Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemimin Structured version   Visualization version   GIF version

Theorem ballotlemimin 34178
Description: (𝐼𝐶) is the first tie. (Contributed by Thierry Arnoux, 1-Dec-2016.) (Revised by AV, 6-Oct-2020.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
ballotth.e 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
ballotth.mgtn 𝑁 < 𝑀
ballotth.i 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
Assertion
Ref Expression
ballotlemimin (𝐶 ∈ (𝑂𝐸) → ¬ ∃𝑘 ∈ (1...((𝐼𝐶) − 1))((𝐹𝐶)‘𝑘) = 0)
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂   𝑘,𝑀   𝑘,𝑁   𝑘,𝑂   𝑖,𝑐,𝐹,𝑘   𝐶,𝑖,𝑘   𝑖,𝐸,𝑘   𝐶,𝑘   𝑘,𝐼   𝑘,𝑐,𝐸   𝑖,𝐼
Allowed substitution hints:   𝐶(𝑥,𝑐)   𝑃(𝑥,𝑖,𝑘,𝑐)   𝐸(𝑥)   𝐹(𝑥)   𝐼(𝑥,𝑐)   𝑀(𝑥)   𝑁(𝑥)   𝑂(𝑥)

Proof of Theorem ballotlemimin
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfzle2 13532 . . . . . 6 (𝑘 ∈ (1...((𝐼𝐶) − 1)) → 𝑘 ≤ ((𝐼𝐶) − 1))
21adantl 480 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝑘 ∈ (1...((𝐼𝐶) − 1))) → 𝑘 ≤ ((𝐼𝐶) − 1))
3 elfzelz 13528 . . . . . 6 (𝑘 ∈ (1...((𝐼𝐶) − 1)) → 𝑘 ∈ ℤ)
4 ballotth.m . . . . . . . . 9 𝑀 ∈ ℕ
5 ballotth.n . . . . . . . . 9 𝑁 ∈ ℕ
6 ballotth.o . . . . . . . . 9 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
7 ballotth.p . . . . . . . . 9 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
8 ballotth.f . . . . . . . . 9 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
9 ballotth.e . . . . . . . . 9 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
10 ballotth.mgtn . . . . . . . . 9 𝑁 < 𝑀
11 ballotth.i . . . . . . . . 9 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
124, 5, 6, 7, 8, 9, 10, 11ballotlemiex 34174 . . . . . . . 8 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹𝐶)‘(𝐼𝐶)) = 0))
1312simpld 493 . . . . . . 7 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ∈ (1...(𝑀 + 𝑁)))
1413elfzelzd 13529 . . . . . 6 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ∈ ℤ)
15 zltlem1 12640 . . . . . 6 ((𝑘 ∈ ℤ ∧ (𝐼𝐶) ∈ ℤ) → (𝑘 < (𝐼𝐶) ↔ 𝑘 ≤ ((𝐼𝐶) − 1)))
163, 14, 15syl2anr 595 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝑘 ∈ (1...((𝐼𝐶) − 1))) → (𝑘 < (𝐼𝐶) ↔ 𝑘 ≤ ((𝐼𝐶) − 1)))
172, 16mpbird 256 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝑘 ∈ (1...((𝐼𝐶) − 1))) → 𝑘 < (𝐼𝐶))
1817adantr 479 . . 3 (((𝐶 ∈ (𝑂𝐸) ∧ 𝑘 ∈ (1...((𝐼𝐶) − 1))) ∧ ((𝐹𝐶)‘𝑘) = 0) → 𝑘 < (𝐼𝐶))
19 1zzd 12618 . . . . . . . . . . . . 13 (𝐶 ∈ (𝑂𝐸) → 1 ∈ ℤ)
2014, 19zsubcld 12696 . . . . . . . . . . . 12 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) − 1) ∈ ℤ)
2120zred 12691 . . . . . . . . . . 11 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) − 1) ∈ ℝ)
22 nnaddcl 12260 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ)
234, 5, 22mp2an 690 . . . . . . . . . . . . 13 (𝑀 + 𝑁) ∈ ℕ
2423a1i 11 . . . . . . . . . . . 12 (𝐶 ∈ (𝑂𝐸) → (𝑀 + 𝑁) ∈ ℕ)
2524nnred 12252 . . . . . . . . . . 11 (𝐶 ∈ (𝑂𝐸) → (𝑀 + 𝑁) ∈ ℝ)
26 elfzle2 13532 . . . . . . . . . . . . 13 ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) → (𝐼𝐶) ≤ (𝑀 + 𝑁))
2713, 26syl 17 . . . . . . . . . . . 12 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ≤ (𝑀 + 𝑁))
2824nnzd 12610 . . . . . . . . . . . . 13 (𝐶 ∈ (𝑂𝐸) → (𝑀 + 𝑁) ∈ ℤ)
29 zlem1lt 12639 . . . . . . . . . . . . 13 (((𝐼𝐶) ∈ ℤ ∧ (𝑀 + 𝑁) ∈ ℤ) → ((𝐼𝐶) ≤ (𝑀 + 𝑁) ↔ ((𝐼𝐶) − 1) < (𝑀 + 𝑁)))
3014, 28, 29syl2anc 582 . . . . . . . . . . . 12 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) ≤ (𝑀 + 𝑁) ↔ ((𝐼𝐶) − 1) < (𝑀 + 𝑁)))
3127, 30mpbid 231 . . . . . . . . . . 11 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) − 1) < (𝑀 + 𝑁))
3221, 25, 31ltled 11387 . . . . . . . . . 10 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) − 1) ≤ (𝑀 + 𝑁))
33 eluz 12861 . . . . . . . . . . 11 ((((𝐼𝐶) − 1) ∈ ℤ ∧ (𝑀 + 𝑁) ∈ ℤ) → ((𝑀 + 𝑁) ∈ (ℤ‘((𝐼𝐶) − 1)) ↔ ((𝐼𝐶) − 1) ≤ (𝑀 + 𝑁)))
3420, 28, 33syl2anc 582 . . . . . . . . . 10 (𝐶 ∈ (𝑂𝐸) → ((𝑀 + 𝑁) ∈ (ℤ‘((𝐼𝐶) − 1)) ↔ ((𝐼𝐶) − 1) ≤ (𝑀 + 𝑁)))
3532, 34mpbird 256 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → (𝑀 + 𝑁) ∈ (ℤ‘((𝐼𝐶) − 1)))
36 fzss2 13568 . . . . . . . . 9 ((𝑀 + 𝑁) ∈ (ℤ‘((𝐼𝐶) − 1)) → (1...((𝐼𝐶) − 1)) ⊆ (1...(𝑀 + 𝑁)))
3735, 36syl 17 . . . . . . . 8 (𝐶 ∈ (𝑂𝐸) → (1...((𝐼𝐶) − 1)) ⊆ (1...(𝑀 + 𝑁)))
3837sseld 3972 . . . . . . 7 (𝐶 ∈ (𝑂𝐸) → (𝑘 ∈ (1...((𝐼𝐶) − 1)) → 𝑘 ∈ (1...(𝑀 + 𝑁))))
39 rabid 3440 . . . . . . . 8 (𝑘 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0} ↔ (𝑘 ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹𝐶)‘𝑘) = 0))
404, 5, 6, 7, 8, 9, 10, 11ballotlemsup 34177 . . . . . . . . . 10 (𝐶 ∈ (𝑂𝐸) → ∃𝑧 ∈ ℝ (∀𝑤 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0} ¬ 𝑤 < 𝑧 ∧ ∀𝑤 ∈ ℝ (𝑧 < 𝑤 → ∃𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0}𝑦 < 𝑤)))
41 ltso 11319 . . . . . . . . . . . 12 < Or ℝ
4241a1i 11 . . . . . . . . . . 11 (∃𝑧 ∈ ℝ (∀𝑤 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0} ¬ 𝑤 < 𝑧 ∧ ∀𝑤 ∈ ℝ (𝑧 < 𝑤 → ∃𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0}𝑦 < 𝑤)) → < Or ℝ)
43 id 22 . . . . . . . . . . 11 (∃𝑧 ∈ ℝ (∀𝑤 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0} ¬ 𝑤 < 𝑧 ∧ ∀𝑤 ∈ ℝ (𝑧 < 𝑤 → ∃𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0}𝑦 < 𝑤)) → ∃𝑧 ∈ ℝ (∀𝑤 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0} ¬ 𝑤 < 𝑧 ∧ ∀𝑤 ∈ ℝ (𝑧 < 𝑤 → ∃𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0}𝑦 < 𝑤)))
4442, 43inflb 9507 . . . . . . . . . 10 (∃𝑧 ∈ ℝ (∀𝑤 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0} ¬ 𝑤 < 𝑧 ∧ ∀𝑤 ∈ ℝ (𝑧 < 𝑤 → ∃𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0}𝑦 < 𝑤)) → (𝑘 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0} → ¬ 𝑘 < inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0}, ℝ, < )))
4540, 44syl 17 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → (𝑘 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0} → ¬ 𝑘 < inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0}, ℝ, < )))
464, 5, 6, 7, 8, 9, 10, 11ballotlemi 34173 . . . . . . . . . . 11 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) = inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0}, ℝ, < ))
4746breq2d 5156 . . . . . . . . . 10 (𝐶 ∈ (𝑂𝐸) → (𝑘 < (𝐼𝐶) ↔ 𝑘 < inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0}, ℝ, < )))
4847notbid 317 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → (¬ 𝑘 < (𝐼𝐶) ↔ ¬ 𝑘 < inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0}, ℝ, < )))
4945, 48sylibrd 258 . . . . . . . 8 (𝐶 ∈ (𝑂𝐸) → (𝑘 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0} → ¬ 𝑘 < (𝐼𝐶)))
5039, 49biimtrrid 242 . . . . . . 7 (𝐶 ∈ (𝑂𝐸) → ((𝑘 ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹𝐶)‘𝑘) = 0) → ¬ 𝑘 < (𝐼𝐶)))
5138, 50syland 601 . . . . . 6 (𝐶 ∈ (𝑂𝐸) → ((𝑘 ∈ (1...((𝐼𝐶) − 1)) ∧ ((𝐹𝐶)‘𝑘) = 0) → ¬ 𝑘 < (𝐼𝐶)))
5251imp 405 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ (𝑘 ∈ (1...((𝐼𝐶) − 1)) ∧ ((𝐹𝐶)‘𝑘) = 0)) → ¬ 𝑘 < (𝐼𝐶))
53 biid 260 . . . . 5 (𝑘 < (𝐼𝐶) ↔ 𝑘 < (𝐼𝐶))
5452, 53sylnib 327 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ (𝑘 ∈ (1...((𝐼𝐶) − 1)) ∧ ((𝐹𝐶)‘𝑘) = 0)) → ¬ 𝑘 < (𝐼𝐶))
5554anassrs 466 . . 3 (((𝐶 ∈ (𝑂𝐸) ∧ 𝑘 ∈ (1...((𝐼𝐶) − 1))) ∧ ((𝐹𝐶)‘𝑘) = 0) → ¬ 𝑘 < (𝐼𝐶))
5618, 55pm2.65da 815 . 2 ((𝐶 ∈ (𝑂𝐸) ∧ 𝑘 ∈ (1...((𝐼𝐶) − 1))) → ¬ ((𝐹𝐶)‘𝑘) = 0)
5756nrexdv 3139 1 (𝐶 ∈ (𝑂𝐸) → ¬ ∃𝑘 ∈ (1...((𝐼𝐶) − 1))((𝐹𝐶)‘𝑘) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wral 3051  wrex 3060  {crab 3419  cdif 3938  cin 3940  wss 3941  𝒫 cpw 4599   class class class wbr 5144  cmpt 5227   Or wor 5584  cfv 6543  (class class class)co 7413  infcinf 9459  cr 11132  0cc0 11133  1c1 11134   + caddc 11136   < clt 11273  cle 11274  cmin 11469   / cdiv 11896  cn 12237  cz 12583  cuz 12847  ...cfz 13511  chash 14316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3961  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-int 4946  df-iun 4994  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7866  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-oadd 8484  df-er 8718  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-sup 9460  df-inf 9461  df-dju 9919  df-card 9957  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-nn 12238  df-2 12300  df-n0 12498  df-z 12584  df-uz 12848  df-fz 13512  df-hash 14317
This theorem is referenced by:  ballotlemic  34179  ballotlem1c  34180
  Copyright terms: Public domain W3C validator