Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  goldbachthlem2 Structured version   Visualization version   GIF version

Theorem goldbachthlem2 43585
Description: Lemma 2 for goldbachth 43586. (Contributed by AV, 1-Aug-2021.)
Assertion
Ref Expression
goldbachthlem2 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1)

Proof of Theorem goldbachthlem2
StepHypRef Expression
1 fmtnonn 43570 . . . . . 6 (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) ∈ ℕ)
21nnzd 12074 . . . . 5 (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) ∈ ℤ)
3 fmtnonn 43570 . . . . . 6 (𝑀 ∈ ℕ0 → (FermatNo‘𝑀) ∈ ℕ)
43nnzd 12074 . . . . 5 (𝑀 ∈ ℕ0 → (FermatNo‘𝑀) ∈ ℤ)
52, 4anim12ci 613 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → ((FermatNo‘𝑀) ∈ ℤ ∧ (FermatNo‘𝑁) ∈ ℤ))
653adant3 1124 . . 3 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((FermatNo‘𝑀) ∈ ℤ ∧ (FermatNo‘𝑁) ∈ ℤ))
7 gcddvds 15840 . . 3 (((FermatNo‘𝑀) ∈ ℤ ∧ (FermatNo‘𝑁) ∈ ℤ) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑀) ∧ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑁)))
86, 7syl 17 . 2 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑀) ∧ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑁)))
9 goldbachthlem1 43584 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → (FermatNo‘𝑀) ∥ ((FermatNo‘𝑁) − 2))
10 gcdcl 15843 . . . . . . 7 (((FermatNo‘𝑀) ∈ ℤ ∧ (FermatNo‘𝑁) ∈ ℤ) → ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∈ ℕ0)
116, 10syl 17 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∈ ℕ0)
1211nn0zd 12073 . . . . 5 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∈ ℤ)
1343ad2ant2 1126 . . . . 5 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → (FermatNo‘𝑀) ∈ ℤ)
14 2z 12002 . . . . . . . 8 2 ∈ ℤ
1514a1i 11 . . . . . . 7 (𝑁 ∈ ℕ0 → 2 ∈ ℤ)
162, 15zsubcld 12080 . . . . . 6 (𝑁 ∈ ℕ0 → ((FermatNo‘𝑁) − 2) ∈ ℤ)
17163ad2ant1 1125 . . . . 5 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((FermatNo‘𝑁) − 2) ∈ ℤ)
18 dvdstr 15634 . . . . 5 ((((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∈ ℤ ∧ (FermatNo‘𝑀) ∈ ℤ ∧ ((FermatNo‘𝑁) − 2) ∈ ℤ) → ((((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑀) ∧ (FermatNo‘𝑀) ∥ ((FermatNo‘𝑁) − 2)) → ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ ((FermatNo‘𝑁) − 2)))
1912, 13, 17, 18syl3anc 1363 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑀) ∧ (FermatNo‘𝑀) ∥ ((FermatNo‘𝑁) − 2)) → ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ ((FermatNo‘𝑁) − 2)))
209, 19mpan2d 690 . . 3 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑀) → ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ ((FermatNo‘𝑁) − 2)))
2123ad2ant1 1125 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → (FermatNo‘𝑁) ∈ ℤ)
22 dvds2sub 15632 . . . . . 6 ((((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∈ ℤ ∧ (FermatNo‘𝑁) ∈ ℤ ∧ ((FermatNo‘𝑁) − 2) ∈ ℤ) → ((((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑁) ∧ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ ((FermatNo‘𝑁) − 2)) → ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ ((FermatNo‘𝑁) − ((FermatNo‘𝑁) − 2))))
2312, 21, 17, 22syl3anc 1363 . . . . 5 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑁) ∧ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ ((FermatNo‘𝑁) − 2)) → ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ ((FermatNo‘𝑁) − ((FermatNo‘𝑁) − 2))))
2423ancomsd 466 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ ((FermatNo‘𝑁) − 2) ∧ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑁)) → ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ ((FermatNo‘𝑁) − ((FermatNo‘𝑁) − 2))))
251nncnd 11642 . . . . . . . 8 (𝑁 ∈ ℕ0 → (FermatNo‘𝑁) ∈ ℂ)
26253ad2ant1 1125 . . . . . . 7 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → (FermatNo‘𝑁) ∈ ℂ)
27 2cnd 11703 . . . . . . 7 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → 2 ∈ ℂ)
2826, 27nncand 10990 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((FermatNo‘𝑁) − ((FermatNo‘𝑁) − 2)) = 2)
2928breq2d 5069 . . . . 5 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ ((FermatNo‘𝑁) − ((FermatNo‘𝑁) − 2)) ↔ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ 2))
30 2prm 16024 . . . . . . 7 2 ∈ ℙ
311, 3anim12ci 613 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → ((FermatNo‘𝑀) ∈ ℕ ∧ (FermatNo‘𝑁) ∈ ℕ))
32313adant3 1124 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((FermatNo‘𝑀) ∈ ℕ ∧ (FermatNo‘𝑁) ∈ ℕ))
33 gcdnncl 15844 . . . . . . . 8 (((FermatNo‘𝑀) ∈ ℕ ∧ (FermatNo‘𝑁) ∈ ℕ) → ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∈ ℕ)
3432, 33syl 17 . . . . . . 7 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∈ ℕ)
35 dvdsprime 16019 . . . . . . 7 ((2 ∈ ℙ ∧ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∈ ℕ) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ 2 ↔ (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 2 ∨ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 1)))
3630, 34, 35sylancr 587 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ 2 ↔ (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 2 ∨ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 1)))
375, 7syl 17 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑀) ∧ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑁)))
38 breq1 5060 . . . . . . . . . . . . . 14 (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 2 → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑁) ↔ 2 ∥ (FermatNo‘𝑁)))
3938adantl 482 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 2) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑁) ↔ 2 ∥ (FermatNo‘𝑁)))
40 fmtnoodd 43572 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0 → ¬ 2 ∥ (FermatNo‘𝑁))
4140pm2.21d 121 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (2 ∥ (FermatNo‘𝑁) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1))
4241ad2antrr 722 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 2) → (2 ∥ (FermatNo‘𝑁) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1))
4339, 42sylbid 241 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) ∧ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 2) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑁) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1))
4443ex 413 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 2 → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑁) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1)))
4544com23 86 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑁) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 2 → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1)))
4645adantld 491 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → ((((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑀) ∧ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑁)) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 2 → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1)))
4737, 46mpd 15 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 2 → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1))
48473adant3 1124 . . . . . . 7 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 2 → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1))
49 gcdcom 15850 . . . . . . . . . 10 (((FermatNo‘𝑀) ∈ ℤ ∧ (FermatNo‘𝑁) ∈ ℤ) → ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)))
506, 49syl 17 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)))
5150eqeq1d 2820 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 1 ↔ ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1))
5251biimpd 230 . . . . . . 7 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 1 → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1))
5348, 52jaod 853 . . . . . 6 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 2 ∨ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) = 1) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1))
5436, 53sylbid 241 . . . . 5 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ 2 → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1))
5529, 54sylbid 241 . . . 4 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → (((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ ((FermatNo‘𝑁) − ((FermatNo‘𝑁) − 2)) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1))
5624, 55syld 47 . . 3 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ ((FermatNo‘𝑁) − 2) ∧ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑁)) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1))
5720, 56syland 602 . 2 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑀) ∧ ((FermatNo‘𝑀) gcd (FermatNo‘𝑁)) ∥ (FermatNo‘𝑁)) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1))
588, 57mpd 15 1 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑀 < 𝑁) → ((FermatNo‘𝑁) gcd (FermatNo‘𝑀)) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  wo 841  w3a 1079   = wceq 1528  wcel 2105   class class class wbr 5057  cfv 6348  (class class class)co 7145  cc 10523  1c1 10526   < clt 10663  cmin 10858  cn 11626  2c2 11680  0cn0 11885  cz 11969  cdvds 15595   gcd cgcd 15831  cprime 16003  FermatNocfmtno 43566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-oadd 8095  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12881  df-fzo 13022  df-seq 13358  df-exp 13418  df-hash 13679  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-clim 14833  df-prod 15248  df-dvds 15596  df-gcd 15832  df-prm 16004  df-fmtno 43567
This theorem is referenced by:  goldbachth  43586
  Copyright terms: Public domain W3C validator