Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemimin Structured version   Visualization version   GIF version

Theorem ballotlemimin 34509
Description: (𝐼𝐶) is the first tie. (Contributed by Thierry Arnoux, 1-Dec-2016.) (Revised by AV, 6-Oct-2020.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
ballotth.e 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
ballotth.mgtn 𝑁 < 𝑀
ballotth.i 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
Assertion
Ref Expression
ballotlemimin (𝐶 ∈ (𝑂𝐸) → ¬ ∃𝑘 ∈ (1...((𝐼𝐶) − 1))((𝐹𝐶)‘𝑘) = 0)
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂   𝑘,𝑀   𝑘,𝑁   𝑘,𝑂   𝑖,𝑐,𝐹,𝑘   𝐶,𝑖,𝑘   𝑖,𝐸,𝑘   𝐶,𝑘   𝑘,𝐼   𝑘,𝑐,𝐸   𝑖,𝐼
Allowed substitution hints:   𝐶(𝑥,𝑐)   𝑃(𝑥,𝑖,𝑘,𝑐)   𝐸(𝑥)   𝐹(𝑥)   𝐼(𝑥,𝑐)   𝑀(𝑥)   𝑁(𝑥)   𝑂(𝑥)

Proof of Theorem ballotlemimin
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfzle2 13569 . . . . . 6 (𝑘 ∈ (1...((𝐼𝐶) − 1)) → 𝑘 ≤ ((𝐼𝐶) − 1))
21adantl 481 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝑘 ∈ (1...((𝐼𝐶) − 1))) → 𝑘 ≤ ((𝐼𝐶) − 1))
3 elfzelz 13565 . . . . . 6 (𝑘 ∈ (1...((𝐼𝐶) − 1)) → 𝑘 ∈ ℤ)
4 ballotth.m . . . . . . . . 9 𝑀 ∈ ℕ
5 ballotth.n . . . . . . . . 9 𝑁 ∈ ℕ
6 ballotth.o . . . . . . . . 9 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
7 ballotth.p . . . . . . . . 9 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
8 ballotth.f . . . . . . . . 9 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
9 ballotth.e . . . . . . . . 9 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
10 ballotth.mgtn . . . . . . . . 9 𝑁 < 𝑀
11 ballotth.i . . . . . . . . 9 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
124, 5, 6, 7, 8, 9, 10, 11ballotlemiex 34505 . . . . . . . 8 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹𝐶)‘(𝐼𝐶)) = 0))
1312simpld 494 . . . . . . 7 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ∈ (1...(𝑀 + 𝑁)))
1413elfzelzd 13566 . . . . . 6 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ∈ ℤ)
15 zltlem1 12672 . . . . . 6 ((𝑘 ∈ ℤ ∧ (𝐼𝐶) ∈ ℤ) → (𝑘 < (𝐼𝐶) ↔ 𝑘 ≤ ((𝐼𝐶) − 1)))
163, 14, 15syl2anr 597 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝑘 ∈ (1...((𝐼𝐶) − 1))) → (𝑘 < (𝐼𝐶) ↔ 𝑘 ≤ ((𝐼𝐶) − 1)))
172, 16mpbird 257 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝑘 ∈ (1...((𝐼𝐶) − 1))) → 𝑘 < (𝐼𝐶))
1817adantr 480 . . 3 (((𝐶 ∈ (𝑂𝐸) ∧ 𝑘 ∈ (1...((𝐼𝐶) − 1))) ∧ ((𝐹𝐶)‘𝑘) = 0) → 𝑘 < (𝐼𝐶))
19 1zzd 12650 . . . . . . . . . . . . 13 (𝐶 ∈ (𝑂𝐸) → 1 ∈ ℤ)
2014, 19zsubcld 12729 . . . . . . . . . . . 12 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) − 1) ∈ ℤ)
2120zred 12724 . . . . . . . . . . 11 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) − 1) ∈ ℝ)
22 nnaddcl 12290 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ)
234, 5, 22mp2an 692 . . . . . . . . . . . . 13 (𝑀 + 𝑁) ∈ ℕ
2423a1i 11 . . . . . . . . . . . 12 (𝐶 ∈ (𝑂𝐸) → (𝑀 + 𝑁) ∈ ℕ)
2524nnred 12282 . . . . . . . . . . 11 (𝐶 ∈ (𝑂𝐸) → (𝑀 + 𝑁) ∈ ℝ)
26 elfzle2 13569 . . . . . . . . . . . . 13 ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) → (𝐼𝐶) ≤ (𝑀 + 𝑁))
2713, 26syl 17 . . . . . . . . . . . 12 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ≤ (𝑀 + 𝑁))
2824nnzd 12642 . . . . . . . . . . . . 13 (𝐶 ∈ (𝑂𝐸) → (𝑀 + 𝑁) ∈ ℤ)
29 zlem1lt 12671 . . . . . . . . . . . . 13 (((𝐼𝐶) ∈ ℤ ∧ (𝑀 + 𝑁) ∈ ℤ) → ((𝐼𝐶) ≤ (𝑀 + 𝑁) ↔ ((𝐼𝐶) − 1) < (𝑀 + 𝑁)))
3014, 28, 29syl2anc 584 . . . . . . . . . . . 12 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) ≤ (𝑀 + 𝑁) ↔ ((𝐼𝐶) − 1) < (𝑀 + 𝑁)))
3127, 30mpbid 232 . . . . . . . . . . 11 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) − 1) < (𝑀 + 𝑁))
3221, 25, 31ltled 11410 . . . . . . . . . 10 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) − 1) ≤ (𝑀 + 𝑁))
33 eluz 12893 . . . . . . . . . . 11 ((((𝐼𝐶) − 1) ∈ ℤ ∧ (𝑀 + 𝑁) ∈ ℤ) → ((𝑀 + 𝑁) ∈ (ℤ‘((𝐼𝐶) − 1)) ↔ ((𝐼𝐶) − 1) ≤ (𝑀 + 𝑁)))
3420, 28, 33syl2anc 584 . . . . . . . . . 10 (𝐶 ∈ (𝑂𝐸) → ((𝑀 + 𝑁) ∈ (ℤ‘((𝐼𝐶) − 1)) ↔ ((𝐼𝐶) − 1) ≤ (𝑀 + 𝑁)))
3532, 34mpbird 257 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → (𝑀 + 𝑁) ∈ (ℤ‘((𝐼𝐶) − 1)))
36 fzss2 13605 . . . . . . . . 9 ((𝑀 + 𝑁) ∈ (ℤ‘((𝐼𝐶) − 1)) → (1...((𝐼𝐶) − 1)) ⊆ (1...(𝑀 + 𝑁)))
3735, 36syl 17 . . . . . . . 8 (𝐶 ∈ (𝑂𝐸) → (1...((𝐼𝐶) − 1)) ⊆ (1...(𝑀 + 𝑁)))
3837sseld 3981 . . . . . . 7 (𝐶 ∈ (𝑂𝐸) → (𝑘 ∈ (1...((𝐼𝐶) − 1)) → 𝑘 ∈ (1...(𝑀 + 𝑁))))
39 rabid 3457 . . . . . . . 8 (𝑘 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0} ↔ (𝑘 ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹𝐶)‘𝑘) = 0))
404, 5, 6, 7, 8, 9, 10, 11ballotlemsup 34508 . . . . . . . . . 10 (𝐶 ∈ (𝑂𝐸) → ∃𝑧 ∈ ℝ (∀𝑤 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0} ¬ 𝑤 < 𝑧 ∧ ∀𝑤 ∈ ℝ (𝑧 < 𝑤 → ∃𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0}𝑦 < 𝑤)))
41 ltso 11342 . . . . . . . . . . . 12 < Or ℝ
4241a1i 11 . . . . . . . . . . 11 (∃𝑧 ∈ ℝ (∀𝑤 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0} ¬ 𝑤 < 𝑧 ∧ ∀𝑤 ∈ ℝ (𝑧 < 𝑤 → ∃𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0}𝑦 < 𝑤)) → < Or ℝ)
43 id 22 . . . . . . . . . . 11 (∃𝑧 ∈ ℝ (∀𝑤 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0} ¬ 𝑤 < 𝑧 ∧ ∀𝑤 ∈ ℝ (𝑧 < 𝑤 → ∃𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0}𝑦 < 𝑤)) → ∃𝑧 ∈ ℝ (∀𝑤 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0} ¬ 𝑤 < 𝑧 ∧ ∀𝑤 ∈ ℝ (𝑧 < 𝑤 → ∃𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0}𝑦 < 𝑤)))
4442, 43inflb 9530 . . . . . . . . . 10 (∃𝑧 ∈ ℝ (∀𝑤 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0} ¬ 𝑤 < 𝑧 ∧ ∀𝑤 ∈ ℝ (𝑧 < 𝑤 → ∃𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0}𝑦 < 𝑤)) → (𝑘 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0} → ¬ 𝑘 < inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0}, ℝ, < )))
4540, 44syl 17 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → (𝑘 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0} → ¬ 𝑘 < inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0}, ℝ, < )))
464, 5, 6, 7, 8, 9, 10, 11ballotlemi 34504 . . . . . . . . . . 11 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) = inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0}, ℝ, < ))
4746breq2d 5154 . . . . . . . . . 10 (𝐶 ∈ (𝑂𝐸) → (𝑘 < (𝐼𝐶) ↔ 𝑘 < inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0}, ℝ, < )))
4847notbid 318 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → (¬ 𝑘 < (𝐼𝐶) ↔ ¬ 𝑘 < inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0}, ℝ, < )))
4945, 48sylibrd 259 . . . . . . . 8 (𝐶 ∈ (𝑂𝐸) → (𝑘 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0} → ¬ 𝑘 < (𝐼𝐶)))
5039, 49biimtrrid 243 . . . . . . 7 (𝐶 ∈ (𝑂𝐸) → ((𝑘 ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹𝐶)‘𝑘) = 0) → ¬ 𝑘 < (𝐼𝐶)))
5138, 50syland 603 . . . . . 6 (𝐶 ∈ (𝑂𝐸) → ((𝑘 ∈ (1...((𝐼𝐶) − 1)) ∧ ((𝐹𝐶)‘𝑘) = 0) → ¬ 𝑘 < (𝐼𝐶)))
5251imp 406 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ (𝑘 ∈ (1...((𝐼𝐶) − 1)) ∧ ((𝐹𝐶)‘𝑘) = 0)) → ¬ 𝑘 < (𝐼𝐶))
53 biid 261 . . . . 5 (𝑘 < (𝐼𝐶) ↔ 𝑘 < (𝐼𝐶))
5452, 53sylnib 328 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ (𝑘 ∈ (1...((𝐼𝐶) − 1)) ∧ ((𝐹𝐶)‘𝑘) = 0)) → ¬ 𝑘 < (𝐼𝐶))
5554anassrs 467 . . 3 (((𝐶 ∈ (𝑂𝐸) ∧ 𝑘 ∈ (1...((𝐼𝐶) − 1))) ∧ ((𝐹𝐶)‘𝑘) = 0) → ¬ 𝑘 < (𝐼𝐶))
5618, 55pm2.65da 816 . 2 ((𝐶 ∈ (𝑂𝐸) ∧ 𝑘 ∈ (1...((𝐼𝐶) − 1))) → ¬ ((𝐹𝐶)‘𝑘) = 0)
5756nrexdv 3148 1 (𝐶 ∈ (𝑂𝐸) → ¬ ∃𝑘 ∈ (1...((𝐼𝐶) − 1))((𝐹𝐶)‘𝑘) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wral 3060  wrex 3069  {crab 3435  cdif 3947  cin 3949  wss 3950  𝒫 cpw 4599   class class class wbr 5142  cmpt 5224   Or wor 5590  cfv 6560  (class class class)co 7432  infcinf 9482  cr 11155  0cc0 11156  1c1 11157   + caddc 11159   < clt 11296  cle 11297  cmin 11493   / cdiv 11921  cn 12267  cz 12615  cuz 12879  ...cfz 13548  chash 14370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-oadd 8511  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-sup 9483  df-inf 9484  df-dju 9942  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-n0 12529  df-z 12616  df-uz 12880  df-fz 13549  df-hash 14371
This theorem is referenced by:  ballotlemic  34510  ballotlem1c  34511
  Copyright terms: Public domain W3C validator