Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  goldbachthlem2 Structured version   Visualization version   GIF version

Theorem goldbachthlem2 47520
Description: Lemma 2 for goldbachth 47521. (Contributed by AV, 1-Aug-2021.)
Assertion
Ref Expression
goldbachthlem2 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1)

Proof of Theorem goldbachthlem2
StepHypRef Expression
1 fmtnonn 47505 . . . . . 6 (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) ∈ ℕ)
21nnzd 12532 . . . . 5 (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) ∈ ℤ)
3 fmtnonn 47505 . . . . . 6 (𝑀 ∈ ℕ0 → (FermatNo‘𝑀) ∈ ℕ)
43nnzd 12532 . . . . 5 (𝑀 ∈ ℕ0 → (FermatNo‘𝑀) ∈ ℤ)
52, 4anim12ci 614 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → ((FermatNo‘𝑀) ∈ ℤ ∧ (FermatNo‘𝑁) ∈ ℤ))
653adant3 1132 . . 3 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((FermatNo‘𝑀) ∈ ℤ ∧ (FermatNo‘𝑁) ∈ ℤ))
7 gcddvds 16449 . . 3 (((FermatNo‘𝑀) ∈ ℤ ∧ (FermatNo‘𝑁) ∈ ℤ) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑀) ∧ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑁)))
86, 7syl 17 . 2 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑀) ∧ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑁)))
9 goldbachthlem1 47519 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → (FermatNo‘𝑀) ∥ ((FermatNo‘𝑁) − 2))
10 gcdcl 16452 . . . . . . 7 (((FermatNo‘𝑀) ∈ ℤ ∧ (FermatNo‘𝑁) ∈ ℤ) → ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∈ ℕ0)
116, 10syl 17 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∈ ℕ0)
1211nn0zd 12531 . . . . 5 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∈ ℤ)
1343ad2ant2 1134 . . . . 5 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → (FermatNo‘𝑀) ∈ ℤ)
14 2z 12541 . . . . . . . 8 2 ∈ ℤ
1514a1i 11 . . . . . . 7 (𝑁 ∈ ℕ0 → 2 ∈ ℤ)
162, 15zsubcld 12619 . . . . . 6 (𝑁 ∈ ℕ0 → ((FermatNo‘𝑁) − 2) ∈ ℤ)
17163ad2ant1 1133 . . . . 5 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((FermatNo‘𝑁) − 2) ∈ ℤ)
18 dvdstr 16240 . . . . 5 ((((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∈ ℤ ∧ (FermatNo‘𝑀) ∈ ℤ ∧ ((FermatNo‘𝑁) − 2) ∈ ℤ) → ((((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑀) ∧ (FermatNo‘𝑀) ∥ ((FermatNo‘𝑁) − 2)) → ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ ((FermatNo‘𝑁) − 2)))
1912, 13, 17, 18syl3anc 1373 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑀) ∧ (FermatNo‘𝑀) ∥ ((FermatNo‘𝑁) − 2)) → ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ ((FermatNo‘𝑁) − 2)))
209, 19mpan2d 694 . . 3 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑀) → ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ ((FermatNo‘𝑁) − 2)))
2123ad2ant1 1133 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → (FermatNo‘𝑁) ∈ ℤ)
22 dvds2sub 16237 . . . . . 6 ((((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∈ ℤ ∧ (FermatNo‘𝑁) ∈ ℤ ∧ ((FermatNo‘𝑁) − 2) ∈ ℤ) → ((((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑁) ∧ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ ((FermatNo‘𝑁) − 2)) → ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ ((FermatNo‘𝑁) − ((FermatNo‘𝑁) − 2))))
2312, 21, 17, 22syl3anc 1373 . . . . 5 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑁) ∧ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ ((FermatNo‘𝑁) − 2)) → ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ ((FermatNo‘𝑁) − ((FermatNo‘𝑁) − 2))))
2423ancomsd 465 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ ((FermatNo‘𝑁) − 2) ∧ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑁)) → ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ ((FermatNo‘𝑁) − ((FermatNo‘𝑁) − 2))))
251nncnd 12178 . . . . . . . 8 (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) ∈ ℂ)
26253ad2ant1 1133 . . . . . . 7 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → (FermatNo‘𝑁) ∈ ℂ)
27 2cnd 12240 . . . . . . 7 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → 2 ∈ ℂ)
2826, 27nncand 11514 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((FermatNo‘𝑁) − ((FermatNo‘𝑁) − 2)) = 2)
2928breq2d 5114 . . . . 5 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ ((FermatNo‘𝑁) − ((FermatNo‘𝑁) − 2)) ↔ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ 2))
30 2prm 16638 . . . . . . 7 2 ∈ ℙ
311, 3anim12ci 614 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → ((FermatNo‘𝑀) ∈ ℕ ∧ (FermatNo‘𝑁) ∈ ℕ))
32313adant3 1132 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((FermatNo‘𝑀) ∈ ℕ ∧ (FermatNo‘𝑁) ∈ ℕ))
33 gcdnncl 16453 . . . . . . . 8 (((FermatNo‘𝑀) ∈ ℕ ∧ (FermatNo‘𝑁) ∈ ℕ) → ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∈ ℕ)
3432, 33syl 17 . . . . . . 7 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∈ ℕ)
35 dvdsprime 16633 . . . . . . 7 ((2 ∈ ℙ ∧ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∈ ℕ) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ 2 ↔ (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 2 ∨ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 1)))
3630, 34, 35sylancr 587 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ 2 ↔ (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 2 ∨ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 1)))
375, 7syl 17 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑀) ∧ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑁)))
38 breq1 5105 . . . . . . . . . . . . . 14 (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 2 → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑁) ↔ 2 ∥ (FermatNo‘𝑁)))
3938adantl 481 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 2) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑁) ↔ 2 ∥ (FermatNo‘𝑁)))
40 fmtnoodd 47507 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0 → ¬ 2 ∥ (FermatNo‘𝑁))
4140pm2.21d 121 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (2 ∥ (FermatNo‘𝑁) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1))
4241ad2antrr 726 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 2) → (2 ∥ (FermatNo‘𝑁) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1))
4339, 42sylbid 240 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 2) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑁) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1))
4443ex 412 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 2 → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑁) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1)))
4544com23 86 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑁) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 2 → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1)))
4645adantld 490 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → ((((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑀) ∧ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑁)) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 2 → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1)))
4737, 46mpd 15 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 2 → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1))
48473adant3 1132 . . . . . . 7 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 2 → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1))
49 gcdcom 16459 . . . . . . . . . 10 (((FermatNo‘𝑀) ∈ ℤ ∧ (FermatNo‘𝑁) ∈ ℤ) → ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)))
506, 49syl 17 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)))
5150eqeq1d 2731 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 1 ↔ ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1))
5251biimpd 229 . . . . . . 7 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 1 → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1))
5348, 52jaod 859 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 2 ∨ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 1) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1))
5436, 53sylbid 240 . . . . 5 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ 2 → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1))
5529, 54sylbid 240 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ ((FermatNo‘𝑁) − ((FermatNo‘𝑁) − 2)) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1))
5624, 55syld 47 . . 3 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ ((FermatNo‘𝑁) − 2) ∧ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑁)) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1))
5720, 56syland 603 . 2 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑀) ∧ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑁)) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1))
588, 57mpd 15 1 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5102  cfv 6499  (class class class)co 7369  cc 11042  1c1 11045   < clt 11184  cmin 11381  cn 12162  2c2 12217  0cn0 12418  cz 12505  cdvds 16198   gcd cgcd 16440  cprime 16617  FermatNocfmtno 47501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-prod 15846  df-dvds 16199  df-gcd 16441  df-prm 16618  df-fmtno 47502
This theorem is referenced by:  goldbachth  47521
  Copyright terms: Public domain W3C validator