Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  goldbachthlem2 Structured version   Visualization version   GIF version

Theorem goldbachthlem2 42235
Description: Lemma 2 for goldbachth 42236. (Contributed by AV, 1-Aug-2021.)
Assertion
Ref Expression
goldbachthlem2 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1)

Proof of Theorem goldbachthlem2
StepHypRef Expression
1 fmtnonn 42220 . . . . . 6 (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) ∈ ℕ)
21nnzd 11770 . . . . 5 (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) ∈ ℤ)
3 fmtnonn 42220 . . . . . 6 (𝑀 ∈ ℕ0 → (FermatNo‘𝑀) ∈ ℕ)
43nnzd 11770 . . . . 5 (𝑀 ∈ ℕ0 → (FermatNo‘𝑀) ∈ ℤ)
52, 4anim12ci 608 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → ((FermatNo‘𝑀) ∈ ℤ ∧ (FermatNo‘𝑁) ∈ ℤ))
653adant3 1163 . . 3 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((FermatNo‘𝑀) ∈ ℤ ∧ (FermatNo‘𝑁) ∈ ℤ))
7 gcddvds 15559 . . 3 (((FermatNo‘𝑀) ∈ ℤ ∧ (FermatNo‘𝑁) ∈ ℤ) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑀) ∧ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑁)))
86, 7syl 17 . 2 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑀) ∧ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑁)))
9 goldbachthlem1 42234 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → (FermatNo‘𝑀) ∥ ((FermatNo‘𝑁) − 2))
10 gcdcl 15562 . . . . . . 7 (((FermatNo‘𝑀) ∈ ℤ ∧ (FermatNo‘𝑁) ∈ ℤ) → ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∈ ℕ0)
116, 10syl 17 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∈ ℕ0)
1211nn0zd 11769 . . . . 5 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∈ ℤ)
1343ad2ant2 1165 . . . . 5 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → (FermatNo‘𝑀) ∈ ℤ)
14 2z 11698 . . . . . . . 8 2 ∈ ℤ
1514a1i 11 . . . . . . 7 (𝑁 ∈ ℕ0 → 2 ∈ ℤ)
162, 15zsubcld 11776 . . . . . 6 (𝑁 ∈ ℕ0 → ((FermatNo‘𝑁) − 2) ∈ ℤ)
17163ad2ant1 1164 . . . . 5 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((FermatNo‘𝑁) − 2) ∈ ℤ)
18 dvdstr 15356 . . . . 5 ((((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∈ ℤ ∧ (FermatNo‘𝑀) ∈ ℤ ∧ ((FermatNo‘𝑁) − 2) ∈ ℤ) → ((((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑀) ∧ (FermatNo‘𝑀) ∥ ((FermatNo‘𝑁) − 2)) → ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ ((FermatNo‘𝑁) − 2)))
1912, 13, 17, 18syl3anc 1491 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑀) ∧ (FermatNo‘𝑀) ∥ ((FermatNo‘𝑁) − 2)) → ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ ((FermatNo‘𝑁) − 2)))
209, 19mpan2d 686 . . 3 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑀) → ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ ((FermatNo‘𝑁) − 2)))
2123ad2ant1 1164 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → (FermatNo‘𝑁) ∈ ℤ)
22 dvds2sub 15354 . . . . . 6 ((((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∈ ℤ ∧ (FermatNo‘𝑁) ∈ ℤ ∧ ((FermatNo‘𝑁) − 2) ∈ ℤ) → ((((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑁) ∧ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ ((FermatNo‘𝑁) − 2)) → ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ ((FermatNo‘𝑁) − ((FermatNo‘𝑁) − 2))))
2312, 21, 17, 22syl3anc 1491 . . . . 5 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑁) ∧ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ ((FermatNo‘𝑁) − 2)) → ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ ((FermatNo‘𝑁) − ((FermatNo‘𝑁) − 2))))
2423ancomsd 458 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ ((FermatNo‘𝑁) − 2) ∧ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑁)) → ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ ((FermatNo‘𝑁) − ((FermatNo‘𝑁) − 2))))
251nncnd 11331 . . . . . . . 8 (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) ∈ ℂ)
26253ad2ant1 1164 . . . . . . 7 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → (FermatNo‘𝑁) ∈ ℂ)
27 2cnd 11390 . . . . . . 7 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → 2 ∈ ℂ)
2826, 27nncand 10690 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((FermatNo‘𝑁) − ((FermatNo‘𝑁) − 2)) = 2)
2928breq2d 4856 . . . . 5 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ ((FermatNo‘𝑁) − ((FermatNo‘𝑁) − 2)) ↔ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ 2))
30 2prm 15738 . . . . . . 7 2 ∈ ℙ
311, 3anim12ci 608 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → ((FermatNo‘𝑀) ∈ ℕ ∧ (FermatNo‘𝑁) ∈ ℕ))
32313adant3 1163 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((FermatNo‘𝑀) ∈ ℕ ∧ (FermatNo‘𝑁) ∈ ℕ))
33 gcdnncl 15563 . . . . . . . 8 (((FermatNo‘𝑀) ∈ ℕ ∧ (FermatNo‘𝑁) ∈ ℕ) → ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∈ ℕ)
3432, 33syl 17 . . . . . . 7 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∈ ℕ)
35 dvdsprime 15733 . . . . . . 7 ((2 ∈ ℙ ∧ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∈ ℕ) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ 2 ↔ (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 2 ∨ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 1)))
3630, 34, 35sylancr 582 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ 2 ↔ (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 2 ∨ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 1)))
375, 7syl 17 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑀) ∧ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑁)))
38 breq1 4847 . . . . . . . . . . . . . 14 (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 2 → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑁) ↔ 2 ∥ (FermatNo‘𝑁)))
3938adantl 474 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 2) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑁) ↔ 2 ∥ (FermatNo‘𝑁)))
40 fmtnoodd 42222 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0 → ¬ 2 ∥ (FermatNo‘𝑁))
4140pm2.21d 119 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (2 ∥ (FermatNo‘𝑁) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1))
4241ad2antrr 718 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 2) → (2 ∥ (FermatNo‘𝑁) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1))
4339, 42sylbid 232 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 2) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑁) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1))
4443ex 402 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 2 → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑁) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1)))
4544com23 86 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑁) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 2 → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1)))
4645adantld 485 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → ((((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑀) ∧ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑁)) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 2 → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1)))
4737, 46mpd 15 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 2 → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1))
48473adant3 1163 . . . . . . 7 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 2 → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1))
49 gcdcom 15569 . . . . . . . . . 10 (((FermatNo‘𝑀) ∈ ℤ ∧ (FermatNo‘𝑁) ∈ ℤ) → ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)))
506, 49syl 17 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)))
5150eqeq1d 2802 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 1 ↔ ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1))
5251biimpd 221 . . . . . . 7 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 1 → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1))
5348, 52jaod 886 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 2 ∨ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 1) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1))
5436, 53sylbid 232 . . . . 5 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ 2 → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1))
5529, 54sylbid 232 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ ((FermatNo‘𝑁) − ((FermatNo‘𝑁) − 2)) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1))
5624, 55syld 47 . . 3 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ ((FermatNo‘𝑁) − 2) ∧ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑁)) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1))
5720, 56syland 597 . 2 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑀) ∧ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑁)) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1))
588, 57mpd 15 1 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385  wo 874  w3a 1108   = wceq 1653  wcel 2157   class class class wbr 4844  cfv 6102  (class class class)co 6879  cc 10223  1c1 10226   < clt 10364  cmin 10557  cn 11313  2c2 11367  0cn0 11579  cz 11665  cdvds 15318   gcd cgcd 15550  cprime 15718  FermatNocfmtno 42216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2378  ax-ext 2778  ax-rep 4965  ax-sep 4976  ax-nul 4984  ax-pow 5036  ax-pr 5098  ax-un 7184  ax-inf2 8789  ax-cnex 10281  ax-resscn 10282  ax-1cn 10283  ax-icn 10284  ax-addcl 10285  ax-addrcl 10286  ax-mulcl 10287  ax-mulrcl 10288  ax-mulcom 10289  ax-addass 10290  ax-mulass 10291  ax-distr 10292  ax-i2m1 10293  ax-1ne0 10294  ax-1rid 10295  ax-rnegex 10296  ax-rrecex 10297  ax-cnre 10298  ax-pre-lttri 10299  ax-pre-lttrn 10300  ax-pre-ltadd 10301  ax-pre-mulgt0 10302  ax-pre-sup 10303
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-fal 1667  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2592  df-eu 2610  df-clab 2787  df-cleq 2793  df-clel 2796  df-nfc 2931  df-ne 2973  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3388  df-sbc 3635  df-csb 3730  df-dif 3773  df-un 3775  df-in 3777  df-ss 3784  df-pss 3786  df-nul 4117  df-if 4279  df-pw 4352  df-sn 4370  df-pr 4372  df-tp 4374  df-op 4376  df-uni 4630  df-int 4669  df-iun 4713  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5221  df-eprel 5226  df-po 5234  df-so 5235  df-fr 5272  df-se 5273  df-we 5274  df-xp 5319  df-rel 5320  df-cnv 5321  df-co 5322  df-dm 5323  df-rn 5324  df-res 5325  df-ima 5326  df-pred 5899  df-ord 5945  df-on 5946  df-lim 5947  df-suc 5948  df-iota 6065  df-fun 6104  df-fn 6105  df-f 6106  df-f1 6107  df-fo 6108  df-f1o 6109  df-fv 6110  df-isom 6111  df-riota 6840  df-ov 6882  df-oprab 6883  df-mpt2 6884  df-om 7301  df-1st 7402  df-2nd 7403  df-wrecs 7646  df-recs 7708  df-rdg 7746  df-1o 7800  df-2o 7801  df-oadd 7804  df-er 7983  df-en 8197  df-dom 8198  df-sdom 8199  df-fin 8200  df-sup 8591  df-inf 8592  df-oi 8658  df-card 9052  df-pnf 10366  df-mnf 10367  df-xr 10368  df-ltxr 10369  df-le 10370  df-sub 10559  df-neg 10560  df-div 10978  df-nn 11314  df-2 11375  df-3 11376  df-4 11377  df-5 11378  df-n0 11580  df-z 11666  df-uz 11930  df-rp 12074  df-fz 12580  df-fzo 12720  df-seq 13055  df-exp 13114  df-hash 13370  df-cj 14179  df-re 14180  df-im 14181  df-sqrt 14315  df-abs 14316  df-clim 14559  df-prod 14972  df-dvds 15319  df-gcd 15551  df-prm 15719  df-fmtno 42217
This theorem is referenced by:  goldbachth  42236
  Copyright terms: Public domain W3C validator