Step | Hyp | Ref
| Expression |
1 | | elfzle2 13189 |
. . . . . 6
⊢ (𝑘 ∈ (1...((𝐼‘𝐶) − 1)) → 𝑘 ≤ ((𝐼‘𝐶) − 1)) |
2 | 1 | adantl 481 |
. . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝑘 ∈ (1...((𝐼‘𝐶) − 1))) → 𝑘 ≤ ((𝐼‘𝐶) − 1)) |
3 | | elfzelz 13185 |
. . . . . 6
⊢ (𝑘 ∈ (1...((𝐼‘𝐶) − 1)) → 𝑘 ∈ ℤ) |
4 | | ballotth.m |
. . . . . . . . 9
⊢ 𝑀 ∈ ℕ |
5 | | ballotth.n |
. . . . . . . . 9
⊢ 𝑁 ∈ ℕ |
6 | | ballotth.o |
. . . . . . . . 9
⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} |
7 | | ballotth.p |
. . . . . . . . 9
⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) |
8 | | ballotth.f |
. . . . . . . . 9
⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦
((♯‘((1...𝑖)
∩ 𝑐)) −
(♯‘((1...𝑖)
∖ 𝑐))))) |
9 | | ballotth.e |
. . . . . . . . 9
⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} |
10 | | ballotth.mgtn |
. . . . . . . . 9
⊢ 𝑁 < 𝑀 |
11 | | ballotth.i |
. . . . . . . . 9
⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) |
12 | 4, 5, 6, 7, 8, 9, 10, 11 | ballotlemiex 32368 |
. . . . . . . 8
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹‘𝐶)‘(𝐼‘𝐶)) = 0)) |
13 | 12 | simpld 494 |
. . . . . . 7
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁))) |
14 | 13 | elfzelzd 13186 |
. . . . . 6
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝐼‘𝐶) ∈ ℤ) |
15 | | zltlem1 12303 |
. . . . . 6
⊢ ((𝑘 ∈ ℤ ∧ (𝐼‘𝐶) ∈ ℤ) → (𝑘 < (𝐼‘𝐶) ↔ 𝑘 ≤ ((𝐼‘𝐶) − 1))) |
16 | 3, 14, 15 | syl2anr 596 |
. . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝑘 ∈ (1...((𝐼‘𝐶) − 1))) → (𝑘 < (𝐼‘𝐶) ↔ 𝑘 ≤ ((𝐼‘𝐶) − 1))) |
17 | 2, 16 | mpbird 256 |
. . . 4
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝑘 ∈ (1...((𝐼‘𝐶) − 1))) → 𝑘 < (𝐼‘𝐶)) |
18 | 17 | adantr 480 |
. . 3
⊢ (((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝑘 ∈ (1...((𝐼‘𝐶) − 1))) ∧ ((𝐹‘𝐶)‘𝑘) = 0) → 𝑘 < (𝐼‘𝐶)) |
19 | | 1zzd 12281 |
. . . . . . . . . . . . 13
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → 1 ∈ ℤ) |
20 | 14, 19 | zsubcld 12360 |
. . . . . . . . . . . 12
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝐼‘𝐶) − 1) ∈
ℤ) |
21 | 20 | zred 12355 |
. . . . . . . . . . 11
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝐼‘𝐶) − 1) ∈
ℝ) |
22 | | nnaddcl 11926 |
. . . . . . . . . . . . . 14
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ) |
23 | 4, 5, 22 | mp2an 688 |
. . . . . . . . . . . . 13
⊢ (𝑀 + 𝑁) ∈ ℕ |
24 | 23 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑀 + 𝑁) ∈ ℕ) |
25 | 24 | nnred 11918 |
. . . . . . . . . . 11
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑀 + 𝑁) ∈ ℝ) |
26 | | elfzle2 13189 |
. . . . . . . . . . . . 13
⊢ ((𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁)) → (𝐼‘𝐶) ≤ (𝑀 + 𝑁)) |
27 | 13, 26 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝐼‘𝐶) ≤ (𝑀 + 𝑁)) |
28 | 24 | nnzd 12354 |
. . . . . . . . . . . . 13
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑀 + 𝑁) ∈ ℤ) |
29 | | zlem1lt 12302 |
. . . . . . . . . . . . 13
⊢ (((𝐼‘𝐶) ∈ ℤ ∧ (𝑀 + 𝑁) ∈ ℤ) → ((𝐼‘𝐶) ≤ (𝑀 + 𝑁) ↔ ((𝐼‘𝐶) − 1) < (𝑀 + 𝑁))) |
30 | 14, 28, 29 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝐼‘𝐶) ≤ (𝑀 + 𝑁) ↔ ((𝐼‘𝐶) − 1) < (𝑀 + 𝑁))) |
31 | 27, 30 | mpbid 231 |
. . . . . . . . . . 11
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝐼‘𝐶) − 1) < (𝑀 + 𝑁)) |
32 | 21, 25, 31 | ltled 11053 |
. . . . . . . . . 10
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝐼‘𝐶) − 1) ≤ (𝑀 + 𝑁)) |
33 | | eluz 12525 |
. . . . . . . . . . 11
⊢ ((((𝐼‘𝐶) − 1) ∈ ℤ ∧ (𝑀 + 𝑁) ∈ ℤ) → ((𝑀 + 𝑁) ∈
(ℤ≥‘((𝐼‘𝐶) − 1)) ↔ ((𝐼‘𝐶) − 1) ≤ (𝑀 + 𝑁))) |
34 | 20, 28, 33 | syl2anc 583 |
. . . . . . . . . 10
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝑀 + 𝑁) ∈
(ℤ≥‘((𝐼‘𝐶) − 1)) ↔ ((𝐼‘𝐶) − 1) ≤ (𝑀 + 𝑁))) |
35 | 32, 34 | mpbird 256 |
. . . . . . . . 9
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑀 + 𝑁) ∈
(ℤ≥‘((𝐼‘𝐶) − 1))) |
36 | | fzss2 13225 |
. . . . . . . . 9
⊢ ((𝑀 + 𝑁) ∈
(ℤ≥‘((𝐼‘𝐶) − 1)) → (1...((𝐼‘𝐶) − 1)) ⊆ (1...(𝑀 + 𝑁))) |
37 | 35, 36 | syl 17 |
. . . . . . . 8
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (1...((𝐼‘𝐶) − 1)) ⊆ (1...(𝑀 + 𝑁))) |
38 | 37 | sseld 3916 |
. . . . . . 7
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑘 ∈ (1...((𝐼‘𝐶) − 1)) → 𝑘 ∈ (1...(𝑀 + 𝑁)))) |
39 | | rabid 3304 |
. . . . . . . 8
⊢ (𝑘 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝐶)‘𝑘) = 0} ↔ (𝑘 ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹‘𝐶)‘𝑘) = 0)) |
40 | 4, 5, 6, 7, 8, 9, 10, 11 | ballotlemsup 32371 |
. . . . . . . . . 10
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ∃𝑧 ∈ ℝ (∀𝑤 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝐶)‘𝑘) = 0} ¬ 𝑤 < 𝑧 ∧ ∀𝑤 ∈ ℝ (𝑧 < 𝑤 → ∃𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝐶)‘𝑘) = 0}𝑦 < 𝑤))) |
41 | | ltso 10986 |
. . . . . . . . . . . 12
⊢ < Or
ℝ |
42 | 41 | a1i 11 |
. . . . . . . . . . 11
⊢
(∃𝑧 ∈
ℝ (∀𝑤 ∈
{𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝐶)‘𝑘) = 0} ¬ 𝑤 < 𝑧 ∧ ∀𝑤 ∈ ℝ (𝑧 < 𝑤 → ∃𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝐶)‘𝑘) = 0}𝑦 < 𝑤)) → < Or ℝ) |
43 | | id 22 |
. . . . . . . . . . 11
⊢
(∃𝑧 ∈
ℝ (∀𝑤 ∈
{𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝐶)‘𝑘) = 0} ¬ 𝑤 < 𝑧 ∧ ∀𝑤 ∈ ℝ (𝑧 < 𝑤 → ∃𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝐶)‘𝑘) = 0}𝑦 < 𝑤)) → ∃𝑧 ∈ ℝ (∀𝑤 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝐶)‘𝑘) = 0} ¬ 𝑤 < 𝑧 ∧ ∀𝑤 ∈ ℝ (𝑧 < 𝑤 → ∃𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝐶)‘𝑘) = 0}𝑦 < 𝑤))) |
44 | 42, 43 | inflb 9178 |
. . . . . . . . . 10
⊢
(∃𝑧 ∈
ℝ (∀𝑤 ∈
{𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝐶)‘𝑘) = 0} ¬ 𝑤 < 𝑧 ∧ ∀𝑤 ∈ ℝ (𝑧 < 𝑤 → ∃𝑦 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝐶)‘𝑘) = 0}𝑦 < 𝑤)) → (𝑘 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝐶)‘𝑘) = 0} → ¬ 𝑘 < inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝐶)‘𝑘) = 0}, ℝ, < ))) |
45 | 40, 44 | syl 17 |
. . . . . . . . 9
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑘 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝐶)‘𝑘) = 0} → ¬ 𝑘 < inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝐶)‘𝑘) = 0}, ℝ, < ))) |
46 | 4, 5, 6, 7, 8, 9, 10, 11 | ballotlemi 32367 |
. . . . . . . . . . 11
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝐼‘𝐶) = inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝐶)‘𝑘) = 0}, ℝ, < )) |
47 | 46 | breq2d 5082 |
. . . . . . . . . 10
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑘 < (𝐼‘𝐶) ↔ 𝑘 < inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝐶)‘𝑘) = 0}, ℝ, < ))) |
48 | 47 | notbid 317 |
. . . . . . . . 9
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (¬ 𝑘 < (𝐼‘𝐶) ↔ ¬ 𝑘 < inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝐶)‘𝑘) = 0}, ℝ, < ))) |
49 | 45, 48 | sylibrd 258 |
. . . . . . . 8
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑘 ∈ {𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝐶)‘𝑘) = 0} → ¬ 𝑘 < (𝐼‘𝐶))) |
50 | 39, 49 | syl5bir 242 |
. . . . . . 7
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝑘 ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹‘𝐶)‘𝑘) = 0) → ¬ 𝑘 < (𝐼‘𝐶))) |
51 | 38, 50 | syland 602 |
. . . . . 6
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝑘 ∈ (1...((𝐼‘𝐶) − 1)) ∧ ((𝐹‘𝐶)‘𝑘) = 0) → ¬ 𝑘 < (𝐼‘𝐶))) |
52 | 51 | imp 406 |
. . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ (𝑘 ∈ (1...((𝐼‘𝐶) − 1)) ∧ ((𝐹‘𝐶)‘𝑘) = 0)) → ¬ 𝑘 < (𝐼‘𝐶)) |
53 | | biid 260 |
. . . . 5
⊢ (𝑘 < (𝐼‘𝐶) ↔ 𝑘 < (𝐼‘𝐶)) |
54 | 52, 53 | sylnib 327 |
. . . 4
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ (𝑘 ∈ (1...((𝐼‘𝐶) − 1)) ∧ ((𝐹‘𝐶)‘𝑘) = 0)) → ¬ 𝑘 < (𝐼‘𝐶)) |
55 | 54 | anassrs 467 |
. . 3
⊢ (((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝑘 ∈ (1...((𝐼‘𝐶) − 1))) ∧ ((𝐹‘𝐶)‘𝑘) = 0) → ¬ 𝑘 < (𝐼‘𝐶)) |
56 | 18, 55 | pm2.65da 813 |
. 2
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝑘 ∈ (1...((𝐼‘𝐶) − 1))) → ¬ ((𝐹‘𝐶)‘𝑘) = 0) |
57 | 56 | nrexdv 3197 |
1
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ¬ ∃𝑘 ∈ (1...((𝐼‘𝐶) − 1))((𝐹‘𝐶)‘𝑘) = 0) |