Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemimin Structured version   Visualization version   GIF version

Theorem ballotlemimin 32472
Description: (𝐼𝐶) is the first tie. (Contributed by Thierry Arnoux, 1-Dec-2016.) (Revised by AV, 6-Oct-2020.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
ballotth.e 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
ballotth.mgtn 𝑁 < 𝑀
ballotth.i 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
Assertion
Ref Expression
ballotlemimin (𝐶 ∈ (𝑂𝐸) → ¬ ∃𝑘 ∈ (1...((𝐼𝐶) − 1))((𝐹𝐶)‘𝑘) = 0)
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂   𝑘,𝑀   𝑘,𝑁   𝑘,𝑂   𝑖,𝑐,𝐹,𝑘   𝐶,𝑖,𝑘   𝑖,𝐸,𝑘   𝐶,𝑘   𝑘,𝐼   𝑘,𝑐,𝐸   𝑖,𝐼
Allowed substitution hints:   𝐶(𝑥,𝑐)   𝑃(𝑥,𝑖,𝑘,𝑐)   𝐸(𝑥)   𝐹(𝑥)   𝐼(𝑥,𝑐)   𝑀(𝑥)   𝑁(𝑥)   𝑂(𝑥)

Proof of Theorem ballotlemimin
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfzle2 13260 . . . . . 6 (𝑘 ∈ (1...((𝐼𝐶) − 1)) → 𝑘 ≤ ((𝐼𝐶) − 1))
21adantl 482 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝑘 ∈ (1...((𝐼𝐶) − 1))) → 𝑘 ≤ ((𝐼𝐶) − 1))
3 elfzelz 13256 . . . . . 6 (𝑘 ∈ (1...((𝐼𝐶) − 1)) → 𝑘 ∈ ℤ)
4 ballotth.m . . . . . . . . 9 𝑀 ∈ ℕ
5 ballotth.n . . . . . . . . 9 𝑁 ∈ ℕ
6 ballotth.o . . . . . . . . 9 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
7 ballotth.p . . . . . . . . 9 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
8 ballotth.f . . . . . . . . 9 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
9 ballotth.e . . . . . . . . 9 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
10 ballotth.mgtn . . . . . . . . 9 𝑁 < 𝑀
11 ballotth.i . . . . . . . . 9 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
124, 5, 6, 7, 8, 9, 10, 11ballotlemiex 32468 . . . . . . . 8 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹𝐶)‘(𝐼𝐶)) = 0))
1312simpld 495 . . . . . . 7 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ∈ (1...(𝑀 + 𝑁)))
1413elfzelzd 13257 . . . . . 6 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ∈ ℤ)
15 zltlem1 12373 . . . . . 6 ((𝑘 ∈ ℤ ∧ (𝐼𝐶) ∈ ℤ) → (𝑘 < (𝐼𝐶) ↔ 𝑘 ≤ ((𝐼𝐶) − 1)))
163, 14, 15syl2anr 597 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝑘 ∈ (1...((𝐼𝐶) − 1))) → (𝑘 < (𝐼𝐶) ↔ 𝑘 ≤ ((𝐼𝐶) − 1)))
172, 16mpbird 256 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝑘 ∈ (1...((𝐼𝐶) − 1))) → 𝑘 < (𝐼𝐶))
1817adantr 481 . . 3 (((𝐶 ∈ (𝑂𝐸) ∧ 𝑘 ∈ (1...((𝐼𝐶) − 1))) ∧ ((𝐹𝐶)‘𝑘) = 0) → 𝑘 < (𝐼𝐶))
19 1zzd 12351 . . . . . . . . . . . . 13 (𝐶 ∈ (𝑂𝐸) → 1 ∈ ℤ)
2014, 19zsubcld 12431 . . . . . . . . . . . 12 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) − 1) ∈ ℤ)
2120zred 12426 . . . . . . . . . . 11 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) − 1) ∈ ℝ)
22 nnaddcl 11996 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ)
234, 5, 22mp2an 689 . . . . . . . . . . . . 13 (𝑀 + 𝑁) ∈ ℕ
2423a1i 11 . . . . . . . . . . . 12 (𝐶 ∈ (𝑂𝐸) → (𝑀 + 𝑁) ∈ ℕ)
2524nnred 11988 . . . . . . . . . . 11 (𝐶 ∈ (𝑂𝐸) → (𝑀 + 𝑁) ∈ ℝ)
26 elfzle2 13260 . . . . . . . . . . . . 13 ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) → (𝐼𝐶) ≤ (𝑀 + 𝑁))
2713, 26syl 17 . . . . . . . . . . . 12 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ≤ (𝑀 + 𝑁))
2824nnzd 12425 . . . . . . . . . . . . 13 (𝐶 ∈ (𝑂𝐸) → (𝑀 + 𝑁) ∈ ℤ)
29 zlem1lt 12372 . . . . . . . . . . . . 13 (((𝐼𝐶) ∈ ℤ ∧ (𝑀 + 𝑁) ∈ ℤ) → ((𝐼𝐶) ≤ (𝑀 + 𝑁) ↔ ((𝐼𝐶) − 1) < (𝑀 + 𝑁)))
3014, 28, 29syl2anc 584 . . . . . . . . . . . 12 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) ≤ (𝑀 + 𝑁) ↔ ((𝐼𝐶) − 1) < (𝑀 + 𝑁)))
3127, 30mpbid 231 . . . . . . . . . . 11 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) − 1) < (𝑀 + 𝑁))
3221, 25, 31ltled 11123 . . . . . . . . . 10 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) − 1) ≤ (𝑀 + 𝑁))
33 eluz 12596 . . . . . . . . . . 11 ((((𝐼𝐶) − 1) ∈ ℤ ∧ (𝑀 + 𝑁) ∈ ℤ) → ((𝑀 + 𝑁) ∈ (ℤ‘((𝐼𝐶) − 1)) ↔ ((𝐼𝐶) − 1) ≤ (𝑀 + 𝑁)))
3420, 28, 33syl2anc 584 . . . . . . . . . 10 (𝐶 ∈ (𝑂𝐸) → ((𝑀 + 𝑁) ∈ (ℤ‘((𝐼𝐶) − 1)) ↔ ((𝐼𝐶) − 1) ≤ (𝑀 + 𝑁)))
3532, 34mpbird 256 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → (𝑀 + 𝑁) ∈ (ℤ‘((𝐼𝐶) − 1)))
36 fzss2 13296 . . . . . . . . 9 ((𝑀 + 𝑁) ∈ (ℤ‘((𝐼𝐶) − 1)) → (1...((𝐼𝐶) − 1)) ⊆ (1...(𝑀 + 𝑁)))
3735, 36syl 17 . . . . . . . 8 (𝐶 ∈ (𝑂𝐸) → (1...((𝐼𝐶) − 1)) ⊆ (1...(𝑀 + 𝑁)))
3837sseld 3920 . . . . . . 7 (𝐶 ∈ (𝑂𝐸) → (𝑘 ∈ (1...((𝐼𝐶) − 1)) → 𝑘 ∈ (1...(𝑀 + 𝑁))))
39 rabid 3310 . . . . . . . 8 (𝑘 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0} ↔ (𝑘 ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹𝐶)‘𝑘) = 0))
404, 5, 6, 7, 8, 9, 10, 11ballotlemsup 32471 . . . . . . . . . 10 (𝐶 ∈ (𝑂𝐸) → ∃𝑧 ∈ ℝ (∀𝑤 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0} ¬ 𝑤 < 𝑧 ∧ ∀𝑤 ∈ ℝ (𝑧 < 𝑤 → ∃𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0}𝑦 < 𝑤)))
41 ltso 11055 . . . . . . . . . . . 12 < Or ℝ
4241a1i 11 . . . . . . . . . . 11 (∃𝑧 ∈ ℝ (∀𝑤 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0} ¬ 𝑤 < 𝑧 ∧ ∀𝑤 ∈ ℝ (𝑧 < 𝑤 → ∃𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0}𝑦 < 𝑤)) → < Or ℝ)
43 id 22 . . . . . . . . . . 11 (∃𝑧 ∈ ℝ (∀𝑤 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0} ¬ 𝑤 < 𝑧 ∧ ∀𝑤 ∈ ℝ (𝑧 < 𝑤 → ∃𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0}𝑦 < 𝑤)) → ∃𝑧 ∈ ℝ (∀𝑤 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0} ¬ 𝑤 < 𝑧 ∧ ∀𝑤 ∈ ℝ (𝑧 < 𝑤 → ∃𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0}𝑦 < 𝑤)))
4442, 43inflb 9248 . . . . . . . . . 10 (∃𝑧 ∈ ℝ (∀𝑤 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0} ¬ 𝑤 < 𝑧 ∧ ∀𝑤 ∈ ℝ (𝑧 < 𝑤 → ∃𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0}𝑦 < 𝑤)) → (𝑘 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0} → ¬ 𝑘 < inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0}, ℝ, < )))
4540, 44syl 17 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → (𝑘 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0} → ¬ 𝑘 < inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0}, ℝ, < )))
464, 5, 6, 7, 8, 9, 10, 11ballotlemi 32467 . . . . . . . . . . 11 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) = inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0}, ℝ, < ))
4746breq2d 5086 . . . . . . . . . 10 (𝐶 ∈ (𝑂𝐸) → (𝑘 < (𝐼𝐶) ↔ 𝑘 < inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0}, ℝ, < )))
4847notbid 318 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → (¬ 𝑘 < (𝐼𝐶) ↔ ¬ 𝑘 < inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0}, ℝ, < )))
4945, 48sylibrd 258 . . . . . . . 8 (𝐶 ∈ (𝑂𝐸) → (𝑘 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0} → ¬ 𝑘 < (𝐼𝐶)))
5039, 49syl5bir 242 . . . . . . 7 (𝐶 ∈ (𝑂𝐸) → ((𝑘 ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹𝐶)‘𝑘) = 0) → ¬ 𝑘 < (𝐼𝐶)))
5138, 50syland 603 . . . . . 6 (𝐶 ∈ (𝑂𝐸) → ((𝑘 ∈ (1...((𝐼𝐶) − 1)) ∧ ((𝐹𝐶)‘𝑘) = 0) → ¬ 𝑘 < (𝐼𝐶)))
5251imp 407 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ (𝑘 ∈ (1...((𝐼𝐶) − 1)) ∧ ((𝐹𝐶)‘𝑘) = 0)) → ¬ 𝑘 < (𝐼𝐶))
53 biid 260 . . . . 5 (𝑘 < (𝐼𝐶) ↔ 𝑘 < (𝐼𝐶))
5452, 53sylnib 328 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ (𝑘 ∈ (1...((𝐼𝐶) − 1)) ∧ ((𝐹𝐶)‘𝑘) = 0)) → ¬ 𝑘 < (𝐼𝐶))
5554anassrs 468 . . 3 (((𝐶 ∈ (𝑂𝐸) ∧ 𝑘 ∈ (1...((𝐼𝐶) − 1))) ∧ ((𝐹𝐶)‘𝑘) = 0) → ¬ 𝑘 < (𝐼𝐶))
5618, 55pm2.65da 814 . 2 ((𝐶 ∈ (𝑂𝐸) ∧ 𝑘 ∈ (1...((𝐼𝐶) − 1))) → ¬ ((𝐹𝐶)‘𝑘) = 0)
5756nrexdv 3198 1 (𝐶 ∈ (𝑂𝐸) → ¬ ∃𝑘 ∈ (1...((𝐼𝐶) − 1))((𝐹𝐶)‘𝑘) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065  {crab 3068  cdif 3884  cin 3886  wss 3887  𝒫 cpw 4533   class class class wbr 5074  cmpt 5157   Or wor 5502  cfv 6433  (class class class)co 7275  infcinf 9200  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   < clt 11009  cle 11010  cmin 11205   / cdiv 11632  cn 11973  cz 12319  cuz 12582  ...cfz 13239  chash 14044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-hash 14045
This theorem is referenced by:  ballotlemic  32473  ballotlem1c  32474
  Copyright terms: Public domain W3C validator