MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aannenlem1 Structured version   Visualization version   GIF version

Theorem aannenlem1 26293
Description: Lemma for aannen 26296. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Hypothesis
Ref Expression
aannenlem.a 𝐻 = (𝑎 ∈ ℕ0 ↦ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0})
Assertion
Ref Expression
aannenlem1 (𝐴 ∈ ℕ0 → (𝐻𝐴) ∈ Fin)
Distinct variable group:   𝐴,𝑎,𝑏,𝑐,𝑑,𝑒
Allowed substitution hints:   𝐻(𝑒,𝑎,𝑏,𝑐,𝑑)

Proof of Theorem aannenlem1
StepHypRef Expression
1 breq2 5128 . . . . . . 7 (𝑎 = 𝐴 → ((deg‘𝑑) ≤ 𝑎 ↔ (deg‘𝑑) ≤ 𝐴))
2 breq2 5128 . . . . . . . 8 (𝑎 = 𝐴 → ((abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎 ↔ (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴))
32ralbidv 3164 . . . . . . 7 (𝑎 = 𝐴 → (∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎 ↔ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴))
41, 33anbi23d 1441 . . . . . 6 (𝑎 = 𝐴 → ((𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎) ↔ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)))
54rabbidv 3428 . . . . 5 (𝑎 = 𝐴 → {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} = {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)})
65rexeqdv 3310 . . . 4 (𝑎 = 𝐴 → (∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0 ↔ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} (𝑐𝑏) = 0))
76rabbidv 3428 . . 3 (𝑎 = 𝐴 → {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0} = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} (𝑐𝑏) = 0})
8 aannenlem.a . . 3 𝐻 = (𝑎 ∈ ℕ0 ↦ {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝑎 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝑎)} (𝑐𝑏) = 0})
9 cnex 11215 . . . 4 ℂ ∈ V
109rabex 5314 . . 3 {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} (𝑐𝑏) = 0} ∈ V
117, 8, 10fvmpt 6991 . 2 (𝐴 ∈ ℕ0 → (𝐻𝐴) = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} (𝑐𝑏) = 0})
12 iunrab 5033 . . 3 𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} {𝑏 ∈ ℂ ∣ (𝑐𝑏) = 0} = {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} (𝑐𝑏) = 0}
13 fzfi 13995 . . . . . . 7 (-𝐴...𝐴) ∈ Fin
14 fzfi 13995 . . . . . . 7 (0...𝐴) ∈ Fin
15 mapfi 9365 . . . . . . 7 (((-𝐴...𝐴) ∈ Fin ∧ (0...𝐴) ∈ Fin) → ((-𝐴...𝐴) ↑m (0...𝐴)) ∈ Fin)
1613, 14, 15mp2an 692 . . . . . 6 ((-𝐴...𝐴) ↑m (0...𝐴)) ∈ Fin
1716a1i 11 . . . . 5 (𝐴 ∈ ℕ0 → ((-𝐴...𝐴) ↑m (0...𝐴)) ∈ Fin)
18 ovex 7443 . . . . . 6 ((-𝐴...𝐴) ↑m (0...𝐴)) ∈ V
19 neeq1 2995 . . . . . . . . . . 11 (𝑑 = 𝑎 → (𝑑 ≠ 0𝑝𝑎 ≠ 0𝑝))
20 fveq2 6881 . . . . . . . . . . . 12 (𝑑 = 𝑎 → (deg‘𝑑) = (deg‘𝑎))
2120breq1d 5134 . . . . . . . . . . 11 (𝑑 = 𝑎 → ((deg‘𝑑) ≤ 𝐴 ↔ (deg‘𝑎) ≤ 𝐴))
22 fveq2 6881 . . . . . . . . . . . . . . 15 (𝑑 = 𝑎 → (coeff‘𝑑) = (coeff‘𝑎))
2322fveq1d 6883 . . . . . . . . . . . . . 14 (𝑑 = 𝑎 → ((coeff‘𝑑)‘𝑒) = ((coeff‘𝑎)‘𝑒))
2423fveq2d 6885 . . . . . . . . . . . . 13 (𝑑 = 𝑎 → (abs‘((coeff‘𝑑)‘𝑒)) = (abs‘((coeff‘𝑎)‘𝑒)))
2524breq1d 5134 . . . . . . . . . . . 12 (𝑑 = 𝑎 → ((abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴 ↔ (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴))
2625ralbidv 3164 . . . . . . . . . . 11 (𝑑 = 𝑎 → (∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴 ↔ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴))
2719, 21, 263anbi123d 1438 . . . . . . . . . 10 (𝑑 = 𝑎 → ((𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴) ↔ (𝑎 ≠ 0𝑝 ∧ (deg‘𝑎) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴)))
2827elrab 3676 . . . . . . . . 9 (𝑎 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} ↔ (𝑎 ∈ (Poly‘ℤ) ∧ (𝑎 ≠ 0𝑝 ∧ (deg‘𝑎) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴)))
29 simp3 1138 . . . . . . . . . 10 ((𝑎 ≠ 0𝑝 ∧ (deg‘𝑎) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴) → ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴)
3029anim2i 617 . . . . . . . . 9 ((𝑎 ∈ (Poly‘ℤ) ∧ (𝑎 ≠ 0𝑝 ∧ (deg‘𝑎) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴)) → (𝑎 ∈ (Poly‘ℤ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴))
3128, 30sylbi 217 . . . . . . . 8 (𝑎 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} → (𝑎 ∈ (Poly‘ℤ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴))
32 0z 12604 . . . . . . . . . . . . . . 15 0 ∈ ℤ
33 eqid 2736 . . . . . . . . . . . . . . . 16 (coeff‘𝑎) = (coeff‘𝑎)
3433coef2 26193 . . . . . . . . . . . . . . 15 ((𝑎 ∈ (Poly‘ℤ) ∧ 0 ∈ ℤ) → (coeff‘𝑎):ℕ0⟶ℤ)
3532, 34mpan2 691 . . . . . . . . . . . . . 14 (𝑎 ∈ (Poly‘ℤ) → (coeff‘𝑎):ℕ0⟶ℤ)
3635ad2antrl 728 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ0 ∧ (𝑎 ∈ (Poly‘ℤ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴)) → (coeff‘𝑎):ℕ0⟶ℤ)
3736ffnd 6712 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0 ∧ (𝑎 ∈ (Poly‘ℤ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴)) → (coeff‘𝑎) Fn ℕ0)
3835adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℕ0𝑎 ∈ (Poly‘ℤ)) → (coeff‘𝑎):ℕ0⟶ℤ)
3938ffvelcdmda 7079 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℕ0𝑎 ∈ (Poly‘ℤ)) ∧ 𝑒 ∈ ℕ0) → ((coeff‘𝑎)‘𝑒) ∈ ℤ)
4039zred 12702 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℕ0𝑎 ∈ (Poly‘ℤ)) ∧ 𝑒 ∈ ℕ0) → ((coeff‘𝑎)‘𝑒) ∈ ℝ)
41 nn0re 12515 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
4241ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℕ0𝑎 ∈ (Poly‘ℤ)) ∧ 𝑒 ∈ ℕ0) → 𝐴 ∈ ℝ)
4340, 42absled 15454 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℕ0𝑎 ∈ (Poly‘ℤ)) ∧ 𝑒 ∈ ℕ0) → ((abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴 ↔ (-𝐴 ≤ ((coeff‘𝑎)‘𝑒) ∧ ((coeff‘𝑎)‘𝑒) ≤ 𝐴)))
44 nn0z 12618 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ ℕ0𝐴 ∈ ℤ)
4544ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℕ0𝑎 ∈ (Poly‘ℤ)) ∧ 𝑒 ∈ ℕ0) → 𝐴 ∈ ℤ)
4645znegcld 12704 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℕ0𝑎 ∈ (Poly‘ℤ)) ∧ 𝑒 ∈ ℕ0) → -𝐴 ∈ ℤ)
47 elfz 13535 . . . . . . . . . . . . . . . . . 18 ((((coeff‘𝑎)‘𝑒) ∈ ℤ ∧ -𝐴 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (((coeff‘𝑎)‘𝑒) ∈ (-𝐴...𝐴) ↔ (-𝐴 ≤ ((coeff‘𝑎)‘𝑒) ∧ ((coeff‘𝑎)‘𝑒) ≤ 𝐴)))
4839, 46, 45, 47syl3anc 1373 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℕ0𝑎 ∈ (Poly‘ℤ)) ∧ 𝑒 ∈ ℕ0) → (((coeff‘𝑎)‘𝑒) ∈ (-𝐴...𝐴) ↔ (-𝐴 ≤ ((coeff‘𝑎)‘𝑒) ∧ ((coeff‘𝑎)‘𝑒) ≤ 𝐴)))
4943, 48bitr4d 282 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℕ0𝑎 ∈ (Poly‘ℤ)) ∧ 𝑒 ∈ ℕ0) → ((abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴 ↔ ((coeff‘𝑎)‘𝑒) ∈ (-𝐴...𝐴)))
5049biimpd 229 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℕ0𝑎 ∈ (Poly‘ℤ)) ∧ 𝑒 ∈ ℕ0) → ((abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴 → ((coeff‘𝑎)‘𝑒) ∈ (-𝐴...𝐴)))
5150ralimdva 3153 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ0𝑎 ∈ (Poly‘ℤ)) → (∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴 → ∀𝑒 ∈ ℕ0 ((coeff‘𝑎)‘𝑒) ∈ (-𝐴...𝐴)))
5251impr 454 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ0 ∧ (𝑎 ∈ (Poly‘ℤ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴)) → ∀𝑒 ∈ ℕ0 ((coeff‘𝑎)‘𝑒) ∈ (-𝐴...𝐴))
53 fnfvrnss 7116 . . . . . . . . . . . . 13 (((coeff‘𝑎) Fn ℕ0 ∧ ∀𝑒 ∈ ℕ0 ((coeff‘𝑎)‘𝑒) ∈ (-𝐴...𝐴)) → ran (coeff‘𝑎) ⊆ (-𝐴...𝐴))
5437, 52, 53syl2anc 584 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0 ∧ (𝑎 ∈ (Poly‘ℤ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴)) → ran (coeff‘𝑎) ⊆ (-𝐴...𝐴))
55 df-f 6540 . . . . . . . . . . . 12 ((coeff‘𝑎):ℕ0⟶(-𝐴...𝐴) ↔ ((coeff‘𝑎) Fn ℕ0 ∧ ran (coeff‘𝑎) ⊆ (-𝐴...𝐴)))
5637, 54, 55sylanbrc 583 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0 ∧ (𝑎 ∈ (Poly‘ℤ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴)) → (coeff‘𝑎):ℕ0⟶(-𝐴...𝐴))
57 fz0ssnn0 13644 . . . . . . . . . . 11 (0...𝐴) ⊆ ℕ0
58 fssres 6749 . . . . . . . . . . 11 (((coeff‘𝑎):ℕ0⟶(-𝐴...𝐴) ∧ (0...𝐴) ⊆ ℕ0) → ((coeff‘𝑎) ↾ (0...𝐴)):(0...𝐴)⟶(-𝐴...𝐴))
5956, 57, 58sylancl 586 . . . . . . . . . 10 ((𝐴 ∈ ℕ0 ∧ (𝑎 ∈ (Poly‘ℤ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴)) → ((coeff‘𝑎) ↾ (0...𝐴)):(0...𝐴)⟶(-𝐴...𝐴))
60 ovex 7443 . . . . . . . . . . 11 (-𝐴...𝐴) ∈ V
61 ovex 7443 . . . . . . . . . . 11 (0...𝐴) ∈ V
6260, 61elmap 8890 . . . . . . . . . 10 (((coeff‘𝑎) ↾ (0...𝐴)) ∈ ((-𝐴...𝐴) ↑m (0...𝐴)) ↔ ((coeff‘𝑎) ↾ (0...𝐴)):(0...𝐴)⟶(-𝐴...𝐴))
6359, 62sylibr 234 . . . . . . . . 9 ((𝐴 ∈ ℕ0 ∧ (𝑎 ∈ (Poly‘ℤ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴)) → ((coeff‘𝑎) ↾ (0...𝐴)) ∈ ((-𝐴...𝐴) ↑m (0...𝐴)))
6463ex 412 . . . . . . . 8 (𝐴 ∈ ℕ0 → ((𝑎 ∈ (Poly‘ℤ) ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴) → ((coeff‘𝑎) ↾ (0...𝐴)) ∈ ((-𝐴...𝐴) ↑m (0...𝐴))))
6531, 64syl5 34 . . . . . . 7 (𝐴 ∈ ℕ0 → (𝑎 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} → ((coeff‘𝑎) ↾ (0...𝐴)) ∈ ((-𝐴...𝐴) ↑m (0...𝐴))))
66 simp2 1137 . . . . . . . . . 10 ((𝑎 ≠ 0𝑝 ∧ (deg‘𝑎) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴) → (deg‘𝑎) ≤ 𝐴)
6766anim2i 617 . . . . . . . . 9 ((𝑎 ∈ (Poly‘ℤ) ∧ (𝑎 ≠ 0𝑝 ∧ (deg‘𝑎) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑎)‘𝑒)) ≤ 𝐴)) → (𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴))
6828, 67sylbi 217 . . . . . . . 8 (𝑎 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} → (𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴))
69 neeq1 2995 . . . . . . . . . . 11 (𝑑 = 𝑏 → (𝑑 ≠ 0𝑝𝑏 ≠ 0𝑝))
70 fveq2 6881 . . . . . . . . . . . 12 (𝑑 = 𝑏 → (deg‘𝑑) = (deg‘𝑏))
7170breq1d 5134 . . . . . . . . . . 11 (𝑑 = 𝑏 → ((deg‘𝑑) ≤ 𝐴 ↔ (deg‘𝑏) ≤ 𝐴))
72 fveq2 6881 . . . . . . . . . . . . . . 15 (𝑑 = 𝑏 → (coeff‘𝑑) = (coeff‘𝑏))
7372fveq1d 6883 . . . . . . . . . . . . . 14 (𝑑 = 𝑏 → ((coeff‘𝑑)‘𝑒) = ((coeff‘𝑏)‘𝑒))
7473fveq2d 6885 . . . . . . . . . . . . 13 (𝑑 = 𝑏 → (abs‘((coeff‘𝑑)‘𝑒)) = (abs‘((coeff‘𝑏)‘𝑒)))
7574breq1d 5134 . . . . . . . . . . . 12 (𝑑 = 𝑏 → ((abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴 ↔ (abs‘((coeff‘𝑏)‘𝑒)) ≤ 𝐴))
7675ralbidv 3164 . . . . . . . . . . 11 (𝑑 = 𝑏 → (∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴 ↔ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑏)‘𝑒)) ≤ 𝐴))
7769, 71, 763anbi123d 1438 . . . . . . . . . 10 (𝑑 = 𝑏 → ((𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴) ↔ (𝑏 ≠ 0𝑝 ∧ (deg‘𝑏) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑏)‘𝑒)) ≤ 𝐴)))
7877elrab 3676 . . . . . . . . 9 (𝑏 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} ↔ (𝑏 ∈ (Poly‘ℤ) ∧ (𝑏 ≠ 0𝑝 ∧ (deg‘𝑏) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑏)‘𝑒)) ≤ 𝐴)))
79 simp2 1137 . . . . . . . . . 10 ((𝑏 ≠ 0𝑝 ∧ (deg‘𝑏) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑏)‘𝑒)) ≤ 𝐴) → (deg‘𝑏) ≤ 𝐴)
8079anim2i 617 . . . . . . . . 9 ((𝑏 ∈ (Poly‘ℤ) ∧ (𝑏 ≠ 0𝑝 ∧ (deg‘𝑏) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑏)‘𝑒)) ≤ 𝐴)) → (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴))
8178, 80sylbi 217 . . . . . . . 8 (𝑏 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} → (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴))
82 simplll 774 . . . . . . . . . . . . 13 ((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) → 𝑎 ∈ (Poly‘ℤ))
83 plyf 26160 . . . . . . . . . . . . 13 (𝑎 ∈ (Poly‘ℤ) → 𝑎:ℂ⟶ℂ)
84 ffn 6711 . . . . . . . . . . . . 13 (𝑎:ℂ⟶ℂ → 𝑎 Fn ℂ)
8582, 83, 843syl 18 . . . . . . . . . . . 12 ((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) → 𝑎 Fn ℂ)
86 simplrl 776 . . . . . . . . . . . . 13 ((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) → 𝑏 ∈ (Poly‘ℤ))
87 plyf 26160 . . . . . . . . . . . . 13 (𝑏 ∈ (Poly‘ℤ) → 𝑏:ℂ⟶ℂ)
88 ffn 6711 . . . . . . . . . . . . 13 (𝑏:ℂ⟶ℂ → 𝑏 Fn ℂ)
8986, 87, 883syl 18 . . . . . . . . . . . 12 ((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) → 𝑏 Fn ℂ)
90 simplrr 777 . . . . . . . . . . . . . . . . . 18 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))
9190adantr 480 . . . . . . . . . . . . . . . . 17 ((((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) ∧ 𝑑 ∈ (0...𝐴)) → ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))
9291fveq1d 6883 . . . . . . . . . . . . . . . 16 ((((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) ∧ 𝑑 ∈ (0...𝐴)) → (((coeff‘𝑎) ↾ (0...𝐴))‘𝑑) = (((coeff‘𝑏) ↾ (0...𝐴))‘𝑑))
93 fvres 6900 . . . . . . . . . . . . . . . . 17 (𝑑 ∈ (0...𝐴) → (((coeff‘𝑎) ↾ (0...𝐴))‘𝑑) = ((coeff‘𝑎)‘𝑑))
9493adantl 481 . . . . . . . . . . . . . . . 16 ((((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) ∧ 𝑑 ∈ (0...𝐴)) → (((coeff‘𝑎) ↾ (0...𝐴))‘𝑑) = ((coeff‘𝑎)‘𝑑))
95 fvres 6900 . . . . . . . . . . . . . . . . 17 (𝑑 ∈ (0...𝐴) → (((coeff‘𝑏) ↾ (0...𝐴))‘𝑑) = ((coeff‘𝑏)‘𝑑))
9695adantl 481 . . . . . . . . . . . . . . . 16 ((((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) ∧ 𝑑 ∈ (0...𝐴)) → (((coeff‘𝑏) ↾ (0...𝐴))‘𝑑) = ((coeff‘𝑏)‘𝑑))
9792, 94, 963eqtr3d 2779 . . . . . . . . . . . . . . 15 ((((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) ∧ 𝑑 ∈ (0...𝐴)) → ((coeff‘𝑎)‘𝑑) = ((coeff‘𝑏)‘𝑑))
9897oveq1d 7425 . . . . . . . . . . . . . 14 ((((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) ∧ 𝑑 ∈ (0...𝐴)) → (((coeff‘𝑎)‘𝑑) · (𝑐𝑑)) = (((coeff‘𝑏)‘𝑑) · (𝑐𝑑)))
9998sumeq2dv 15723 . . . . . . . . . . . . 13 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → Σ𝑑 ∈ (0...𝐴)(((coeff‘𝑎)‘𝑑) · (𝑐𝑑)) = Σ𝑑 ∈ (0...𝐴)(((coeff‘𝑏)‘𝑑) · (𝑐𝑑)))
100 simp-4l 782 . . . . . . . . . . . . . 14 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → 𝑎 ∈ (Poly‘ℤ))
101 simp-4r 783 . . . . . . . . . . . . . . 15 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → (deg‘𝑎) ≤ 𝐴)
102 dgrcl 26195 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ (Poly‘ℤ) → (deg‘𝑎) ∈ ℕ0)
103 nn0z 12618 . . . . . . . . . . . . . . . . 17 ((deg‘𝑎) ∈ ℕ0 → (deg‘𝑎) ∈ ℤ)
104100, 102, 1033syl 18 . . . . . . . . . . . . . . . 16 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → (deg‘𝑎) ∈ ℤ)
105 simplrl 776 . . . . . . . . . . . . . . . . 17 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → 𝐴 ∈ ℕ0)
106105nn0zd 12619 . . . . . . . . . . . . . . . 16 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → 𝐴 ∈ ℤ)
107 eluz 12871 . . . . . . . . . . . . . . . 16 (((deg‘𝑎) ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐴 ∈ (ℤ‘(deg‘𝑎)) ↔ (deg‘𝑎) ≤ 𝐴))
108104, 106, 107syl2anc 584 . . . . . . . . . . . . . . 15 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → (𝐴 ∈ (ℤ‘(deg‘𝑎)) ↔ (deg‘𝑎) ≤ 𝐴))
109101, 108mpbird 257 . . . . . . . . . . . . . 14 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → 𝐴 ∈ (ℤ‘(deg‘𝑎)))
110 simpr 484 . . . . . . . . . . . . . 14 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → 𝑐 ∈ ℂ)
111 eqid 2736 . . . . . . . . . . . . . . 15 (deg‘𝑎) = (deg‘𝑎)
11233, 111coeid3 26202 . . . . . . . . . . . . . 14 ((𝑎 ∈ (Poly‘ℤ) ∧ 𝐴 ∈ (ℤ‘(deg‘𝑎)) ∧ 𝑐 ∈ ℂ) → (𝑎𝑐) = Σ𝑑 ∈ (0...𝐴)(((coeff‘𝑎)‘𝑑) · (𝑐𝑑)))
113100, 109, 110, 112syl3anc 1373 . . . . . . . . . . . . 13 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → (𝑎𝑐) = Σ𝑑 ∈ (0...𝐴)(((coeff‘𝑎)‘𝑑) · (𝑐𝑑)))
114 simp1rl 1239 . . . . . . . . . . . . . . 15 ((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴))) ∧ 𝑐 ∈ ℂ) → 𝑏 ∈ (Poly‘ℤ))
1151143expa 1118 . . . . . . . . . . . . . 14 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → 𝑏 ∈ (Poly‘ℤ))
116 simplrr 777 . . . . . . . . . . . . . . . 16 ((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) → (deg‘𝑏) ≤ 𝐴)
117116adantr 480 . . . . . . . . . . . . . . 15 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → (deg‘𝑏) ≤ 𝐴)
118 dgrcl 26195 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ (Poly‘ℤ) → (deg‘𝑏) ∈ ℕ0)
119 nn0z 12618 . . . . . . . . . . . . . . . . 17 ((deg‘𝑏) ∈ ℕ0 → (deg‘𝑏) ∈ ℤ)
120115, 118, 1193syl 18 . . . . . . . . . . . . . . . 16 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → (deg‘𝑏) ∈ ℤ)
121 eluz 12871 . . . . . . . . . . . . . . . 16 (((deg‘𝑏) ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐴 ∈ (ℤ‘(deg‘𝑏)) ↔ (deg‘𝑏) ≤ 𝐴))
122120, 106, 121syl2anc 584 . . . . . . . . . . . . . . 15 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → (𝐴 ∈ (ℤ‘(deg‘𝑏)) ↔ (deg‘𝑏) ≤ 𝐴))
123117, 122mpbird 257 . . . . . . . . . . . . . 14 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → 𝐴 ∈ (ℤ‘(deg‘𝑏)))
124 eqid 2736 . . . . . . . . . . . . . . 15 (coeff‘𝑏) = (coeff‘𝑏)
125 eqid 2736 . . . . . . . . . . . . . . 15 (deg‘𝑏) = (deg‘𝑏)
126124, 125coeid3 26202 . . . . . . . . . . . . . 14 ((𝑏 ∈ (Poly‘ℤ) ∧ 𝐴 ∈ (ℤ‘(deg‘𝑏)) ∧ 𝑐 ∈ ℂ) → (𝑏𝑐) = Σ𝑑 ∈ (0...𝐴)(((coeff‘𝑏)‘𝑑) · (𝑐𝑑)))
127115, 123, 110, 126syl3anc 1373 . . . . . . . . . . . . 13 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → (𝑏𝑐) = Σ𝑑 ∈ (0...𝐴)(((coeff‘𝑏)‘𝑑) · (𝑐𝑑)))
12899, 113, 1273eqtr4d 2781 . . . . . . . . . . . 12 (((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) ∧ 𝑐 ∈ ℂ) → (𝑎𝑐) = (𝑏𝑐))
12985, 89, 128eqfnfvd 7029 . . . . . . . . . . 11 ((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ (𝐴 ∈ ℕ0 ∧ ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))) → 𝑎 = 𝑏)
130129expr 456 . . . . . . . . . 10 ((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ 𝐴 ∈ ℕ0) → (((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)) → 𝑎 = 𝑏))
131 fveq2 6881 . . . . . . . . . . 11 (𝑎 = 𝑏 → (coeff‘𝑎) = (coeff‘𝑏))
132131reseq1d 5970 . . . . . . . . . 10 (𝑎 = 𝑏 → ((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)))
133130, 132impbid1 225 . . . . . . . . 9 ((((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) ∧ 𝐴 ∈ ℕ0) → (((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)) ↔ 𝑎 = 𝑏))
134133expcom 413 . . . . . . . 8 (𝐴 ∈ ℕ0 → (((𝑎 ∈ (Poly‘ℤ) ∧ (deg‘𝑎) ≤ 𝐴) ∧ (𝑏 ∈ (Poly‘ℤ) ∧ (deg‘𝑏) ≤ 𝐴)) → (((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)) ↔ 𝑎 = 𝑏)))
13568, 81, 134syl2ani 607 . . . . . . 7 (𝐴 ∈ ℕ0 → ((𝑎 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} ∧ 𝑏 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)}) → (((coeff‘𝑎) ↾ (0...𝐴)) = ((coeff‘𝑏) ↾ (0...𝐴)) ↔ 𝑎 = 𝑏)))
13665, 135dom2d 9012 . . . . . 6 (𝐴 ∈ ℕ0 → (((-𝐴...𝐴) ↑m (0...𝐴)) ∈ V → {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} ≼ ((-𝐴...𝐴) ↑m (0...𝐴))))
13718, 136mpi 20 . . . . 5 (𝐴 ∈ ℕ0 → {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} ≼ ((-𝐴...𝐴) ↑m (0...𝐴)))
138 domfi 9208 . . . . 5 ((((-𝐴...𝐴) ↑m (0...𝐴)) ∈ Fin ∧ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} ≼ ((-𝐴...𝐴) ↑m (0...𝐴))) → {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} ∈ Fin)
13917, 137, 138syl2anc 584 . . . 4 (𝐴 ∈ ℕ0 → {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} ∈ Fin)
140 neeq1 2995 . . . . . . . . 9 (𝑑 = 𝑐 → (𝑑 ≠ 0𝑝𝑐 ≠ 0𝑝))
141 fveq2 6881 . . . . . . . . . 10 (𝑑 = 𝑐 → (deg‘𝑑) = (deg‘𝑐))
142141breq1d 5134 . . . . . . . . 9 (𝑑 = 𝑐 → ((deg‘𝑑) ≤ 𝐴 ↔ (deg‘𝑐) ≤ 𝐴))
143 fveq2 6881 . . . . . . . . . . . . 13 (𝑑 = 𝑐 → (coeff‘𝑑) = (coeff‘𝑐))
144143fveq1d 6883 . . . . . . . . . . . 12 (𝑑 = 𝑐 → ((coeff‘𝑑)‘𝑒) = ((coeff‘𝑐)‘𝑒))
145144fveq2d 6885 . . . . . . . . . . 11 (𝑑 = 𝑐 → (abs‘((coeff‘𝑑)‘𝑒)) = (abs‘((coeff‘𝑐)‘𝑒)))
146145breq1d 5134 . . . . . . . . . 10 (𝑑 = 𝑐 → ((abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴 ↔ (abs‘((coeff‘𝑐)‘𝑒)) ≤ 𝐴))
147146ralbidv 3164 . . . . . . . . 9 (𝑑 = 𝑐 → (∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴 ↔ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑐)‘𝑒)) ≤ 𝐴))
148140, 142, 1473anbi123d 1438 . . . . . . . 8 (𝑑 = 𝑐 → ((𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴) ↔ (𝑐 ≠ 0𝑝 ∧ (deg‘𝑐) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑐)‘𝑒)) ≤ 𝐴)))
149148elrab 3676 . . . . . . 7 (𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} ↔ (𝑐 ∈ (Poly‘ℤ) ∧ (𝑐 ≠ 0𝑝 ∧ (deg‘𝑐) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑐)‘𝑒)) ≤ 𝐴)))
150 simp1 1136 . . . . . . . 8 ((𝑐 ≠ 0𝑝 ∧ (deg‘𝑐) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑐)‘𝑒)) ≤ 𝐴) → 𝑐 ≠ 0𝑝)
151150anim2i 617 . . . . . . 7 ((𝑐 ∈ (Poly‘ℤ) ∧ (𝑐 ≠ 0𝑝 ∧ (deg‘𝑐) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑐)‘𝑒)) ≤ 𝐴)) → (𝑐 ∈ (Poly‘ℤ) ∧ 𝑐 ≠ 0𝑝))
152149, 151sylbi 217 . . . . . 6 (𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} → (𝑐 ∈ (Poly‘ℤ) ∧ 𝑐 ≠ 0𝑝))
153 fveqeq2 6890 . . . . . . . . . . 11 (𝑏 = 𝑎 → ((𝑐𝑏) = 0 ↔ (𝑐𝑎) = 0))
154153elrab 3676 . . . . . . . . . 10 (𝑎 ∈ {𝑏 ∈ ℂ ∣ (𝑐𝑏) = 0} ↔ (𝑎 ∈ ℂ ∧ (𝑐𝑎) = 0))
155 plyf 26160 . . . . . . . . . . . . 13 (𝑐 ∈ (Poly‘ℤ) → 𝑐:ℂ⟶ℂ)
156155ffnd 6712 . . . . . . . . . . . 12 (𝑐 ∈ (Poly‘ℤ) → 𝑐 Fn ℂ)
157156adantr 480 . . . . . . . . . . 11 ((𝑐 ∈ (Poly‘ℤ) ∧ 𝑐 ≠ 0𝑝) → 𝑐 Fn ℂ)
158 fniniseg 7055 . . . . . . . . . . 11 (𝑐 Fn ℂ → (𝑎 ∈ (𝑐 “ {0}) ↔ (𝑎 ∈ ℂ ∧ (𝑐𝑎) = 0)))
159157, 158syl 17 . . . . . . . . . 10 ((𝑐 ∈ (Poly‘ℤ) ∧ 𝑐 ≠ 0𝑝) → (𝑎 ∈ (𝑐 “ {0}) ↔ (𝑎 ∈ ℂ ∧ (𝑐𝑎) = 0)))
160154, 159bitr4id 290 . . . . . . . . 9 ((𝑐 ∈ (Poly‘ℤ) ∧ 𝑐 ≠ 0𝑝) → (𝑎 ∈ {𝑏 ∈ ℂ ∣ (𝑐𝑏) = 0} ↔ 𝑎 ∈ (𝑐 “ {0})))
161160eqrdv 2734 . . . . . . . 8 ((𝑐 ∈ (Poly‘ℤ) ∧ 𝑐 ≠ 0𝑝) → {𝑏 ∈ ℂ ∣ (𝑐𝑏) = 0} = (𝑐 “ {0}))
162 eqid 2736 . . . . . . . . . 10 (𝑐 “ {0}) = (𝑐 “ {0})
163162fta1 26273 . . . . . . . . 9 ((𝑐 ∈ (Poly‘ℤ) ∧ 𝑐 ≠ 0𝑝) → ((𝑐 “ {0}) ∈ Fin ∧ (♯‘(𝑐 “ {0})) ≤ (deg‘𝑐)))
164163simpld 494 . . . . . . . 8 ((𝑐 ∈ (Poly‘ℤ) ∧ 𝑐 ≠ 0𝑝) → (𝑐 “ {0}) ∈ Fin)
165161, 164eqeltrd 2835 . . . . . . 7 ((𝑐 ∈ (Poly‘ℤ) ∧ 𝑐 ≠ 0𝑝) → {𝑏 ∈ ℂ ∣ (𝑐𝑏) = 0} ∈ Fin)
166165a1i 11 . . . . . 6 (𝐴 ∈ ℕ0 → ((𝑐 ∈ (Poly‘ℤ) ∧ 𝑐 ≠ 0𝑝) → {𝑏 ∈ ℂ ∣ (𝑐𝑏) = 0} ∈ Fin))
167152, 166syl5 34 . . . . 5 (𝐴 ∈ ℕ0 → (𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} → {𝑏 ∈ ℂ ∣ (𝑐𝑏) = 0} ∈ Fin))
168167ralrimiv 3132 . . . 4 (𝐴 ∈ ℕ0 → ∀𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} {𝑏 ∈ ℂ ∣ (𝑐𝑏) = 0} ∈ Fin)
169 iunfi 9360 . . . 4 (({𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} ∈ Fin ∧ ∀𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} {𝑏 ∈ ℂ ∣ (𝑐𝑏) = 0} ∈ Fin) → 𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} {𝑏 ∈ ℂ ∣ (𝑐𝑏) = 0} ∈ Fin)
170139, 168, 169syl2anc 584 . . 3 (𝐴 ∈ ℕ0 𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} {𝑏 ∈ ℂ ∣ (𝑐𝑏) = 0} ∈ Fin)
17112, 170eqeltrrid 2840 . 2 (𝐴 ∈ ℕ0 → {𝑏 ∈ ℂ ∣ ∃𝑐 ∈ {𝑑 ∈ (Poly‘ℤ) ∣ (𝑑 ≠ 0𝑝 ∧ (deg‘𝑑) ≤ 𝐴 ∧ ∀𝑒 ∈ ℕ0 (abs‘((coeff‘𝑑)‘𝑒)) ≤ 𝐴)} (𝑐𝑏) = 0} ∈ Fin)
17211, 171eqeltrd 2835 1 (𝐴 ∈ ℕ0 → (𝐻𝐴) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wral 3052  wrex 3061  {crab 3420  Vcvv 3464  wss 3931  {csn 4606   ciun 4972   class class class wbr 5124  cmpt 5206  ccnv 5658  ran crn 5660  cres 5661  cima 5662   Fn wfn 6531  wf 6532  cfv 6536  (class class class)co 7410  m cmap 8845  cdom 8962  Fincfn 8964  cc 11132  cr 11133  0cc0 11134   · cmul 11139  cle 11275  -cneg 11472  0cn0 12506  cz 12593  cuz 12857  ...cfz 13529  cexp 14084  chash 14353  abscabs 15258  Σcsu 15707  0𝑝c0p 25627  Polycply 26146  coeffccoe 26148  degcdgr 26149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-oadd 8489  df-er 8724  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-inf 9460  df-oi 9529  df-dju 9920  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-xnn0 12580  df-z 12594  df-uz 12858  df-rp 13014  df-fz 13530  df-fzo 13677  df-fl 13814  df-seq 14025  df-exp 14085  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-rlim 15510  df-sum 15708  df-0p 25628  df-ply 26150  df-idp 26151  df-coe 26152  df-dgr 26153  df-quot 26256
This theorem is referenced by:  aannenlem3  26295
  Copyright terms: Public domain W3C validator