒
Allowed substitution hints:   𝐻(𝑒,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem aannenlem1
StepHypRef Expression
1 breq2 5106 . . . . . . 7 (𝑎 = 𝐴 → ((deg‘𝑑) ≤ 𝑎 ↔ (deg‘𝑑) ≤ 𝐴))
2 breq2 5106 . . . . . . . 8 (𝑎 = 𝐴 → ((abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎 ↔ (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴))
32ralbidv 3156 . . . . . . 7 (𝑎 = 𝐴 → (∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎 ↔ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴))
41, 33anbi23d 1441 . . . . . 6 (𝑎 = 𝐴 → ((𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎) ↔ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)))
54rabbidv 3410 . . . . 5 (𝑎 = 𝐴 → {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} = {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)})
65rexeqdv 3297 . . . 4 (𝑎 = 𝐴 → (∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0 ↔ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} (𝑐𝑏) = 0))
76rabbidv 3410 . . 3 (𝑎 = 𝐴 → {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0} = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} (𝑐𝑏) = 0})
8 aannenlem.a . . 3 𝐻 = (𝑎 ∈ ℕ0 ↦ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0})
9 cnex 11125 . . . 4 ℂ ∈ V
109rabex 5289 . . 3 {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} (𝑐𝑏) = 0} ∈ V
117, 8, 10fvmpt 6950 . 2 (𝐴 ∈ ℕ0 → (𝐻𝐴) = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} (𝑐𝑏) = 0})
12 iunrab 5011 . . 3 𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} {𝑏 ∈ ℂ ∣ (𝑐𝑏) = 0} = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} (𝑐𝑏) = 0}
13 fzfi 13913 . . . . . . 7 (-𝐴...𝐴) ∈ Fin
14 fzfi 13913 . . . . . . 7 (0...𝐴) ∈ Fin
15 mapfi 9275 . . . . . . 7 (((-𝐴...𝐴) ∈ Fin ∧ (0...𝐴) ∈ Fin) → ((-𝐴...𝐴) ↑m (0...𝐴)) ∈ Fin)
1613, 14, 15mp2an 692 . . . . . 6 ((-𝐴...𝐴) ↑m (0...𝐴)) ∈ Fin
1716a1i 11 . . . . 5 (𝐴 ∈ ℕ0 → ((-𝐴...𝐴) ↑m (0...𝐴)) ∈ Fin)
18 ovex 7402 . . . . . 6 ((-𝐴...𝐴) ↑m (0...𝐴)) ∈ V
19 neeq1 2987 . . . . . . . . . . 11 (𝑑 = 𝑎 → (𝑑 ≠ 0𝑝𝑎 ≠ 0𝑝))
20 fveq2 6840 . . . . . . . . . . . 12 (𝑑 = 𝑎 → (deg‘𝑑) = (deg‘𝑎))
2120breq1d 5112 . . . . . . . . . . 11 (𝑑 = 𝑎 → ((deg‘𝑑) ≤ 𝐴 ↔ (deg‘𝑎) ≤ 𝐴))
22 fveq2 6840 . . . . . . . . . . . . . . 15 (𝑑 = 𝑎 → (coeff‘𝑑) = (coeff‘𝑎))
2322fveq1d 6842 . . . . . . . . . . . . . 14 (𝑑 = 𝑎 → ((coeff‘𝑑)‘𝑒) = ((coeff‘𝑎)‘𝑒))
2423fveq2d 6844 . . . . . . . . . . . . 13 (𝑑 = 𝑎 → (abs‘((coeff‘𝑑)‘𝑒)) = (abs‘((coeff‘𝑎)‘𝑒)))
2524breq1d 5112 . . . . . . . . . . . 12 (𝑑 = 𝑎 → ((abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴 ↔ (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴))
2625ralbidv 3156 . . . . . . . . . . 11 (𝑑 = 𝑎 → (∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴 ↔ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴))
2719, 21, 263anbi123d 1438 . . . . . . . . . 10 (𝑑 = 𝑎 → ((𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴) ↔ (𝑎 ≠ 0𝑝 ∧ (deg‘𝑎) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴)))
2827elrab 3656 . . . . . . . . 9 (𝑎 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} ↔ (𝑎 ∈ (Poly‘ℤ) ∧ (𝑎 ≠ 0𝑝 ∧ (deg‘𝑎) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴)))
29 simp3 1138 . . . . . . . . . 10 ((𝑎 ≠ 0𝑝 ∧ (deg‘𝑎) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴) → ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴)
3029anim2i 617 . . . . . . . . 9 ((𝑎 ∈ (Poly‘ℤ) ∧ (𝑎 ≠ 0𝑝 ∧ (deg‘𝑎) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴)) → (𝑎 ∈ (Poly‘ℤ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴))
3128, 30sylbi 217 . . . . . . . 8 (𝑎 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} → (𝑎 ∈ (Poly‘ℤ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴))
32 0z 12516 . . . . . . . . . . . . . . 15 0 ∈ ℤ
33 eqid 2729 . . . . . . . . . . . . . . . 16 (coeff‘𝑎) = (coeff‘𝑎)
3433coef2 26169 . . . . . . . . . . . . . . 15 ((𝑎 ∈ (Poly‘ℤ) ∧ 0 ∈ ℤ) → (coeff‘𝑎):ℕ0⟶ℤ)
3532, 34mpan2 691 . . . . . . . . . . . . . 14 (𝑎 ∈ (Poly‘ℤ) → (coeff‘𝑎):ℕ0⟶ℤ)
3635ad2antrl 728 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ0 ∧ (𝑎 ∈ (Poly‘ℤ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴)) → (coeff‘𝑎):ℕ0⟶ℤ)
3736ffnd 6671 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0 ∧ (𝑎 ∈ (Poly‘ℤ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴)) → (coeff‘𝑎) Fn ℕ0)
3835adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℕ0𝑎 ∈ (Poly‘ℤ)) → (coeff‘𝑎):ℕ0⟶ℤ)
3938ffvelcdmda 7038 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℕ0𝑎 ∈ (Poly‘ℤ)) ∧ 𝑒 ∈ ℕ0) → ((coeff‘𝑎)‘𝑒) ∈ ℤ)
4039zred 12614 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℕ0𝑎 ∈ (Poly‘ℤ)) ∧ 𝑒 ∈ ℕ0) → ((coeff‘𝑎)‘𝑒) ∈ ℝ)
41 nn0re 12427 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
4241ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℕ0𝑎 ∈ (Poly‘ℤ)) ∧ 𝑒 ∈ ℕ0) → 𝐴 ∈ ℝ)
4340, 42absled 15375 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℕ0𝑎 ∈ (Poly‘ℤ)) ∧ 𝑒 ∈ ℕ0) → ((abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴 ↔ (-𝐴 ≤ ((coeff‘𝑎)‘𝑒) ∧ ((coeff‘𝑎)‘𝑒) ≤ 𝐴)))
44 nn0z 12530 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ ℕ0𝐴 ∈ ℤ)
4544ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℕ0𝑎 ∈ (Poly‘ℤ)) ∧ 𝑒 ∈ ℕ0) → 𝐴 ∈ ℤ)
4645znegcld 12616 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℕ0𝑎 ∈ (Poly‘ℤ)) ∧ 𝑒 ∈ ℕ0) → -𝐴 ∈ ℤ)
47 elfz 13450 . . . . . . . . . . . . . . . . . 18 ((((coeff‘𝑎)‘𝑒) ∈ ℤ ∧ -𝐴 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (((coeff‘𝑎)‘𝑒) ∈ (-𝐴...𝐴) ↔ (-𝐴 ≤ ((coeff‘𝑎)‘𝑒) ∧ ((coeff‘𝑎)‘𝑒) ≤ 𝐴)))
4839, 46, 45, 47syl3anc 1373 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℕ0𝑎 ∈ (Poly‘ℤ)) ∧ 𝑒 ∈ ℕ0) → (((coeff‘𝑎)‘𝑒) ∈ (-𝐴...𝐴) ↔ (-𝐴 ≤ ((coeff‘𝑎)‘𝑒) ∧ ((coeff‘𝑎)‘𝑒) ≤ 𝐴)))
4943, 48bitr4d 282 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℕ0𝑎 ∈ (Poly‘ℤ)) ∧ 𝑒 ∈ ℕ0) → ((abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴 ↔ ((coeff‘𝑎)‘𝑒) ∈ (-𝐴...𝐴)))
5049biimpd 229 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ0𝑎 ∈ (Poly‘ℤ)) ∧ 𝑒 ∈ ℕ0) → ((abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴 → ((coeff‘𝑎)‘𝑒) ∈ (-𝐴...𝐴)))
5150ralimdva 3145 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ0𝑎 ∈ (Poly‘ℤ)) → (∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴 → ∀𝑒 ∈ ℕ0 ((coeff‘𝑎)‘𝑒) ∈ (-𝐴...𝐴)))
5251impr 454 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ0 ∧ (𝑎 ∈ (Poly‘ℤ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴)) → ∀𝑒 ∈ ℕ0 ((coeff‘𝑎)‘𝑒) ∈ (-𝐴...𝐴))
53 fnfvrnss 7075 . . . . . . . . . . . . 13 (((coeff‘𝑎) Fn ℕ0 ∧ ∀𝑒 ∈ ℕ0 ((coeff‘𝑎)‘𝑒) ∈ (-𝐴...𝐴)) → ran (coeff‘𝑎) ⊆ (-𝐴...𝐴))
5437, 52, 53syl2anc 584 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0 ∧ (𝑎 ∈ (Poly‘ℤ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴)) → ran (coeff‘𝑎) ⊆ (-𝐴...𝐴))
55 df-f 6503 . . . . . . . . . . . 12 ((coeff‘𝑎):ℕ0⟶(-𝐴...𝐴) ↔ ((coeff‘𝑎) Fn ℕ0 ∧ ran (coeff‘𝑎) ⊆ (-𝐴...𝐴)))
5637, 54, 55sylanbrc 583 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0 ∧ (𝑎 ∈ (Poly‘ℤ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴)) → (coeff‘𝑎):ℕ0⟶(-𝐴...𝐴))
57 fz0ssnn0 13559 . . . . . . . . . . 11 (0...𝐴) ⊆ ℕ0
58 fssres 6708 . . . . . . . . . . 11 (((coeff‘𝑎):ℕ0⟶(-𝐴...𝐴) ∧ (0...𝐴) ⊆ ℕ0) → ((coeff‘𝑎) ↾ (0...𝐴)):(0...𝐴)⟶(-𝐴...𝐴))
5956, 57, 58sylancl 586 . . . . . . . . . 10 ((𝐴 ∈ ℕ0 ∧ (𝑎 ∈ (Poly‘ℤ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴)) → ((coeff‘𝑎) ↾ (0...𝐴)):(0...𝐴)⟶(-𝐴...𝐴))
60 ovex 7402 . . . . . . . . . . 11 (-𝐴...𝐴) ∈ V
61 ovex 7402 . . . . . . . . . . 11 (0...𝐴) ∈ V
6260, 61elmap 8821 . . . . . . . . . 10 (((coeff‘𝑎) ↾ (0...𝐴)) ∈ ((-𝐴...𝐴) ↑m (0...𝐴)) ↔ ((coeff‘𝑎) ↾ (0...𝐴)):(0...𝐴)⟶(-𝐴...𝐴))
6359, 62sylibr 234 . . . . . . . . 9 ((𝐴 ∈ ℕ0 ∧ (𝑎 ∈ (Poly‘ℤ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴)) → ((coeff‘𝑎) ↾ (0...𝐴)) ∈ ((-𝐴...𝐴) ↑m (0...𝐴)))
6463ex 412 . . . . . . . 8 (𝐴 ∈ ℕ0 → ((𝑎 ∈ (Poly‘ℤ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴) → ((coeff‘𝑎) ↾ (0...𝐴)) ∈ ((-𝐴...𝐴) ↑m (0...𝐴))))
6531, 64syl5 34 . . . . . . 7 (𝐴 ∈ ℕ0 → (𝑎 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} → ((coeff‘𝑎) ↾ (0...𝐴)) ∈ ((-𝐴...𝐴) ↑m (0...𝐴))))
66 simp2 1137 . . . . . . . . . 10 ((𝑎 ≠ 0𝑝 ∧ (deg‘𝑎) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴) → (deg‘𝑎) ≤ 𝐴)
6766anim2i 617 . . . . . . . . 9 ((𝑎 ∈ (Poly‘ℤ) ∧ (𝑎 ≠ 0𝑝 ∧ (deg‘𝑎) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴)) → (𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴))
6828, 67sylbi 217 . . . . . . . 8 (𝑎 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} → (𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴))
69 neeq1 2987 . . . . . . . . . . 11 (𝑑 = 𝑏 → (𝑑 ≠ 0𝑝𝑏 ≠ 0𝑝))
70 fveq2 6840 . . . . . . . . . . . 12 (𝑑 = 𝑏 → (deg‘𝑑) = (deg‘𝑏))
7170breq1d 5112 . . . . . . . . . . 11 (𝑑 = 𝑏 → ((deg‘𝑑) ≤ 𝐴 ↔ (deg‘𝑏) ≤ 𝐴))
72 fveq2 6840 . . . . . . . . . . . . . . 15 (𝑑 = 𝑏 → (coeff‘𝑑) = (coeff‘𝑏))
7372fveq1d 6842 . . . . . . . . . . . . . 14 (𝑑 = 𝑏 → ((coeff‘𝑑)‘𝑒) = ((coeff‘𝑏)‘𝑒))
7473fveq2d 6844 . . . . . . . . . . . . 13 (𝑑 = 𝑏 → (abs‘((coeff‘𝑑)‘𝑒)) = (abs‘((coeff‘𝑏)‘𝑒)))
7574breq1d 5112 . . . . . . . . . . . 12 (𝑑 = 𝑏 → ((abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴 ↔ (abs‘((coeff‘𝑏)‘𝑒)) ≤ 𝐴))
7675ralbidv 3156 . . . . . . . . . . 11 (𝑑 = 𝑏 → (∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴 ↔ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑏)‘𝑒)) ≤ 𝐴))
7769, 71, 763anbi123d 1438 . . . . . . . . . 10 (𝑑 = 𝑏 → ((𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴) ↔ (𝑏 ≠ 0𝑝 ∧ (deg‘𝑏) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑏)‘𝑒)) ≤ 𝐴)))
7877elrab 3656 . . . . . . . . 9 (𝑏 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} ↔ (𝑏 ∈ (Poly‘ℤ) ∧ (𝑏 ≠ 0𝑝 ∧ (deg‘𝑏) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑏)‘𝑒)) ≤ 𝐴)))
79 simp2 1137 . . . . . . . . . 10 ((𝑏 ≠ 0𝑝 ∧ (deg‘𝑏) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑏)‘𝑒)) ≤ 𝐴) → (deg‘𝑏) ≤ 𝐴)
8079anim2i 617 . . . . . . . . 9 ((𝑏 ∈ (Poly‘ℤ) ∧ (𝑏 ≠ 0𝑝 ∧ (deg‘𝑏) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑏)‘𝑒)) ≤ 𝐴)) → (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴))
8178, 80sylbi 217 . . . . . . . 8 (𝑏 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} → (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴))
82 simplll 774 . . . . . . . . . . . . 13 ((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) → 𝑎 ∈ (Poly‘ℤ))
83 plyf 26136 . . . . . . . . . . . . 13 (𝑎 ∈ (Poly‘ℤ) → 𝑎:ℂ⟶ℂ)
84 ffn 6670 . . . . . . . . . . . . 13 (𝑎:ℂ⟶ℂ → 𝑎 Fn ℂ)
8582, 83, 843syl 18 . . . . . . . . . . . 12 ((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) → 𝑎 Fn ℂ)
86 simplrl 776 . . . . . . . . . . . . 13 ((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) → 𝑏 ∈ (Poly‘ℤ))
87 plyf 26136 . . . . . . . . . . . . 13 (𝑏 ∈ (Poly‘ℤ) → 𝑏:ℂ⟶ℂ)
88 ffn 6670 . . . . . . . . . . . . 13 (𝑏:ℂ⟶ℂ → 𝑏 Fn ℂ)
8986, 87, 883syl 18 . . . . . . . . . . . 12 ((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) → 𝑏 Fn ℂ)
90 simplrr 777 . . . . . . . . . . . . . . . . . 18 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))
9190adantr 480 . . . . . . . . . . . . . . . . 17 ((((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) ∧ 𝑑 ∈ (0...𝐴)) → ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))
9291fveq1d 6842 . . . . . . . . . . . . . . . 16 ((((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) ∧ 𝑑 ∈ (0...𝐴)) → (((coeff‘𝑎) ↾ (0...𝐴))‘𝑑) = (((coeff‘𝑏) ↾ (0...𝐴))‘𝑑))
93 fvres 6859 . . . . . . . . . . . . . . . . 17 (𝑑 ∈ (0...𝐴) → (((coeff‘𝑎) ↾ (0...𝐴))‘𝑑) = ((coeff‘𝑎)‘𝑑))
9493adantl 481 . . . . . . . . . . . . . . . 16 ((((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) ∧ 𝑑 ∈ (0...𝐴)) → (((coeff‘𝑎) ↾ (0...𝐴))‘𝑑) = ((coeff‘𝑎)‘𝑑))
95 fvres 6859 . . . . . . . . . . . . . . . . 17 (𝑑 ∈ (0...𝐴) → (((coeff‘𝑏) ↾ (0...𝐴))‘𝑑) = ((coeff‘𝑏)‘𝑑))
9695adantl 481 . . . . . . . . . . . . . . . 16 ((((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) ∧ 𝑑 ∈ (0...𝐴)) → (((coeff‘𝑏) ↾ (0...𝐴))‘𝑑) = ((coeff‘𝑏)‘𝑑))
9792, 94, 963eqtr3d 2772 . . . . . . . . . . . . . . 15 ((((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) ∧ 𝑑 ∈ (0...𝐴)) → ((coeff‘𝑎)‘𝑑) = ((coeff‘𝑏)‘𝑑))
9897oveq1d 7384 . . . . . . . . . . . . . 14 ((((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) ∧ 𝑑 ∈ (0...𝐴)) → (((coeff‘𝑎)‘𝑑) · (𝑐𝑑)) = (((coeff‘𝑏)‘𝑑) · (𝑐𝑑)))
9998sumeq2dv 15644 . . . . . . . . . . . . 13 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → Σ𝑑 ∈ (0...𝐴)(((coeff‘𝑎)‘𝑑) · (𝑐𝑑)) = Σ𝑑 ∈ (0...𝐴)(((coeff‘𝑏)‘𝑑) · (𝑐𝑑)))
100 simp-4l 782 . . . . . . . . . . . . . 14 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → 𝑎 ∈ (Poly‘ℤ))
101 simp-4r 783 . . . . . . . . . . . . . . 15 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → (deg‘𝑎) ≤ 𝐴)
102 dgrcl 26171 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ (Poly‘ℤ) → (deg‘𝑎) ∈ ℕ0)
103 nn0z 12530 . . . . . . . . . . . . . . . . 17 ((deg‘𝑎) ∈ ℕ0 → (deg‘𝑎) ∈ ℤ)
104100, 102, 1033syl 18 . . . . . . . . . . . . . . . 16 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → (deg‘𝑎) ∈ ℤ)
105 simplrl 776 . . . . . . . . . . . . . . . . 17 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → 𝐴 ∈ ℕ0)
106105nn0zd 12531 . . . . . . . . . . . . . . . 16 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → 𝐴 ∈ ℤ)
107 eluz 12783 . . . . . . . . . . . . . . . 16 (((deg‘𝑎) ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐴 ∈ (ℤ‘(deg‘𝑎)) ↔ (deg‘𝑎) ≤ 𝐴))
108104, 106, 107syl2anc 584 . . . . . . . . . . . . . . 15 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → (𝐴 ∈ (ℤ‘(deg‘𝑎)) ↔ (deg‘𝑎) ≤ 𝐴))
109101, 108mpbird 257 . . . . . . . . . . . . . 14 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → 𝐴 ∈ (ℤ‘(deg‘𝑎)))
110 simpr 484 . . . . . . . . . . . . . 14 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → 𝑐 ∈ ℂ)
111 eqid 2729 . . . . . . . . . . . . . . 15 (deg‘𝑎) = (deg‘𝑎)
11233, 111coeid3 26178 . . . . . . . . . . . . . 14 ((𝑎 ∈ (Poly‘ℤ) ∧ 𝐴 ∈ (ℤ‘(deg‘𝑎)) ∧ 𝑐 ∈ ℂ) → (𝑎𝑐) = Σ𝑑 ∈ (0...𝐴)(((coeff‘𝑎)‘𝑑) · (𝑐𝑑)))
113100, 109, 110, 112syl3anc 1373 . . . . . . . . . . . . 13 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → (𝑎𝑐) = Σ𝑑 ∈ (0...𝐴)(((coeff‘𝑎)‘𝑑) · (𝑐𝑑)))
114 simp1rl 1239 . . . . . . . . . . . . . . 15 ((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴))) ∧ 𝑐 ∈ ℂ) → 𝑏 ∈ (Poly‘ℤ))
1151143expa 1118 . . . . . . . . . . . . . 14 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → 𝑏 ∈ (Poly‘ℤ))
116 simplrr 777 . . . . . . . . . . . . . . . 16 ((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) → (deg‘𝑏) ≤ 𝐴)
117116adantr 480 . . . . . . . . . . . . . . 15 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → (deg‘𝑏) ≤ 𝐴)
118 dgrcl 26171 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ (Poly‘ℤ) → (deg‘𝑏) ∈ ℕ0)
119 nn0z 12530 . . . . . . . . . . . . . . . . 17 ((deg‘𝑏) ∈ ℕ0 → (deg‘𝑏) ∈ ℤ)
120115, 118, 1193syl 18 . . . . . . . . . . . . . . . 16 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → (deg‘𝑏) ∈ ℤ)
121 eluz 12783 . . . . . . . . . . . . . . . 16 (((deg‘𝑏) ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐴 ∈ (ℤ‘(deg‘𝑏)) ↔ (deg‘𝑏) ≤ 𝐴))
122120, 106, 121syl2anc 584 . . . . . . . . . . . . . . 15 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → (𝐴 ∈ (ℤ‘(deg‘𝑏)) ↔ (deg‘𝑏) ≤ 𝐴))
123117, 122mpbird 257 . . . . . . . . . . . . . 14 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → 𝐴 ∈ (ℤ‘(deg‘𝑏)))
124 eqid 2729 . . . . . . . . . . . . . . 15 (coeff‘𝑏) = (coeff‘𝑏)
125 eqid 2729 . . . . . . . . . . . . . . 15 (deg‘𝑏) = (deg‘𝑏)
126124, 125coeid3 26178 . . . . . . . . . . . . . 14 ((𝑏 ∈ (Poly‘ℤ) ∧ 𝐴 ∈ (ℤ‘(deg‘𝑏)) ∧ 𝑐 ∈ ℂ) → (𝑏𝑐) = Σ𝑑 ∈ (0...𝐴)(((coeff‘𝑏)‘𝑑) · (𝑐𝑑)))
127115, 123, 110, 126syl3anc 1373 . . . . . . . . . . . . 13 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → (𝑏𝑐) = Σ𝑑 ∈ (0...𝐴)(((coeff‘𝑏)‘𝑑) · (𝑐𝑑)))
12899, 113, 1273eqtr4d 2774 . . . . . . . . . . . 12 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → (𝑎𝑐) = (𝑏𝑐))
12985, 89, 128eqfnfvd 6988 . . . . . . . . . . 11 ((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) → 𝑎 = 𝑏)
130129expr 456 . . . . . . . . . 10 ((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ 𝐴 ∈ ℕ0) → (((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)) → 𝑎 = 𝑏))
131 fveq2 6840 . . . . . . . . . . 11 (𝑎 = 𝑏 → (coeff‘𝑎) = (coeff‘𝑏))
132131reseq1d 5938 . . . . . . . . . 10 (𝑎 = 𝑏 → ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))
133130, 132impbid1 225 . . . . . . . . 9 ((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ 𝐴 ∈ ℕ0) → (((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)) ↔ 𝑎 = 𝑏))
134133expcom 413 . . . . . . . 8 (𝐴 ∈ ℕ0 → (((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) → (((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)) ↔ 𝑎 = 𝑏)))
13568, 81, 134syl2ani 607 . . . . . . 7 (𝐴 ∈ ℕ0 → ((𝑎 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} ∧ 𝑏 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)}) → (((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)) ↔ 𝑎 = 𝑏)))
13665, 135dom2d 8941 . . . . . 6 (𝐴 ∈ ℕ0 → (((-𝐴...𝐴) ↑m (0...𝐴)) ∈ V → {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} ≼ ((-𝐴...𝐴) ↑m (0...𝐴))))
13718, 136mpi 20 . . . . 5 (𝐴 ∈ ℕ0 → {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} ≼ ((-𝐴...𝐴) ↑m (0...𝐴)))
138 domfi 9130 . . . . 5 ((((-𝐴...𝐴) ↑m (0...𝐴)) ∈ Fin ∧ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} ≼ ((-𝐴...𝐴) ↑m (0...𝐴))) → {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} ∈ Fin)
13917, 137, 138syl2anc 584 . . . 4 (𝐴 ∈ ℕ0 → {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} ∈ Fin)
140 neeq1 2987 . . . . . . . . 9 (𝑑 = 𝑐 → (𝑑 ≠ 0𝑝𝑐 ≠ 0𝑝))
141 fveq2 6840 . . . . . . . . . 10 (𝑑 = 𝑐 → (deg‘𝑑) = (deg‘𝑐))
142141breq1d 5112 . . . . . . . . 9 (𝑑 = 𝑐 → ((deg‘𝑑) ≤ 𝐴 ↔ (deg‘𝑐) ≤ 𝐴))
143 fveq2 6840 . . . . . . . . . . . . 13 (𝑑 = 𝑐 → (coeff‘𝑑) = (coeff‘𝑐))
144143fveq1d 6842 . . . . . . . . . . . 12 (𝑑 = 𝑐 → ((coeff‘𝑑)‘𝑒) = ((coeff‘𝑐)‘𝑒))
145144fveq2d 6844 . . . . . . . . . . 11 (𝑑 = 𝑐 → (abs‘((coeff‘𝑑)‘𝑒)) = (abs‘((coeff‘𝑐)‘𝑒)))
146145breq1d 5112 . . . . . . . . . 10 (𝑑 = 𝑐 → ((abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴 ↔ (abs‘((coeff‘𝑐)‘𝑒)) ≤ 𝐴))
147146ralbidv 3156 . . . . . . . . 9 (𝑑 = 𝑐 → (∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴 ↔ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑐)‘𝑒)) ≤ 𝐴))
148140, 142, 1473anbi123d 1438 . . . . . . . 8 (𝑑 = 𝑐 → ((𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴) ↔ (𝑐 ≠ 0𝑝 ∧ (deg‘𝑐) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑐)‘𝑒)) ≤ 𝐴)))
149148elrab 3656 . . . . . . 7 (𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} ↔ (𝑐 ∈ (Poly‘ℤ) ∧ (𝑐 ≠ 0𝑝 ∧ (deg‘𝑐) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑐)‘𝑒)) ≤ 𝐴)))
150 simp1 1136 . . . . . . . 8 ((𝑐 ≠ 0𝑝 ∧ (deg‘𝑐) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑐)‘𝑒)) ≤ 𝐴) → 𝑐 ≠ 0𝑝)
151150anim2i 617 . . . . . . 7 ((𝑐 ∈ (Poly‘ℤ) ∧ (𝑐 ≠ 0𝑝 ∧ (deg‘𝑐) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑐)‘𝑒)) ≤ 𝐴)) → (𝑐 ∈ (Poly‘ℤ) ∧ 𝑐 ≠ 0𝑝))
152149, 151sylbi 217 . . . . . 6 (𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} → (𝑐 ∈ (Poly‘ℤ) ∧ 𝑐 ≠ 0𝑝))
153 fveqeq2 6849 . . . . . . . . . . 11 (𝑏 = 𝑎 → ((𝑐𝑏) = 0 ↔ (𝑐𝑎) = 0))
154153elrab 3656 . . . . . . . . . 10 (𝑎 ∈ {𝑏 ∈ ℂ ∣ (𝑐𝑏) = 0} ↔ (𝑎 ∈ ℂ ∧ (𝑐𝑎) = 0))
155 plyf 26136 . . . . . . . . . . . . 13 (𝑐 ∈ (Poly‘ℤ) → 𝑐:ℂ⟶ℂ)
156155ffnd 6671 . . . . . . . . . . . 12 (𝑐 ∈ (Poly‘ℤ) → 𝑐 Fn ℂ)
157156adantr 480 . . . . . . . . . . 11 ((𝑐 ∈ (Poly‘ℤ) ∧ 𝑐 ≠ 0𝑝) → 𝑐 Fn ℂ)
158 fniniseg 7014 . . . . . . . . . . 11 (𝑐 Fn ℂ → (𝑎 ∈ (𝑐 “ {0}) ↔ (𝑎 ∈ ℂ ∧ (𝑐𝑎) = 0)))
159157, 158syl 17 . . . . . . . . . 10 ((𝑐 ∈ (Poly‘ℤ) ∧ 𝑐 ≠ 0𝑝) → (𝑎 ∈ (𝑐 “ {0}) ↔ (𝑎 ∈ ℂ ∧ (𝑐𝑎) = 0)))
160154, 159bitr4id 290 . . . . . . . . 9 ((𝑐 ∈ (Poly‘ℤ) ∧ 𝑐 ≠ 0𝑝) → (𝑎 ∈ {𝑏 ∈ ℂ ∣ (𝑐𝑏) = 0} ↔ 𝑎 ∈ (𝑐 “ {0})))
161160eqrdv 2727 . . . . . . . 8 ((𝑐 ∈ (Poly‘ℤ) ∧ 𝑐 ≠ 0𝑝) → {𝑏 ∈ ℂ ∣ (𝑐𝑏) = 0} = (𝑐 “ {0}))
162 eqid 2729 . . . . . . . . . 10 (𝑐 “ {0}) = (𝑐 “ {0})
163162fta1 26249 . . . . . . . . 9 ((𝑐 ∈ (Poly‘ℤ) ∧ 𝑐 ≠ 0𝑝) → ((𝑐 “ {0}) ∈ Fin ∧ (♯‘(𝑐 “ {0})) ≤ (deg‘𝑐)))
164163simpld 494 . . . . . . . 8 ((𝑐 ∈ (Poly‘ℤ) ∧ 𝑐 ≠ 0𝑝) → (𝑐 “ {0}) ∈ Fin)
165161, 164eqeltrd 2828 . . . . . . 7 ((𝑐 ∈ (Poly‘ℤ) ∧ 𝑐 ≠ 0𝑝) → {𝑏 ∈ ℂ ∣ (𝑐𝑏) = 0} ∈ Fin)
166165a1i 11 . . . . . 6 (𝐴 ∈ ℕ0 → ((𝑐 ∈ (Poly‘ℤ) ∧ 𝑐 ≠ 0𝑝) → {𝑏 ∈ ℂ ∣ (𝑐𝑏) = 0} ∈ Fin))
167152, 166syl5 34 . . . . 5 (𝐴 ∈ ℕ0 → (𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} → {𝑏 ∈ ℂ ∣ (𝑐𝑏) = 0} ∈ Fin))
168167ralrimiv 3124 . . . 4 (𝐴 ∈ ℕ0 → ∀𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} {𝑏 ∈ ℂ ∣ (𝑐𝑏) = 0} ∈ Fin)
169 iunfi 9270 . . . 4 (({𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} ∈ Fin ∧ ∀𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} {𝑏 ∈ ℂ ∣ (𝑐𝑏) = 0} ∈ Fin) → 𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} {𝑏 ∈ ℂ ∣ (𝑐𝑏) = 0} ∈ Fin)
170139, 168, 169syl2anc 584 . . 3 (𝐴 ∈ ℕ0 𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} {𝑏 ∈ ℂ ∣ (𝑐𝑏) = 0} ∈ Fin)
17112, 170eqeltrrid 2833 . 2 (𝐴 ∈ ℕ0 → {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} (𝑐𝑏) = 0} ∈ Fin)
17211, 171eqeltrd 2828 1 (𝐴 ∈ ℕ0 → (𝐻𝐴) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3402  Vcvv 3444  wss 3911  {csn 4585   ciun 4951   class class class wbr 5102  cmpt 5183  ccnv 5630  ran crn 5632  cres 5633  cima 5634   Fn wfn 6494  wf 6495  cfv 6499  (class class class)co 7369  m cmap 8776  cdom 8893  Fincfn 8895  cc 11042  cr 11043  0cc0 11044   · cmul 11049  cle 11185  -cneg 11382  0cn0 12418  cz 12505  cuz 12769  ...cfz 13444  cexp 14002  chash 14271  abscabs 15176  Σcsu 15628  0𝑝c0p 25603  Polycply 26122  coeffccoe 26124  degcdgr 26125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-oadd 8415  df-er 8648  df-map 8778  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-oi 9439  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-xnn0 12492  df-z 12506  df-uz 12770  df-rp 12928  df-fz 13445  df-fzo 13592  df-fl 13730  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-rlim 15431  df-sum 15629  df-0p 25604  df-ply 26126  df-idp 26127  df-coe 26128  df-dgr 26129  df-quot 26232
This theorem is referenced by:  aannenlem3  26271
  Copyright terms: Public domain W3C validator