Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemimin Structured version   Visualization version   GIF version

Theorem ballotlemimin 31936
 Description: (𝐼‘𝐶) is the first tie. (Contributed by Thierry Arnoux, 1-Dec-2016.) (Revised by AV, 6-Oct-2020.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
ballotth.e 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
ballotth.mgtn 𝑁 < 𝑀
ballotth.i 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
Assertion
Ref Expression
ballotlemimin (𝐶 ∈ (𝑂𝐸) → ¬ ∃𝑘 ∈ (1...((𝐼𝐶) − 1))((𝐹𝐶)‘𝑘) = 0)
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂   𝑘,𝑀   𝑘,𝑁   𝑘,𝑂   𝑖,𝑐,𝐹,𝑘   𝐶,𝑖,𝑘   𝑖,𝐸,𝑘   𝐶,𝑘   𝑘,𝐼   𝑘,𝑐,𝐸   𝑖,𝐼
Allowed substitution hints:   𝐶(𝑥,𝑐)   𝑃(𝑥,𝑖,𝑘,𝑐)   𝐸(𝑥)   𝐹(𝑥)   𝐼(𝑥,𝑐)   𝑀(𝑥)   𝑁(𝑥)   𝑂(𝑥)

Proof of Theorem ballotlemimin
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfzle2 12923 . . . . . 6 (𝑘 ∈ (1...((𝐼𝐶) − 1)) → 𝑘 ≤ ((𝐼𝐶) − 1))
21adantl 485 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝑘 ∈ (1...((𝐼𝐶) − 1))) → 𝑘 ≤ ((𝐼𝐶) − 1))
3 elfzelz 12919 . . . . . 6 (𝑘 ∈ (1...((𝐼𝐶) − 1)) → 𝑘 ∈ ℤ)
4 ballotth.m . . . . . . . . . 10 𝑀 ∈ ℕ
5 ballotth.n . . . . . . . . . 10 𝑁 ∈ ℕ
6 ballotth.o . . . . . . . . . 10 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
7 ballotth.p . . . . . . . . . 10 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
8 ballotth.f . . . . . . . . . 10 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
9 ballotth.e . . . . . . . . . 10 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
10 ballotth.mgtn . . . . . . . . . 10 𝑁 < 𝑀
11 ballotth.i . . . . . . . . . 10 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
124, 5, 6, 7, 8, 9, 10, 11ballotlemiex 31932 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹𝐶)‘(𝐼𝐶)) = 0))
1312simpld 498 . . . . . . . 8 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ∈ (1...(𝑀 + 𝑁)))
14 elfznn 12948 . . . . . . . 8 ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) → (𝐼𝐶) ∈ ℕ)
1513, 14syl 17 . . . . . . 7 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ∈ ℕ)
1615nnzd 12091 . . . . . 6 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ∈ ℤ)
17 zltlem1 12040 . . . . . 6 ((𝑘 ∈ ℤ ∧ (𝐼𝐶) ∈ ℤ) → (𝑘 < (𝐼𝐶) ↔ 𝑘 ≤ ((𝐼𝐶) − 1)))
183, 16, 17syl2anr 599 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝑘 ∈ (1...((𝐼𝐶) − 1))) → (𝑘 < (𝐼𝐶) ↔ 𝑘 ≤ ((𝐼𝐶) − 1)))
192, 18mpbird 260 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝑘 ∈ (1...((𝐼𝐶) − 1))) → 𝑘 < (𝐼𝐶))
2019adantr 484 . . 3 (((𝐶 ∈ (𝑂𝐸) ∧ 𝑘 ∈ (1...((𝐼𝐶) − 1))) ∧ ((𝐹𝐶)‘𝑘) = 0) → 𝑘 < (𝐼𝐶))
21 1zzd 12018 . . . . . . . . . . . . 13 (𝐶 ∈ (𝑂𝐸) → 1 ∈ ℤ)
2216, 21zsubcld 12097 . . . . . . . . . . . 12 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) − 1) ∈ ℤ)
2322zred 12092 . . . . . . . . . . 11 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) − 1) ∈ ℝ)
24 nnaddcl 11663 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ)
254, 5, 24mp2an 691 . . . . . . . . . . . . 13 (𝑀 + 𝑁) ∈ ℕ
2625a1i 11 . . . . . . . . . . . 12 (𝐶 ∈ (𝑂𝐸) → (𝑀 + 𝑁) ∈ ℕ)
2726nnred 11655 . . . . . . . . . . 11 (𝐶 ∈ (𝑂𝐸) → (𝑀 + 𝑁) ∈ ℝ)
28 elfzle2 12923 . . . . . . . . . . . . 13 ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) → (𝐼𝐶) ≤ (𝑀 + 𝑁))
2913, 28syl 17 . . . . . . . . . . . 12 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ≤ (𝑀 + 𝑁))
3026nnzd 12091 . . . . . . . . . . . . 13 (𝐶 ∈ (𝑂𝐸) → (𝑀 + 𝑁) ∈ ℤ)
31 zlem1lt 12039 . . . . . . . . . . . . 13 (((𝐼𝐶) ∈ ℤ ∧ (𝑀 + 𝑁) ∈ ℤ) → ((𝐼𝐶) ≤ (𝑀 + 𝑁) ↔ ((𝐼𝐶) − 1) < (𝑀 + 𝑁)))
3216, 30, 31syl2anc 587 . . . . . . . . . . . 12 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) ≤ (𝑀 + 𝑁) ↔ ((𝐼𝐶) − 1) < (𝑀 + 𝑁)))
3329, 32mpbid 235 . . . . . . . . . . 11 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) − 1) < (𝑀 + 𝑁))
3423, 27, 33ltled 10792 . . . . . . . . . 10 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) − 1) ≤ (𝑀 + 𝑁))
35 eluz 12262 . . . . . . . . . . 11 ((((𝐼𝐶) − 1) ∈ ℤ ∧ (𝑀 + 𝑁) ∈ ℤ) → ((𝑀 + 𝑁) ∈ (ℤ‘((𝐼𝐶) − 1)) ↔ ((𝐼𝐶) − 1) ≤ (𝑀 + 𝑁)))
3622, 30, 35syl2anc 587 . . . . . . . . . 10 (𝐶 ∈ (𝑂𝐸) → ((𝑀 + 𝑁) ∈ (ℤ‘((𝐼𝐶) − 1)) ↔ ((𝐼𝐶) − 1) ≤ (𝑀 + 𝑁)))
3734, 36mpbird 260 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → (𝑀 + 𝑁) ∈ (ℤ‘((𝐼𝐶) − 1)))
38 fzss2 12959 . . . . . . . . 9 ((𝑀 + 𝑁) ∈ (ℤ‘((𝐼𝐶) − 1)) → (1...((𝐼𝐶) − 1)) ⊆ (1...(𝑀 + 𝑁)))
3937, 38syl 17 . . . . . . . 8 (𝐶 ∈ (𝑂𝐸) → (1...((𝐼𝐶) − 1)) ⊆ (1...(𝑀 + 𝑁)))
4039sseld 3915 . . . . . . 7 (𝐶 ∈ (𝑂𝐸) → (𝑘 ∈ (1...((𝐼𝐶) − 1)) → 𝑘 ∈ (1...(𝑀 + 𝑁))))
41 rabid 3331 . . . . . . . 8 (𝑘 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0} ↔ (𝑘 ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹𝐶)‘𝑘) = 0))
424, 5, 6, 7, 8, 9, 10, 11ballotlemsup 31935 . . . . . . . . . 10 (𝐶 ∈ (𝑂𝐸) → ∃𝑧 ∈ ℝ (∀𝑤 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0} ¬ 𝑤 < 𝑧 ∧ ∀𝑤 ∈ ℝ (𝑧 < 𝑤 → ∃𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0}𝑦 < 𝑤)))
43 ltso 10725 . . . . . . . . . . . 12 < Or ℝ
4443a1i 11 . . . . . . . . . . 11 (∃𝑧 ∈ ℝ (∀𝑤 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0} ¬ 𝑤 < 𝑧 ∧ ∀𝑤 ∈ ℝ (𝑧 < 𝑤 → ∃𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0}𝑦 < 𝑤)) → < Or ℝ)
45 id 22 . . . . . . . . . . 11 (∃𝑧 ∈ ℝ (∀𝑤 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0} ¬ 𝑤 < 𝑧 ∧ ∀𝑤 ∈ ℝ (𝑧 < 𝑤 → ∃𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0}𝑦 < 𝑤)) → ∃𝑧 ∈ ℝ (∀𝑤 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0} ¬ 𝑤 < 𝑧 ∧ ∀𝑤 ∈ ℝ (𝑧 < 𝑤 → ∃𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0}𝑦 < 𝑤)))
4644, 45inflb 8952 . . . . . . . . . 10 (∃𝑧 ∈ ℝ (∀𝑤 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0} ¬ 𝑤 < 𝑧 ∧ ∀𝑤 ∈ ℝ (𝑧 < 𝑤 → ∃𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0}𝑦 < 𝑤)) → (𝑘 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0} → ¬ 𝑘 < inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0}, ℝ, < )))
4742, 46syl 17 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → (𝑘 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0} → ¬ 𝑘 < inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0}, ℝ, < )))
484, 5, 6, 7, 8, 9, 10, 11ballotlemi 31931 . . . . . . . . . . 11 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) = inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0}, ℝ, < ))
4948breq2d 5045 . . . . . . . . . 10 (𝐶 ∈ (𝑂𝐸) → (𝑘 < (𝐼𝐶) ↔ 𝑘 < inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0}, ℝ, < )))
5049notbid 321 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → (¬ 𝑘 < (𝐼𝐶) ↔ ¬ 𝑘 < inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0}, ℝ, < )))
5147, 50sylibrd 262 . . . . . . . 8 (𝐶 ∈ (𝑂𝐸) → (𝑘 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0} → ¬ 𝑘 < (𝐼𝐶)))
5241, 51syl5bir 246 . . . . . . 7 (𝐶 ∈ (𝑂𝐸) → ((𝑘 ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹𝐶)‘𝑘) = 0) → ¬ 𝑘 < (𝐼𝐶)))
5340, 52syland 605 . . . . . 6 (𝐶 ∈ (𝑂𝐸) → ((𝑘 ∈ (1...((𝐼𝐶) − 1)) ∧ ((𝐹𝐶)‘𝑘) = 0) → ¬ 𝑘 < (𝐼𝐶)))
5453imp 410 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ (𝑘 ∈ (1...((𝐼𝐶) − 1)) ∧ ((𝐹𝐶)‘𝑘) = 0)) → ¬ 𝑘 < (𝐼𝐶))
55 biid 264 . . . . 5 (𝑘 < (𝐼𝐶) ↔ 𝑘 < (𝐼𝐶))
5654, 55sylnib 331 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ (𝑘 ∈ (1...((𝐼𝐶) − 1)) ∧ ((𝐹𝐶)‘𝑘) = 0)) → ¬ 𝑘 < (𝐼𝐶))
5756anassrs 471 . . 3 (((𝐶 ∈ (𝑂𝐸) ∧ 𝑘 ∈ (1...((𝐼𝐶) − 1))) ∧ ((𝐹𝐶)‘𝑘) = 0) → ¬ 𝑘 < (𝐼𝐶))
5820, 57pm2.65da 816 . 2 ((𝐶 ∈ (𝑂𝐸) ∧ 𝑘 ∈ (1...((𝐼𝐶) − 1))) → ¬ ((𝐹𝐶)‘𝑘) = 0)
5958nrexdv 3229 1 (𝐶 ∈ (𝑂𝐸) → ¬ ∃𝑘 ∈ (1...((𝐼𝐶) − 1))((𝐹𝐶)‘𝑘) = 0)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ∀wral 3106  ∃wrex 3107  {crab 3110   ∖ cdif 3879   ∩ cin 3881   ⊆ wss 3882  𝒫 cpw 4499   class class class wbr 5033   ↦ cmpt 5113   Or wor 5440  ‘cfv 6329  (class class class)co 7142  infcinf 8904  ℝcr 10540  0cc0 10541  1c1 10542   + caddc 10544   < clt 10679   ≤ cle 10680   − cmin 10874   / cdiv 11301  ℕcn 11640  ℤcz 11986  ℤ≥cuz 12248  ...cfz 12902  ♯chash 13703 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7451  ax-cnex 10597  ax-resscn 10598  ax-1cn 10599  ax-icn 10600  ax-addcl 10601  ax-addrcl 10602  ax-mulcl 10603  ax-mulrcl 10604  ax-mulcom 10605  ax-addass 10606  ax-mulass 10607  ax-distr 10608  ax-i2m1 10609  ax-1ne0 10610  ax-1rid 10611  ax-rnegex 10612  ax-rrecex 10613  ax-cnre 10614  ax-pre-lttri 10615  ax-pre-lttrn 10616  ax-pre-ltadd 10617  ax-pre-mulgt0 10618 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3722  df-csb 3830  df-dif 3885  df-un 3887  df-in 3889  df-ss 3899  df-pss 3901  df-nul 4246  df-if 4428  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5441  df-so 5442  df-fr 5481  df-we 5483  df-xp 5528  df-rel 5529  df-cnv 5530  df-co 5531  df-dm 5532  df-rn 5533  df-res 5534  df-ima 5535  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6288  df-fun 6331  df-fn 6332  df-f 6333  df-f1 6334  df-fo 6335  df-f1o 6336  df-fv 6337  df-riota 7100  df-ov 7145  df-oprab 7146  df-mpo 7147  df-om 7571  df-1st 7681  df-2nd 7682  df-wrecs 7945  df-recs 8006  df-rdg 8044  df-1o 8100  df-oadd 8104  df-er 8287  df-en 8508  df-dom 8509  df-sdom 8510  df-fin 8511  df-sup 8905  df-inf 8906  df-dju 9329  df-card 9367  df-pnf 10681  df-mnf 10682  df-xr 10683  df-ltxr 10684  df-le 10685  df-sub 10876  df-neg 10877  df-nn 11641  df-2 11703  df-n0 11901  df-z 11987  df-uz 12249  df-fz 12903  df-hash 13704 This theorem is referenced by:  ballotlemic  31937  ballotlem1c  31938
 Copyright terms: Public domain W3C validator