Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  goldbachthlem2 Structured version   Visualization version   GIF version

Theorem goldbachthlem2 47527
Description: Lemma 2 for goldbachth 47528. (Contributed by AV, 1-Aug-2021.)
Assertion
Ref Expression
goldbachthlem2 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1)

Proof of Theorem goldbachthlem2
StepHypRef Expression
1 fmtnonn 47512 . . . . . 6 (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) ∈ ℕ)
21nnzd 12620 . . . . 5 (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) ∈ ℤ)
3 fmtnonn 47512 . . . . . 6 (𝑀 ∈ ℕ0 → (FermatNo‘𝑀) ∈ ℕ)
43nnzd 12620 . . . . 5 (𝑀 ∈ ℕ0 → (FermatNo‘𝑀) ∈ ℤ)
52, 4anim12ci 614 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → ((FermatNo‘𝑀) ∈ ℤ ∧ (FermatNo‘𝑁) ∈ ℤ))
653adant3 1132 . . 3 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((FermatNo‘𝑀) ∈ ℤ ∧ (FermatNo‘𝑁) ∈ ℤ))
7 gcddvds 16527 . . 3 (((FermatNo‘𝑀) ∈ ℤ ∧ (FermatNo‘𝑁) ∈ ℤ) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑀) ∧ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑁)))
86, 7syl 17 . 2 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑀) ∧ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑁)))
9 goldbachthlem1 47526 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → (FermatNo‘𝑀) ∥ ((FermatNo‘𝑁) − 2))
10 gcdcl 16530 . . . . . . 7 (((FermatNo‘𝑀) ∈ ℤ ∧ (FermatNo‘𝑁) ∈ ℤ) → ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∈ ℕ0)
116, 10syl 17 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∈ ℕ0)
1211nn0zd 12619 . . . . 5 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∈ ℤ)
1343ad2ant2 1134 . . . . 5 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → (FermatNo‘𝑀) ∈ ℤ)
14 2z 12629 . . . . . . . 8 2 ∈ ℤ
1514a1i 11 . . . . . . 7 (𝑁 ∈ ℕ0 → 2 ∈ ℤ)
162, 15zsubcld 12707 . . . . . 6 (𝑁 ∈ ℕ0 → ((FermatNo‘𝑁) − 2) ∈ ℤ)
17163ad2ant1 1133 . . . . 5 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((FermatNo‘𝑁) − 2) ∈ ℤ)
18 dvdstr 16318 . . . . 5 ((((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∈ ℤ ∧ (FermatNo‘𝑀) ∈ ℤ ∧ ((FermatNo‘𝑁) − 2) ∈ ℤ) → ((((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑀) ∧ (FermatNo‘𝑀) ∥ ((FermatNo‘𝑁) − 2)) → ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ ((FermatNo‘𝑁) − 2)))
1912, 13, 17, 18syl3anc 1373 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑀) ∧ (FermatNo‘𝑀) ∥ ((FermatNo‘𝑁) − 2)) → ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ ((FermatNo‘𝑁) − 2)))
209, 19mpan2d 694 . . 3 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑀) → ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ ((FermatNo‘𝑁) − 2)))
2123ad2ant1 1133 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → (FermatNo‘𝑁) ∈ ℤ)
22 dvds2sub 16315 . . . . . 6 ((((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∈ ℤ ∧ (FermatNo‘𝑁) ∈ ℤ ∧ ((FermatNo‘𝑁) − 2) ∈ ℤ) → ((((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑁) ∧ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ ((FermatNo‘𝑁) − 2)) → ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ ((FermatNo‘𝑁) − ((FermatNo‘𝑁) − 2))))
2312, 21, 17, 22syl3anc 1373 . . . . 5 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑁) ∧ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ ((FermatNo‘𝑁) − 2)) → ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ ((FermatNo‘𝑁) − ((FermatNo‘𝑁) − 2))))
2423ancomsd 465 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ ((FermatNo‘𝑁) − 2) ∧ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑁)) → ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ ((FermatNo‘𝑁) − ((FermatNo‘𝑁) − 2))))
251nncnd 12261 . . . . . . . 8 (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) ∈ ℂ)
26253ad2ant1 1133 . . . . . . 7 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → (FermatNo‘𝑁) ∈ ℂ)
27 2cnd 12323 . . . . . . 7 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → 2 ∈ ℂ)
2826, 27nncand 11604 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((FermatNo‘𝑁) − ((FermatNo‘𝑁) − 2)) = 2)
2928breq2d 5136 . . . . 5 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ ((FermatNo‘𝑁) − ((FermatNo‘𝑁) − 2)) ↔ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ 2))
30 2prm 16716 . . . . . . 7 2 ∈ ℙ
311, 3anim12ci 614 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → ((FermatNo‘𝑀) ∈ ℕ ∧ (FermatNo‘𝑁) ∈ ℕ))
32313adant3 1132 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((FermatNo‘𝑀) ∈ ℕ ∧ (FermatNo‘𝑁) ∈ ℕ))
33 gcdnncl 16531 . . . . . . . 8 (((FermatNo‘𝑀) ∈ ℕ ∧ (FermatNo‘𝑁) ∈ ℕ) → ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∈ ℕ)
3432, 33syl 17 . . . . . . 7 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∈ ℕ)
35 dvdsprime 16711 . . . . . . 7 ((2 ∈ ℙ ∧ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∈ ℕ) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ 2 ↔ (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 2 ∨ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 1)))
3630, 34, 35sylancr 587 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ 2 ↔ (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 2 ∨ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 1)))
375, 7syl 17 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑀) ∧ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑁)))
38 breq1 5127 . . . . . . . . . . . . . 14 (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 2 → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑁) ↔ 2 ∥ (FermatNo‘𝑁)))
3938adantl 481 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 2) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑁) ↔ 2 ∥ (FermatNo‘𝑁)))
40 fmtnoodd 47514 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0 → ¬ 2 ∥ (FermatNo‘𝑁))
4140pm2.21d 121 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (2 ∥ (FermatNo‘𝑁) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1))
4241ad2antrr 726 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 2) → (2 ∥ (FermatNo‘𝑁) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1))
4339, 42sylbid 240 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 2) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑁) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1))
4443ex 412 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 2 → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑁) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1)))
4544com23 86 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑁) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 2 → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1)))
4645adantld 490 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → ((((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑀) ∧ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑁)) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 2 → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1)))
4737, 46mpd 15 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 2 → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1))
48473adant3 1132 . . . . . . 7 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 2 → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1))
49 gcdcom 16537 . . . . . . . . . 10 (((FermatNo‘𝑀) ∈ ℤ ∧ (FermatNo‘𝑁) ∈ ℤ) → ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)))
506, 49syl 17 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)))
5150eqeq1d 2738 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 1 ↔ ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1))
5251biimpd 229 . . . . . . 7 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 1 → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1))
5348, 52jaod 859 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 2 ∨ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 1) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1))
5436, 53sylbid 240 . . . . 5 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ 2 → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1))
5529, 54sylbid 240 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ ((FermatNo‘𝑁) − ((FermatNo‘𝑁) − 2)) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1))
5624, 55syld 47 . . 3 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ ((FermatNo‘𝑁) − 2) ∧ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑁)) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1))
5720, 56syland 603 . 2 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑀) ∧ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑁)) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1))
588, 57mpd 15 1 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5124  cfv 6536  (class class class)co 7410  cc 11132  1c1 11135   < clt 11274  cmin 11471  cn 12245  2c2 12300  0cn0 12506  cz 12593  cdvds 16277   gcd cgcd 16518  cprime 16695  FermatNocfmtno 47508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-fz 13530  df-fzo 13677  df-seq 14025  df-exp 14085  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-prod 15925  df-dvds 16278  df-gcd 16519  df-prm 16696  df-fmtno 47509
This theorem is referenced by:  goldbachth  47528
  Copyright terms: Public domain W3C validator