Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemimin Structured version   Visualization version   GIF version

Theorem ballotlemimin 34474
Description: (𝐼𝐶) is the first tie. (Contributed by Thierry Arnoux, 1-Dec-2016.) (Revised by AV, 6-Oct-2020.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
ballotth.e 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
ballotth.mgtn 𝑁 < 𝑀
ballotth.i 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
Assertion
Ref Expression
ballotlemimin (𝐶 ∈ (𝑂𝐸) → ¬ ∃𝑘 ∈ (1...((𝐼𝐶) − 1))((𝐹𝐶)‘𝑘) = 0)
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂   𝑘,𝑀   𝑘,𝑁   𝑘,𝑂   𝑖,𝑐,𝐹,𝑘   𝐶,𝑖,𝑘   𝑖,𝐸,𝑘   𝐶,𝑘   𝑘,𝐼   𝑘,𝑐,𝐸   𝑖,𝐼
Allowed substitution hints:   𝐶(𝑥,𝑐)   𝑃(𝑥,𝑖,𝑘,𝑐)   𝐸(𝑥)   𝐹(𝑥)   𝐼(𝑥,𝑐)   𝑀(𝑥)   𝑁(𝑥)   𝑂(𝑥)

Proof of Theorem ballotlemimin
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfzle2 13431 . . . . . 6 (𝑘 ∈ (1...((𝐼𝐶) − 1)) → 𝑘 ≤ ((𝐼𝐶) − 1))
21adantl 481 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝑘 ∈ (1...((𝐼𝐶) − 1))) → 𝑘 ≤ ((𝐼𝐶) − 1))
3 elfzelz 13427 . . . . . 6 (𝑘 ∈ (1...((𝐼𝐶) − 1)) → 𝑘 ∈ ℤ)
4 ballotth.m . . . . . . . . 9 𝑀 ∈ ℕ
5 ballotth.n . . . . . . . . 9 𝑁 ∈ ℕ
6 ballotth.o . . . . . . . . 9 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
7 ballotth.p . . . . . . . . 9 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
8 ballotth.f . . . . . . . . 9 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
9 ballotth.e . . . . . . . . 9 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
10 ballotth.mgtn . . . . . . . . 9 𝑁 < 𝑀
11 ballotth.i . . . . . . . . 9 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
124, 5, 6, 7, 8, 9, 10, 11ballotlemiex 34470 . . . . . . . 8 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹𝐶)‘(𝐼𝐶)) = 0))
1312simpld 494 . . . . . . 7 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ∈ (1...(𝑀 + 𝑁)))
1413elfzelzd 13428 . . . . . 6 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ∈ ℤ)
15 zltlem1 12528 . . . . . 6 ((𝑘 ∈ ℤ ∧ (𝐼𝐶) ∈ ℤ) → (𝑘 < (𝐼𝐶) ↔ 𝑘 ≤ ((𝐼𝐶) − 1)))
163, 14, 15syl2anr 597 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ 𝑘 ∈ (1...((𝐼𝐶) − 1))) → (𝑘 < (𝐼𝐶) ↔ 𝑘 ≤ ((𝐼𝐶) − 1)))
172, 16mpbird 257 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ 𝑘 ∈ (1...((𝐼𝐶) − 1))) → 𝑘 < (𝐼𝐶))
1817adantr 480 . . 3 (((𝐶 ∈ (𝑂𝐸) ∧ 𝑘 ∈ (1...((𝐼𝐶) − 1))) ∧ ((𝐹𝐶)‘𝑘) = 0) → 𝑘 < (𝐼𝐶))
19 1zzd 12506 . . . . . . . . . . . . 13 (𝐶 ∈ (𝑂𝐸) → 1 ∈ ℤ)
2014, 19zsubcld 12585 . . . . . . . . . . . 12 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) − 1) ∈ ℤ)
2120zred 12580 . . . . . . . . . . 11 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) − 1) ∈ ℝ)
22 nnaddcl 12151 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ)
234, 5, 22mp2an 692 . . . . . . . . . . . . 13 (𝑀 + 𝑁) ∈ ℕ
2423a1i 11 . . . . . . . . . . . 12 (𝐶 ∈ (𝑂𝐸) → (𝑀 + 𝑁) ∈ ℕ)
2524nnred 12143 . . . . . . . . . . 11 (𝐶 ∈ (𝑂𝐸) → (𝑀 + 𝑁) ∈ ℝ)
26 elfzle2 13431 . . . . . . . . . . . . 13 ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) → (𝐼𝐶) ≤ (𝑀 + 𝑁))
2713, 26syl 17 . . . . . . . . . . . 12 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ≤ (𝑀 + 𝑁))
2824nnzd 12498 . . . . . . . . . . . . 13 (𝐶 ∈ (𝑂𝐸) → (𝑀 + 𝑁) ∈ ℤ)
29 zlem1lt 12527 . . . . . . . . . . . . 13 (((𝐼𝐶) ∈ ℤ ∧ (𝑀 + 𝑁) ∈ ℤ) → ((𝐼𝐶) ≤ (𝑀 + 𝑁) ↔ ((𝐼𝐶) − 1) < (𝑀 + 𝑁)))
3014, 28, 29syl2anc 584 . . . . . . . . . . . 12 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) ≤ (𝑀 + 𝑁) ↔ ((𝐼𝐶) − 1) < (𝑀 + 𝑁)))
3127, 30mpbid 232 . . . . . . . . . . 11 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) − 1) < (𝑀 + 𝑁))
3221, 25, 31ltled 11264 . . . . . . . . . 10 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) − 1) ≤ (𝑀 + 𝑁))
33 eluz 12749 . . . . . . . . . . 11 ((((𝐼𝐶) − 1) ∈ ℤ ∧ (𝑀 + 𝑁) ∈ ℤ) → ((𝑀 + 𝑁) ∈ (ℤ‘((𝐼𝐶) − 1)) ↔ ((𝐼𝐶) − 1) ≤ (𝑀 + 𝑁)))
3420, 28, 33syl2anc 584 . . . . . . . . . 10 (𝐶 ∈ (𝑂𝐸) → ((𝑀 + 𝑁) ∈ (ℤ‘((𝐼𝐶) − 1)) ↔ ((𝐼𝐶) − 1) ≤ (𝑀 + 𝑁)))
3532, 34mpbird 257 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → (𝑀 + 𝑁) ∈ (ℤ‘((𝐼𝐶) − 1)))
36 fzss2 13467 . . . . . . . . 9 ((𝑀 + 𝑁) ∈ (ℤ‘((𝐼𝐶) − 1)) → (1...((𝐼𝐶) − 1)) ⊆ (1...(𝑀 + 𝑁)))
3735, 36syl 17 . . . . . . . 8 (𝐶 ∈ (𝑂𝐸) → (1...((𝐼𝐶) − 1)) ⊆ (1...(𝑀 + 𝑁)))
3837sseld 3934 . . . . . . 7 (𝐶 ∈ (𝑂𝐸) → (𝑘 ∈ (1...((𝐼𝐶) − 1)) → 𝑘 ∈ (1...(𝑀 + 𝑁))))
39 rabid 3416 . . . . . . . 8 (𝑘 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0} ↔ (𝑘 ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹𝐶)‘𝑘) = 0))
404, 5, 6, 7, 8, 9, 10, 11ballotlemsup 34473 . . . . . . . . . 10 (𝐶 ∈ (𝑂𝐸) → ∃𝑧 ∈ ℝ (∀𝑤 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0} ¬ 𝑤 < 𝑧 ∧ ∀𝑤 ∈ ℝ (𝑧 < 𝑤 → ∃𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0}𝑦 < 𝑤)))
41 ltso 11196 . . . . . . . . . . . 12 < Or ℝ
4241a1i 11 . . . . . . . . . . 11 (∃𝑧 ∈ ℝ (∀𝑤 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0} ¬ 𝑤 < 𝑧 ∧ ∀𝑤 ∈ ℝ (𝑧 < 𝑤 → ∃𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0}𝑦 < 𝑤)) → < Or ℝ)
43 id 22 . . . . . . . . . . 11 (∃𝑧 ∈ ℝ (∀𝑤 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0} ¬ 𝑤 < 𝑧 ∧ ∀𝑤 ∈ ℝ (𝑧 < 𝑤 → ∃𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0}𝑦 < 𝑤)) → ∃𝑧 ∈ ℝ (∀𝑤 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0} ¬ 𝑤 < 𝑧 ∧ ∀𝑤 ∈ ℝ (𝑧 < 𝑤 → ∃𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0}𝑦 < 𝑤)))
4442, 43inflb 9380 . . . . . . . . . 10 (∃𝑧 ∈ ℝ (∀𝑤 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0} ¬ 𝑤 < 𝑧 ∧ ∀𝑤 ∈ ℝ (𝑧 < 𝑤 → ∃𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0}𝑦 < 𝑤)) → (𝑘 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0} → ¬ 𝑘 < inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0}, ℝ, < )))
4540, 44syl 17 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → (𝑘 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0} → ¬ 𝑘 < inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0}, ℝ, < )))
464, 5, 6, 7, 8, 9, 10, 11ballotlemi 34469 . . . . . . . . . . 11 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) = inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0}, ℝ, < ))
4746breq2d 5104 . . . . . . . . . 10 (𝐶 ∈ (𝑂𝐸) → (𝑘 < (𝐼𝐶) ↔ 𝑘 < inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0}, ℝ, < )))
4847notbid 318 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → (¬ 𝑘 < (𝐼𝐶) ↔ ¬ 𝑘 < inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0}, ℝ, < )))
4945, 48sylibrd 259 . . . . . . . 8 (𝐶 ∈ (𝑂𝐸) → (𝑘 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝐶)‘𝑘) = 0} → ¬ 𝑘 < (𝐼𝐶)))
5039, 49biimtrrid 243 . . . . . . 7 (𝐶 ∈ (𝑂𝐸) → ((𝑘 ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹𝐶)‘𝑘) = 0) → ¬ 𝑘 < (𝐼𝐶)))
5138, 50syland 603 . . . . . 6 (𝐶 ∈ (𝑂𝐸) → ((𝑘 ∈ (1...((𝐼𝐶) − 1)) ∧ ((𝐹𝐶)‘𝑘) = 0) → ¬ 𝑘 < (𝐼𝐶)))
5251imp 406 . . . . 5 ((𝐶 ∈ (𝑂𝐸) ∧ (𝑘 ∈ (1...((𝐼𝐶) − 1)) ∧ ((𝐹𝐶)‘𝑘) = 0)) → ¬ 𝑘 < (𝐼𝐶))
53 biid 261 . . . . 5 (𝑘 < (𝐼𝐶) ↔ 𝑘 < (𝐼𝐶))
5452, 53sylnib 328 . . . 4 ((𝐶 ∈ (𝑂𝐸) ∧ (𝑘 ∈ (1...((𝐼𝐶) − 1)) ∧ ((𝐹𝐶)‘𝑘) = 0)) → ¬ 𝑘 < (𝐼𝐶))
5554anassrs 467 . . 3 (((𝐶 ∈ (𝑂𝐸) ∧ 𝑘 ∈ (1...((𝐼𝐶) − 1))) ∧ ((𝐹𝐶)‘𝑘) = 0) → ¬ 𝑘 < (𝐼𝐶))
5618, 55pm2.65da 816 . 2 ((𝐶 ∈ (𝑂𝐸) ∧ 𝑘 ∈ (1...((𝐼𝐶) − 1))) → ¬ ((𝐹𝐶)‘𝑘) = 0)
5756nrexdv 3124 1 (𝐶 ∈ (𝑂𝐸) → ¬ ∃𝑘 ∈ (1...((𝐼𝐶) − 1))((𝐹𝐶)‘𝑘) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3394  cdif 3900  cin 3902  wss 3903  𝒫 cpw 4551   class class class wbr 5092  cmpt 5173   Or wor 5526  cfv 6482  (class class class)co 7349  infcinf 9331  cr 11008  0cc0 11009  1c1 11010   + caddc 11012   < clt 11149  cle 11150  cmin 11347   / cdiv 11777  cn 12128  cz 12471  cuz 12735  ...cfz 13410  chash 14237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-oadd 8392  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-dju 9797  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-hash 14238
This theorem is referenced by:  ballotlemic  34475  ballotlem1c  34476
  Copyright terms: Public domain W3C validator