Step | Hyp | Ref
| Expression |
1 | | poimir.0 |
. . 3
⊢ (𝜑 → 𝑁 ∈ ℕ) |
2 | | poimir.i |
. . 3
⊢ 𝐼 = ((0[,]1) ↑m
(1...𝑁)) |
3 | | poimir.r |
. . 3
⊢ 𝑅 =
(∏t‘((1...𝑁) × {(topGen‘ran
(,))})) |
4 | | poimir.1 |
. . 3
⊢ (𝜑 → 𝐹 ∈ ((𝑅 ↾t 𝐼) Cn 𝑅)) |
5 | | poimir.2 |
. . 3
⊢ ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑧 ∈ 𝐼 ∧ (𝑧‘𝑛) = 0)) → ((𝐹‘𝑧)‘𝑛) ≤ 0) |
6 | | poimir.3 |
. . 3
⊢ ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑧 ∈ 𝐼 ∧ (𝑧‘𝑛) = 1)) → 0 ≤ ((𝐹‘𝑧)‘𝑛)) |
7 | 1, 2, 3, 4, 5, 6 | poimirlem32 35455 |
. 2
⊢ (𝜑 → ∃𝑐 ∈ 𝐼 ∀𝑛 ∈ (1...𝑁)∀𝑣 ∈ (𝑅 ↾t 𝐼)(𝑐 ∈ 𝑣 → ∀𝑟 ∈ { ≤ , ◡ ≤ }∃𝑧 ∈ 𝑣 0𝑟((𝐹‘𝑧)‘𝑛))) |
8 | | ovex 7206 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(1...𝑁) ∈
V |
9 | | retopon 23519 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(topGen‘ran (,)) ∈ (TopOn‘ℝ) |
10 | 3 | pttoponconst 22351 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((1...𝑁) ∈ V
∧ (topGen‘ran (,)) ∈ (TopOn‘ℝ)) → 𝑅 ∈ (TopOn‘(ℝ
↑m (1...𝑁)))) |
11 | 8, 9, 10 | mp2an 692 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑅 ∈ (TopOn‘(ℝ
↑m (1...𝑁))) |
12 | 11 | topontopi 21669 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑅 ∈ Top |
13 | | reex 10709 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ℝ
∈ V |
14 | | unitssre 12976 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (0[,]1)
⊆ ℝ |
15 | | mapss 8502 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((ℝ
∈ V ∧ (0[,]1) ⊆ ℝ) → ((0[,]1) ↑m
(1...𝑁)) ⊆ (ℝ
↑m (1...𝑁))) |
16 | 13, 14, 15 | mp2an 692 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((0[,]1)
↑m (1...𝑁))
⊆ (ℝ ↑m (1...𝑁)) |
17 | 2, 16 | eqsstri 3912 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝐼 ⊆ (ℝ
↑m (1...𝑁)) |
18 | 11 | toponunii 21670 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (ℝ
↑m (1...𝑁))
= ∪ 𝑅 |
19 | 18 | restuni 21916 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑅 ∈ Top ∧ 𝐼 ⊆ (ℝ
↑m (1...𝑁))) → 𝐼 = ∪ (𝑅 ↾t 𝐼)) |
20 | 12, 17, 19 | mp2an 692 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝐼 = ∪
(𝑅 ↾t
𝐼) |
21 | 20, 18 | cnf 22000 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐹 ∈ ((𝑅 ↾t 𝐼) Cn 𝑅) → 𝐹:𝐼⟶(ℝ ↑m
(1...𝑁))) |
22 | 4, 21 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐹:𝐼⟶(ℝ ↑m
(1...𝑁))) |
23 | 22 | ffvelrnda 6864 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐼) → (𝐹‘𝑐) ∈ (ℝ ↑m
(1...𝑁))) |
24 | | elmapi 8462 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹‘𝑐) ∈ (ℝ ↑m
(1...𝑁)) → (𝐹‘𝑐):(1...𝑁)⟶ℝ) |
25 | 23, 24 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐼) → (𝐹‘𝑐):(1...𝑁)⟶ℝ) |
26 | 25 | ffvelrnda 6864 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) → ((𝐹‘𝑐)‘𝑛) ∈ ℝ) |
27 | | recn 10708 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐹‘𝑐)‘𝑛) ∈ ℝ → ((𝐹‘𝑐)‘𝑛) ∈ ℂ) |
28 | | absrpcl 14741 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹‘𝑐)‘𝑛) ∈ ℂ ∧ ((𝐹‘𝑐)‘𝑛) ≠ 0) → (abs‘((𝐹‘𝑐)‘𝑛)) ∈
ℝ+) |
29 | 28 | ex 416 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐹‘𝑐)‘𝑛) ∈ ℂ → (((𝐹‘𝑐)‘𝑛) ≠ 0 → (abs‘((𝐹‘𝑐)‘𝑛)) ∈
ℝ+)) |
30 | 27, 29 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐹‘𝑐)‘𝑛) ∈ ℝ → (((𝐹‘𝑐)‘𝑛) ≠ 0 → (abs‘((𝐹‘𝑐)‘𝑛)) ∈
ℝ+)) |
31 | | ltsubrp 12511 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹‘𝑐)‘𝑛) ∈ ℝ ∧ (abs‘((𝐹‘𝑐)‘𝑛)) ∈ ℝ+) →
(((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛))) < ((𝐹‘𝑐)‘𝑛)) |
32 | | ltaddrp 12512 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹‘𝑐)‘𝑛) ∈ ℝ ∧ (abs‘((𝐹‘𝑐)‘𝑛)) ∈ ℝ+) → ((𝐹‘𝑐)‘𝑛) < (((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛)))) |
33 | 31, 32 | jca 515 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐹‘𝑐)‘𝑛) ∈ ℝ ∧ (abs‘((𝐹‘𝑐)‘𝑛)) ∈ ℝ+) →
((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛))) < ((𝐹‘𝑐)‘𝑛) ∧ ((𝐹‘𝑐)‘𝑛) < (((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛))))) |
34 | 33 | ex 416 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐹‘𝑐)‘𝑛) ∈ ℝ → ((abs‘((𝐹‘𝑐)‘𝑛)) ∈ ℝ+ →
((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛))) < ((𝐹‘𝑐)‘𝑛) ∧ ((𝐹‘𝑐)‘𝑛) < (((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛)))))) |
35 | 30, 34 | syld 47 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹‘𝑐)‘𝑛) ∈ ℝ → (((𝐹‘𝑐)‘𝑛) ≠ 0 → ((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛))) < ((𝐹‘𝑐)‘𝑛) ∧ ((𝐹‘𝑐)‘𝑛) < (((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛)))))) |
36 | 27 | abscld 14889 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐹‘𝑐)‘𝑛) ∈ ℝ → (abs‘((𝐹‘𝑐)‘𝑛)) ∈ ℝ) |
37 | | resubcl 11031 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹‘𝑐)‘𝑛) ∈ ℝ ∧ (abs‘((𝐹‘𝑐)‘𝑛)) ∈ ℝ) → (((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛))) ∈ ℝ) |
38 | 36, 37 | mpdan 687 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐹‘𝑐)‘𝑛) ∈ ℝ → (((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛))) ∈ ℝ) |
39 | 38 | rexrd 10772 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐹‘𝑐)‘𝑛) ∈ ℝ → (((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛))) ∈
ℝ*) |
40 | | readdcl 10701 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹‘𝑐)‘𝑛) ∈ ℝ ∧ (abs‘((𝐹‘𝑐)‘𝑛)) ∈ ℝ) → (((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛))) ∈ ℝ) |
41 | 36, 40 | mpdan 687 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐹‘𝑐)‘𝑛) ∈ ℝ → (((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛))) ∈ ℝ) |
42 | 41 | rexrd 10772 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐹‘𝑐)‘𝑛) ∈ ℝ → (((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛))) ∈
ℝ*) |
43 | | rexr 10768 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐹‘𝑐)‘𝑛) ∈ ℝ → ((𝐹‘𝑐)‘𝑛) ∈
ℝ*) |
44 | | elioo5 12881 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛))) ∈ ℝ* ∧ (((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛))) ∈ ℝ* ∧ ((𝐹‘𝑐)‘𝑛) ∈ ℝ*) → (((𝐹‘𝑐)‘𝑛) ∈ ((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛)))(,)(((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛)))) ↔ ((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛))) < ((𝐹‘𝑐)‘𝑛) ∧ ((𝐹‘𝑐)‘𝑛) < (((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛)))))) |
45 | 39, 42, 43, 44 | syl3anc 1372 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹‘𝑐)‘𝑛) ∈ ℝ → (((𝐹‘𝑐)‘𝑛) ∈ ((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛)))(,)(((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛)))) ↔ ((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛))) < ((𝐹‘𝑐)‘𝑛) ∧ ((𝐹‘𝑐)‘𝑛) < (((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛)))))) |
46 | 35, 45 | sylibrd 262 |
. . . . . . . . . . . . . 14
⊢ (((𝐹‘𝑐)‘𝑛) ∈ ℝ → (((𝐹‘𝑐)‘𝑛) ≠ 0 → ((𝐹‘𝑐)‘𝑛) ∈ ((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛)))(,)(((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛)))))) |
47 | 26, 46 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) → (((𝐹‘𝑐)‘𝑛) ≠ 0 → ((𝐹‘𝑐)‘𝑛) ∈ ((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛)))(,)(((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛)))))) |
48 | | fveq2 6677 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑐 → (𝐹‘𝑥) = (𝐹‘𝑐)) |
49 | 48 | fveq1d 6679 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑐 → ((𝐹‘𝑥)‘𝑛) = ((𝐹‘𝑐)‘𝑛)) |
50 | | eqid 2739 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛)) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛)) |
51 | | fvex 6690 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹‘𝑐)‘𝑛) ∈ V |
52 | 49, 50, 51 | fvmpt 6778 |
. . . . . . . . . . . . . . 15
⊢ (𝑐 ∈ 𝐼 → ((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛))‘𝑐) = ((𝐹‘𝑐)‘𝑛)) |
53 | 52 | eleq1d 2818 |
. . . . . . . . . . . . . 14
⊢ (𝑐 ∈ 𝐼 → (((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛))‘𝑐) ∈ ((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛)))(,)(((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛)))) ↔ ((𝐹‘𝑐)‘𝑛) ∈ ((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛)))(,)(((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛)))))) |
54 | 53 | ad2antlr 727 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) → (((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛))‘𝑐) ∈ ((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛)))(,)(((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛)))) ↔ ((𝐹‘𝑐)‘𝑛) ∈ ((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛)))(,)(((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛)))))) |
55 | 47, 54 | sylibrd 262 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) → (((𝐹‘𝑐)‘𝑛) ≠ 0 → ((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛))‘𝑐) ∈ ((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛)))(,)(((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛)))))) |
56 | | iooretop 23521 |
. . . . . . . . . . . . 13
⊢ ((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛)))(,)(((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛)))) ∈ (topGen‘ran
(,)) |
57 | | resttopon 21915 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑅 ∈ (TopOn‘(ℝ
↑m (1...𝑁))) ∧ 𝐼 ⊆ (ℝ ↑m
(1...𝑁))) → (𝑅 ↾t 𝐼) ∈ (TopOn‘𝐼)) |
58 | 11, 17, 57 | mp2an 692 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑅 ↾t 𝐼) ∈ (TopOn‘𝐼) |
59 | 58 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → (𝑅 ↾t 𝐼) ∈ (TopOn‘𝐼)) |
60 | 22 | feqmptd 6740 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐼 ↦ (𝐹‘𝑥))) |
61 | 60, 4 | eqeltrrd 2835 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ (𝐹‘𝑥)) ∈ ((𝑅 ↾t 𝐼) Cn 𝑅)) |
62 | 61 | adantr 484 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → (𝑥 ∈ 𝐼 ↦ (𝐹‘𝑥)) ∈ ((𝑅 ↾t 𝐼) Cn 𝑅)) |
63 | 11 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → 𝑅 ∈ (TopOn‘(ℝ
↑m (1...𝑁)))) |
64 | | retop 23517 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(topGen‘ran (,)) ∈ Top |
65 | 64 | fconst6 6569 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((1...𝑁) ×
{(topGen‘ran (,))}):(1...𝑁)⟶Top |
66 | 18, 3 | ptpjcn 22365 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((1...𝑁) ∈ V
∧ ((1...𝑁) ×
{(topGen‘ran (,))}):(1...𝑁)⟶Top ∧ 𝑛 ∈ (1...𝑁)) → (𝑧 ∈ (ℝ ↑m
(1...𝑁)) ↦ (𝑧‘𝑛)) ∈ (𝑅 Cn (((1...𝑁) × {(topGen‘ran
(,))})‘𝑛))) |
67 | 8, 65, 66 | mp3an12 1452 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 ∈ (1...𝑁) → (𝑧 ∈ (ℝ ↑m
(1...𝑁)) ↦ (𝑧‘𝑛)) ∈ (𝑅 Cn (((1...𝑁) × {(topGen‘ran
(,))})‘𝑛))) |
68 | | fvex 6690 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(topGen‘ran (,)) ∈ V |
69 | 68 | fvconst2 6979 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 ∈ (1...𝑁) → (((1...𝑁) × {(topGen‘ran
(,))})‘𝑛) =
(topGen‘ran (,))) |
70 | 69 | oveq2d 7189 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 ∈ (1...𝑁) → (𝑅 Cn (((1...𝑁) × {(topGen‘ran
(,))})‘𝑛)) = (𝑅 Cn (topGen‘ran
(,)))) |
71 | 67, 70 | eleqtrd 2836 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 ∈ (1...𝑁) → (𝑧 ∈ (ℝ ↑m
(1...𝑁)) ↦ (𝑧‘𝑛)) ∈ (𝑅 Cn (topGen‘ran
(,)))) |
72 | 71 | adantl 485 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → (𝑧 ∈ (ℝ ↑m
(1...𝑁)) ↦ (𝑧‘𝑛)) ∈ (𝑅 Cn (topGen‘ran
(,)))) |
73 | | fveq1 6676 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = (𝐹‘𝑥) → (𝑧‘𝑛) = ((𝐹‘𝑥)‘𝑛)) |
74 | 59, 62, 63, 72, 73 | cnmpt11 22417 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑛 ∈ (1...𝑁)) → (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛)) ∈ ((𝑅 ↾t 𝐼) Cn (topGen‘ran
(,)))) |
75 | 20 | cncnpi 22032 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛)) ∈ ((𝑅 ↾t 𝐼) Cn (topGen‘ran (,))) ∧ 𝑐 ∈ 𝐼) → (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛)) ∈ (((𝑅 ↾t 𝐼) CnP (topGen‘ran (,)))‘𝑐)) |
76 | 74, 75 | sylan 583 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑐 ∈ 𝐼) → (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛)) ∈ (((𝑅 ↾t 𝐼) CnP (topGen‘ran (,)))‘𝑐)) |
77 | 76 | an32s 652 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) → (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛)) ∈ (((𝑅 ↾t 𝐼) CnP (topGen‘ran (,)))‘𝑐)) |
78 | | iscnp 21991 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑅 ↾t 𝐼) ∈ (TopOn‘𝐼) ∧ (topGen‘ran (,))
∈ (TopOn‘ℝ) ∧ 𝑐 ∈ 𝐼) → ((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛)) ∈ (((𝑅 ↾t 𝐼) CnP (topGen‘ran (,)))‘𝑐) ↔ ((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛)):𝐼⟶ℝ ∧ ∀𝑧 ∈ (topGen‘ran
(,))(((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛))‘𝑐) ∈ 𝑧 → ∃𝑣 ∈ (𝑅 ↾t 𝐼)(𝑐 ∈ 𝑣 ∧ ((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛)) “ 𝑣) ⊆ 𝑧))))) |
79 | 58, 9, 78 | mp3an12 1452 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐 ∈ 𝐼 → ((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛)) ∈ (((𝑅 ↾t 𝐼) CnP (topGen‘ran (,)))‘𝑐) ↔ ((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛)):𝐼⟶ℝ ∧ ∀𝑧 ∈ (topGen‘ran
(,))(((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛))‘𝑐) ∈ 𝑧 → ∃𝑣 ∈ (𝑅 ↾t 𝐼)(𝑐 ∈ 𝑣 ∧ ((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛)) “ 𝑣) ⊆ 𝑧))))) |
80 | 79 | ad2antlr 727 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) → ((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛)) ∈ (((𝑅 ↾t 𝐼) CnP (topGen‘ran (,)))‘𝑐) ↔ ((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛)):𝐼⟶ℝ ∧ ∀𝑧 ∈ (topGen‘ran
(,))(((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛))‘𝑐) ∈ 𝑧 → ∃𝑣 ∈ (𝑅 ↾t 𝐼)(𝑐 ∈ 𝑣 ∧ ((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛)) “ 𝑣) ⊆ 𝑧))))) |
81 | 77, 80 | mpbid 235 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) → ((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛)):𝐼⟶ℝ ∧ ∀𝑧 ∈ (topGen‘ran
(,))(((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛))‘𝑐) ∈ 𝑧 → ∃𝑣 ∈ (𝑅 ↾t 𝐼)(𝑐 ∈ 𝑣 ∧ ((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛)) “ 𝑣) ⊆ 𝑧)))) |
82 | 81 | simprd 499 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) → ∀𝑧 ∈ (topGen‘ran (,))(((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛))‘𝑐) ∈ 𝑧 → ∃𝑣 ∈ (𝑅 ↾t 𝐼)(𝑐 ∈ 𝑣 ∧ ((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛)) “ 𝑣) ⊆ 𝑧))) |
83 | | eleq2 2822 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = ((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛)))(,)(((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛)))) → (((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛))‘𝑐) ∈ 𝑧 ↔ ((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛))‘𝑐) ∈ ((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛)))(,)(((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛)))))) |
84 | | sseq2 3904 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = ((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛)))(,)(((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛)))) → (((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛)) “ 𝑣) ⊆ 𝑧 ↔ ((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛)))(,)(((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛)))))) |
85 | 84 | anbi2d 632 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = ((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛)))(,)(((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛)))) → ((𝑐 ∈ 𝑣 ∧ ((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛)) “ 𝑣) ⊆ 𝑧) ↔ (𝑐 ∈ 𝑣 ∧ ((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛)))(,)(((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛))))))) |
86 | 85 | rexbidv 3208 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = ((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛)))(,)(((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛)))) → (∃𝑣 ∈ (𝑅 ↾t 𝐼)(𝑐 ∈ 𝑣 ∧ ((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛)) “ 𝑣) ⊆ 𝑧) ↔ ∃𝑣 ∈ (𝑅 ↾t 𝐼)(𝑐 ∈ 𝑣 ∧ ((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛)))(,)(((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛))))))) |
87 | 83, 86 | imbi12d 348 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = ((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛)))(,)(((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛)))) → ((((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛))‘𝑐) ∈ 𝑧 → ∃𝑣 ∈ (𝑅 ↾t 𝐼)(𝑐 ∈ 𝑣 ∧ ((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛)) “ 𝑣) ⊆ 𝑧)) ↔ (((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛))‘𝑐) ∈ ((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛)))(,)(((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛)))) → ∃𝑣 ∈ (𝑅 ↾t 𝐼)(𝑐 ∈ 𝑣 ∧ ((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛)))(,)(((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛)))))))) |
88 | 87 | rspcv 3522 |
. . . . . . . . . . . . 13
⊢
(((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛)))(,)(((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛)))) ∈ (topGen‘ran (,)) →
(∀𝑧 ∈
(topGen‘ran (,))(((𝑥
∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛))‘𝑐) ∈ 𝑧 → ∃𝑣 ∈ (𝑅 ↾t 𝐼)(𝑐 ∈ 𝑣 ∧ ((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛)) “ 𝑣) ⊆ 𝑧)) → (((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛))‘𝑐) ∈ ((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛)))(,)(((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛)))) → ∃𝑣 ∈ (𝑅 ↾t 𝐼)(𝑐 ∈ 𝑣 ∧ ((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛)))(,)(((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛)))))))) |
89 | 56, 82, 88 | mpsyl 68 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) → (((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛))‘𝑐) ∈ ((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛)))(,)(((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛)))) → ∃𝑣 ∈ (𝑅 ↾t 𝐼)(𝑐 ∈ 𝑣 ∧ ((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛)))(,)(((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛))))))) |
90 | 55, 89 | syld 47 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) → (((𝐹‘𝑐)‘𝑛) ≠ 0 → ∃𝑣 ∈ (𝑅 ↾t 𝐼)(𝑐 ∈ 𝑣 ∧ ((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛)))(,)(((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛))))))) |
91 | | 0re 10724 |
. . . . . . . . . . . 12
⊢ 0 ∈
ℝ |
92 | | letric 10821 |
. . . . . . . . . . . 12
⊢ ((((𝐹‘𝑐)‘𝑛) ∈ ℝ ∧ 0 ∈ ℝ)
→ (((𝐹‘𝑐)‘𝑛) ≤ 0 ∨ 0 ≤ ((𝐹‘𝑐)‘𝑛))) |
93 | 26, 91, 92 | sylancl 589 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) → (((𝐹‘𝑐)‘𝑛) ≤ 0 ∨ 0 ≤ ((𝐹‘𝑐)‘𝑛))) |
94 | 90, 93 | jctird 530 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) → (((𝐹‘𝑐)‘𝑛) ≠ 0 → (∃𝑣 ∈ (𝑅 ↾t 𝐼)(𝑐 ∈ 𝑣 ∧ ((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛)))(,)(((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛))))) ∧ (((𝐹‘𝑐)‘𝑛) ≤ 0 ∨ 0 ≤ ((𝐹‘𝑐)‘𝑛))))) |
95 | | r19.41v 3252 |
. . . . . . . . . . 11
⊢
(∃𝑣 ∈
(𝑅 ↾t
𝐼)((𝑐 ∈ 𝑣 ∧ ((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛)))(,)(((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛))))) ∧ (((𝐹‘𝑐)‘𝑛) ≤ 0 ∨ 0 ≤ ((𝐹‘𝑐)‘𝑛))) ↔ (∃𝑣 ∈ (𝑅 ↾t 𝐼)(𝑐 ∈ 𝑣 ∧ ((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛)))(,)(((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛))))) ∧ (((𝐹‘𝑐)‘𝑛) ≤ 0 ∨ 0 ≤ ((𝐹‘𝑐)‘𝑛)))) |
96 | | anass 472 |
. . . . . . . . . . . 12
⊢ (((𝑐 ∈ 𝑣 ∧ ((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛)))(,)(((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛))))) ∧ (((𝐹‘𝑐)‘𝑛) ≤ 0 ∨ 0 ≤ ((𝐹‘𝑐)‘𝑛))) ↔ (𝑐 ∈ 𝑣 ∧ (((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛)))(,)(((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛)))) ∧ (((𝐹‘𝑐)‘𝑛) ≤ 0 ∨ 0 ≤ ((𝐹‘𝑐)‘𝑛))))) |
97 | 96 | rexbii 3162 |
. . . . . . . . . . 11
⊢
(∃𝑣 ∈
(𝑅 ↾t
𝐼)((𝑐 ∈ 𝑣 ∧ ((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛)))(,)(((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛))))) ∧ (((𝐹‘𝑐)‘𝑛) ≤ 0 ∨ 0 ≤ ((𝐹‘𝑐)‘𝑛))) ↔ ∃𝑣 ∈ (𝑅 ↾t 𝐼)(𝑐 ∈ 𝑣 ∧ (((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛)))(,)(((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛)))) ∧ (((𝐹‘𝑐)‘𝑛) ≤ 0 ∨ 0 ≤ ((𝐹‘𝑐)‘𝑛))))) |
98 | 95, 97 | bitr3i 280 |
. . . . . . . . . 10
⊢
((∃𝑣 ∈
(𝑅 ↾t
𝐼)(𝑐 ∈ 𝑣 ∧ ((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛)))(,)(((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛))))) ∧ (((𝐹‘𝑐)‘𝑛) ≤ 0 ∨ 0 ≤ ((𝐹‘𝑐)‘𝑛))) ↔ ∃𝑣 ∈ (𝑅 ↾t 𝐼)(𝑐 ∈ 𝑣 ∧ (((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛)))(,)(((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛)))) ∧ (((𝐹‘𝑐)‘𝑛) ≤ 0 ∨ 0 ≤ ((𝐹‘𝑐)‘𝑛))))) |
99 | 94, 98 | syl6ib 254 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) → (((𝐹‘𝑐)‘𝑛) ≠ 0 → ∃𝑣 ∈ (𝑅 ↾t 𝐼)(𝑐 ∈ 𝑣 ∧ (((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛)))(,)(((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛)))) ∧ (((𝐹‘𝑐)‘𝑛) ≤ 0 ∨ 0 ≤ ((𝐹‘𝑐)‘𝑛)))))) |
100 | 58 | topontopi 21669 |
. . . . . . . . . . . . 13
⊢ (𝑅 ↾t 𝐼) ∈ Top |
101 | 20 | eltopss 21661 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ↾t 𝐼) ∈ Top ∧ 𝑣 ∈ (𝑅 ↾t 𝐼)) → 𝑣 ⊆ 𝐼) |
102 | 100, 101 | mpan 690 |
. . . . . . . . . . . 12
⊢ (𝑣 ∈ (𝑅 ↾t 𝐼) → 𝑣 ⊆ 𝐼) |
103 | | fvex 6690 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐹‘𝑥)‘𝑛) ∈ V |
104 | 103, 50 | dmmpti 6482 |
. . . . . . . . . . . . . . . . 17
⊢ dom
(𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛)) = 𝐼 |
105 | 104 | sseq2i 3907 |
. . . . . . . . . . . . . . . 16
⊢ (𝑣 ⊆ dom (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛)) ↔ 𝑣 ⊆ 𝐼) |
106 | | funmpt 6378 |
. . . . . . . . . . . . . . . . 17
⊢ Fun
(𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛)) |
107 | | funimass4 6737 |
. . . . . . . . . . . . . . . . 17
⊢ ((Fun
(𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛)) ∧ 𝑣 ⊆ dom (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛))) → (((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛)))(,)(((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛)))) ↔ ∀𝑧 ∈ 𝑣 ((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛))‘𝑧) ∈ ((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛)))(,)(((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛)))))) |
108 | 106, 107 | mpan 690 |
. . . . . . . . . . . . . . . 16
⊢ (𝑣 ⊆ dom (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛)) → (((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛)))(,)(((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛)))) ↔ ∀𝑧 ∈ 𝑣 ((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛))‘𝑧) ∈ ((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛)))(,)(((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛)))))) |
109 | 105, 108 | sylbir 238 |
. . . . . . . . . . . . . . 15
⊢ (𝑣 ⊆ 𝐼 → (((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛)))(,)(((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛)))) ↔ ∀𝑧 ∈ 𝑣 ((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛))‘𝑧) ∈ ((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛)))(,)(((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛)))))) |
110 | | ssel2 3873 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑣 ⊆ 𝐼 ∧ 𝑧 ∈ 𝑣) → 𝑧 ∈ 𝐼) |
111 | | fveq2 6677 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 𝑧 → (𝐹‘𝑥) = (𝐹‘𝑧)) |
112 | 111 | fveq1d 6679 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑧 → ((𝐹‘𝑥)‘𝑛) = ((𝐹‘𝑧)‘𝑛)) |
113 | | fvex 6690 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐹‘𝑧)‘𝑛) ∈ V |
114 | 112, 50, 113 | fvmpt 6778 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 ∈ 𝐼 → ((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛))‘𝑧) = ((𝐹‘𝑧)‘𝑛)) |
115 | 114 | eleq1d 2818 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 ∈ 𝐼 → (((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛))‘𝑧) ∈ ((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛)))(,)(((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛)))) ↔ ((𝐹‘𝑧)‘𝑛) ∈ ((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛)))(,)(((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛)))))) |
116 | | eliooord 12883 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐹‘𝑧)‘𝑛) ∈ ((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛)))(,)(((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛)))) → ((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛))) < ((𝐹‘𝑧)‘𝑛) ∧ ((𝐹‘𝑧)‘𝑛) < (((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛))))) |
117 | 115, 116 | syl6bi 256 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 ∈ 𝐼 → (((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛))‘𝑧) ∈ ((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛)))(,)(((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛)))) → ((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛))) < ((𝐹‘𝑧)‘𝑛) ∧ ((𝐹‘𝑧)‘𝑛) < (((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛)))))) |
118 | 110, 117 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑣 ⊆ 𝐼 ∧ 𝑧 ∈ 𝑣) → (((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛))‘𝑧) ∈ ((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛)))(,)(((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛)))) → ((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛))) < ((𝐹‘𝑧)‘𝑛) ∧ ((𝐹‘𝑧)‘𝑛) < (((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛)))))) |
119 | 118 | ralimdva 3092 |
. . . . . . . . . . . . . . 15
⊢ (𝑣 ⊆ 𝐼 → (∀𝑧 ∈ 𝑣 ((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛))‘𝑧) ∈ ((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛)))(,)(((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛)))) → ∀𝑧 ∈ 𝑣 ((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛))) < ((𝐹‘𝑧)‘𝑛) ∧ ((𝐹‘𝑧)‘𝑛) < (((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛)))))) |
120 | 109, 119 | sylbid 243 |
. . . . . . . . . . . . . 14
⊢ (𝑣 ⊆ 𝐼 → (((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛)))(,)(((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛)))) → ∀𝑧 ∈ 𝑣 ((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛))) < ((𝐹‘𝑧)‘𝑛) ∧ ((𝐹‘𝑧)‘𝑛) < (((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛)))))) |
121 | 120 | adantl 485 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑣 ⊆ 𝐼) → (((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛)))(,)(((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛)))) → ∀𝑧 ∈ 𝑣 ((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛))) < ((𝐹‘𝑧)‘𝑛) ∧ ((𝐹‘𝑧)‘𝑛) < (((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛)))))) |
122 | | absnid 14751 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝐹‘𝑐)‘𝑛) ∈ ℝ ∧ ((𝐹‘𝑐)‘𝑛) ≤ 0) → (abs‘((𝐹‘𝑐)‘𝑛)) = -((𝐹‘𝑐)‘𝑛)) |
123 | 122 | oveq2d 7189 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝐹‘𝑐)‘𝑛) ∈ ℝ ∧ ((𝐹‘𝑐)‘𝑛) ≤ 0) → (((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛))) = (((𝐹‘𝑐)‘𝑛) + -((𝐹‘𝑐)‘𝑛))) |
124 | 27 | negidd 11068 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝐹‘𝑐)‘𝑛) ∈ ℝ → (((𝐹‘𝑐)‘𝑛) + -((𝐹‘𝑐)‘𝑛)) = 0) |
125 | 124 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝐹‘𝑐)‘𝑛) ∈ ℝ ∧ ((𝐹‘𝑐)‘𝑛) ≤ 0) → (((𝐹‘𝑐)‘𝑛) + -((𝐹‘𝑐)‘𝑛)) = 0) |
126 | 123, 125 | eqtrd 2774 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝐹‘𝑐)‘𝑛) ∈ ℝ ∧ ((𝐹‘𝑐)‘𝑛) ≤ 0) → (((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛))) = 0) |
127 | 26, 126 | sylan 583 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ ((𝐹‘𝑐)‘𝑛) ≤ 0) → (((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛))) = 0) |
128 | 127 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ ((𝐹‘𝑐)‘𝑛) ≤ 0) ∧ 𝑧 ∈ 𝐼) → (((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛))) = 0) |
129 | 128 | breq2d 5043 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ ((𝐹‘𝑐)‘𝑛) ≤ 0) ∧ 𝑧 ∈ 𝐼) → (((𝐹‘𝑧)‘𝑛) < (((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛))) ↔ ((𝐹‘𝑧)‘𝑛) < 0)) |
130 | 22 | ffvelrnda 6864 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐼) → (𝐹‘𝑧) ∈ (ℝ ↑m
(1...𝑁))) |
131 | | elmapi 8462 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ ((𝐹‘𝑧) ∈ (ℝ ↑m
(1...𝑁)) → (𝐹‘𝑧):(1...𝑁)⟶ℝ) |
132 | 130, 131 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐼) → (𝐹‘𝑧):(1...𝑁)⟶ℝ) |
133 | 132 | ffvelrnda 6864 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑧 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) → ((𝐹‘𝑧)‘𝑛) ∈ ℝ) |
134 | 133 | an32s 652 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑧 ∈ 𝐼) → ((𝐹‘𝑧)‘𝑛) ∈ ℝ) |
135 | | 0red 10725 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑧 ∈ 𝐼) → 0 ∈ ℝ) |
136 | 134, 135 | ltnled 10868 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑧 ∈ 𝐼) → (((𝐹‘𝑧)‘𝑛) < 0 ↔ ¬ 0 ≤ ((𝐹‘𝑧)‘𝑛))) |
137 | 136 | adantllr 719 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑧 ∈ 𝐼) → (((𝐹‘𝑧)‘𝑛) < 0 ↔ ¬ 0 ≤ ((𝐹‘𝑧)‘𝑛))) |
138 | 137 | adantlr 715 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ ((𝐹‘𝑐)‘𝑛) ≤ 0) ∧ 𝑧 ∈ 𝐼) → (((𝐹‘𝑧)‘𝑛) < 0 ↔ ¬ 0 ≤ ((𝐹‘𝑧)‘𝑛))) |
139 | 129, 138 | bitrd 282 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ ((𝐹‘𝑐)‘𝑛) ≤ 0) ∧ 𝑧 ∈ 𝐼) → (((𝐹‘𝑧)‘𝑛) < (((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛))) ↔ ¬ 0 ≤ ((𝐹‘𝑧)‘𝑛))) |
140 | 139 | biimpd 232 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ ((𝐹‘𝑐)‘𝑛) ≤ 0) ∧ 𝑧 ∈ 𝐼) → (((𝐹‘𝑧)‘𝑛) < (((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛))) → ¬ 0 ≤ ((𝐹‘𝑧)‘𝑛))) |
141 | 110, 140 | sylan2 596 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ ((𝐹‘𝑐)‘𝑛) ≤ 0) ∧ (𝑣 ⊆ 𝐼 ∧ 𝑧 ∈ 𝑣)) → (((𝐹‘𝑧)‘𝑛) < (((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛))) → ¬ 0 ≤ ((𝐹‘𝑧)‘𝑛))) |
142 | 141 | anassrs 471 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ ((𝐹‘𝑐)‘𝑛) ≤ 0) ∧ 𝑣 ⊆ 𝐼) ∧ 𝑧 ∈ 𝑣) → (((𝐹‘𝑧)‘𝑛) < (((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛))) → ¬ 0 ≤ ((𝐹‘𝑧)‘𝑛))) |
143 | 142 | adantld 494 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ ((𝐹‘𝑐)‘𝑛) ≤ 0) ∧ 𝑣 ⊆ 𝐼) ∧ 𝑧 ∈ 𝑣) → (((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛))) < ((𝐹‘𝑧)‘𝑛) ∧ ((𝐹‘𝑧)‘𝑛) < (((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛)))) → ¬ 0 ≤ ((𝐹‘𝑧)‘𝑛))) |
144 | 143 | ralimdva 3092 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ ((𝐹‘𝑐)‘𝑛) ≤ 0) ∧ 𝑣 ⊆ 𝐼) → (∀𝑧 ∈ 𝑣 ((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛))) < ((𝐹‘𝑧)‘𝑛) ∧ ((𝐹‘𝑧)‘𝑛) < (((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛)))) → ∀𝑧 ∈ 𝑣 ¬ 0 ≤ ((𝐹‘𝑧)‘𝑛))) |
145 | 144 | an32s 652 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑣 ⊆ 𝐼) ∧ ((𝐹‘𝑐)‘𝑛) ≤ 0) → (∀𝑧 ∈ 𝑣 ((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛))) < ((𝐹‘𝑧)‘𝑛) ∧ ((𝐹‘𝑧)‘𝑛) < (((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛)))) → ∀𝑧 ∈ 𝑣 ¬ 0 ≤ ((𝐹‘𝑧)‘𝑛))) |
146 | 145 | impancom 455 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑣 ⊆ 𝐼) ∧ ∀𝑧 ∈ 𝑣 ((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛))) < ((𝐹‘𝑧)‘𝑛) ∧ ((𝐹‘𝑧)‘𝑛) < (((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛))))) → (((𝐹‘𝑐)‘𝑛) ≤ 0 → ∀𝑧 ∈ 𝑣 ¬ 0 ≤ ((𝐹‘𝑧)‘𝑛))) |
147 | | absid 14749 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((((𝐹‘𝑐)‘𝑛) ∈ ℝ ∧ 0 ≤ ((𝐹‘𝑐)‘𝑛)) → (abs‘((𝐹‘𝑐)‘𝑛)) = ((𝐹‘𝑐)‘𝑛)) |
148 | 147 | oveq2d 7189 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝐹‘𝑐)‘𝑛) ∈ ℝ ∧ 0 ≤ ((𝐹‘𝑐)‘𝑛)) → (((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛))) = (((𝐹‘𝑐)‘𝑛) − ((𝐹‘𝑐)‘𝑛))) |
149 | 27 | subidd 11066 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝐹‘𝑐)‘𝑛) ∈ ℝ → (((𝐹‘𝑐)‘𝑛) − ((𝐹‘𝑐)‘𝑛)) = 0) |
150 | 149 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝐹‘𝑐)‘𝑛) ∈ ℝ ∧ 0 ≤ ((𝐹‘𝑐)‘𝑛)) → (((𝐹‘𝑐)‘𝑛) − ((𝐹‘𝑐)‘𝑛)) = 0) |
151 | 148, 150 | eqtrd 2774 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝐹‘𝑐)‘𝑛) ∈ ℝ ∧ 0 ≤ ((𝐹‘𝑐)‘𝑛)) → (((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛))) = 0) |
152 | 26, 151 | sylan 583 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 0 ≤ ((𝐹‘𝑐)‘𝑛)) → (((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛))) = 0) |
153 | 152 | adantr 484 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 0 ≤ ((𝐹‘𝑐)‘𝑛)) ∧ 𝑧 ∈ 𝐼) → (((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛))) = 0) |
154 | 153 | breq1d 5041 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 0 ≤ ((𝐹‘𝑐)‘𝑛)) ∧ 𝑧 ∈ 𝐼) → ((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛))) < ((𝐹‘𝑧)‘𝑛) ↔ 0 < ((𝐹‘𝑧)‘𝑛))) |
155 | 135, 134 | ltnled 10868 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑧 ∈ 𝐼) → (0 < ((𝐹‘𝑧)‘𝑛) ↔ ¬ ((𝐹‘𝑧)‘𝑛) ≤ 0)) |
156 | 155 | adantllr 719 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑧 ∈ 𝐼) → (0 < ((𝐹‘𝑧)‘𝑛) ↔ ¬ ((𝐹‘𝑧)‘𝑛) ≤ 0)) |
157 | 156 | adantlr 715 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 0 ≤ ((𝐹‘𝑐)‘𝑛)) ∧ 𝑧 ∈ 𝐼) → (0 < ((𝐹‘𝑧)‘𝑛) ↔ ¬ ((𝐹‘𝑧)‘𝑛) ≤ 0)) |
158 | 154, 157 | bitrd 282 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 0 ≤ ((𝐹‘𝑐)‘𝑛)) ∧ 𝑧 ∈ 𝐼) → ((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛))) < ((𝐹‘𝑧)‘𝑛) ↔ ¬ ((𝐹‘𝑧)‘𝑛) ≤ 0)) |
159 | 158 | biimpd 232 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 0 ≤ ((𝐹‘𝑐)‘𝑛)) ∧ 𝑧 ∈ 𝐼) → ((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛))) < ((𝐹‘𝑧)‘𝑛) → ¬ ((𝐹‘𝑧)‘𝑛) ≤ 0)) |
160 | 110, 159 | sylan2 596 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 0 ≤ ((𝐹‘𝑐)‘𝑛)) ∧ (𝑣 ⊆ 𝐼 ∧ 𝑧 ∈ 𝑣)) → ((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛))) < ((𝐹‘𝑧)‘𝑛) → ¬ ((𝐹‘𝑧)‘𝑛) ≤ 0)) |
161 | 160 | anassrs 471 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 0 ≤ ((𝐹‘𝑐)‘𝑛)) ∧ 𝑣 ⊆ 𝐼) ∧ 𝑧 ∈ 𝑣) → ((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛))) < ((𝐹‘𝑧)‘𝑛) → ¬ ((𝐹‘𝑧)‘𝑛) ≤ 0)) |
162 | 161 | adantrd 495 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝜑 ∧ 𝑐 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 0 ≤ ((𝐹‘𝑐)‘𝑛)) ∧ 𝑣 ⊆ 𝐼) ∧ 𝑧 ∈ 𝑣) → (((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛))) < ((𝐹‘𝑧)‘𝑛) ∧ ((𝐹‘𝑧)‘𝑛) < (((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛)))) → ¬ ((𝐹‘𝑧)‘𝑛) ≤ 0)) |
163 | 162 | ralimdva 3092 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 0 ≤ ((𝐹‘𝑐)‘𝑛)) ∧ 𝑣 ⊆ 𝐼) → (∀𝑧 ∈ 𝑣 ((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛))) < ((𝐹‘𝑧)‘𝑛) ∧ ((𝐹‘𝑧)‘𝑛) < (((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛)))) → ∀𝑧 ∈ 𝑣 ¬ ((𝐹‘𝑧)‘𝑛) ≤ 0)) |
164 | 163 | an32s 652 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑣 ⊆ 𝐼) ∧ 0 ≤ ((𝐹‘𝑐)‘𝑛)) → (∀𝑧 ∈ 𝑣 ((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛))) < ((𝐹‘𝑧)‘𝑛) ∧ ((𝐹‘𝑧)‘𝑛) < (((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛)))) → ∀𝑧 ∈ 𝑣 ¬ ((𝐹‘𝑧)‘𝑛) ≤ 0)) |
165 | 164 | impancom 455 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑣 ⊆ 𝐼) ∧ ∀𝑧 ∈ 𝑣 ((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛))) < ((𝐹‘𝑧)‘𝑛) ∧ ((𝐹‘𝑧)‘𝑛) < (((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛))))) → (0 ≤ ((𝐹‘𝑐)‘𝑛) → ∀𝑧 ∈ 𝑣 ¬ ((𝐹‘𝑧)‘𝑛) ≤ 0)) |
166 | 146, 165 | orim12d 964 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑐 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑣 ⊆ 𝐼) ∧ ∀𝑧 ∈ 𝑣 ((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛))) < ((𝐹‘𝑧)‘𝑛) ∧ ((𝐹‘𝑧)‘𝑛) < (((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛))))) → ((((𝐹‘𝑐)‘𝑛) ≤ 0 ∨ 0 ≤ ((𝐹‘𝑐)‘𝑛)) → (∀𝑧 ∈ 𝑣 ¬ 0 ≤ ((𝐹‘𝑧)‘𝑛) ∨ ∀𝑧 ∈ 𝑣 ¬ ((𝐹‘𝑧)‘𝑛) ≤ 0))) |
167 | 166 | expimpd 457 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑣 ⊆ 𝐼) → ((∀𝑧 ∈ 𝑣 ((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛))) < ((𝐹‘𝑧)‘𝑛) ∧ ((𝐹‘𝑧)‘𝑛) < (((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛)))) ∧ (((𝐹‘𝑐)‘𝑛) ≤ 0 ∨ 0 ≤ ((𝐹‘𝑐)‘𝑛))) → (∀𝑧 ∈ 𝑣 ¬ 0 ≤ ((𝐹‘𝑧)‘𝑛) ∨ ∀𝑧 ∈ 𝑣 ¬ ((𝐹‘𝑧)‘𝑛) ≤ 0))) |
168 | 121, 167 | syland 606 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑣 ⊆ 𝐼) → ((((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛)))(,)(((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛)))) ∧ (((𝐹‘𝑐)‘𝑛) ≤ 0 ∨ 0 ≤ ((𝐹‘𝑐)‘𝑛))) → (∀𝑧 ∈ 𝑣 ¬ 0 ≤ ((𝐹‘𝑧)‘𝑛) ∨ ∀𝑧 ∈ 𝑣 ¬ ((𝐹‘𝑧)‘𝑛) ≤ 0))) |
169 | 102, 168 | sylan2 596 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑣 ∈ (𝑅 ↾t 𝐼)) → ((((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛)))(,)(((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛)))) ∧ (((𝐹‘𝑐)‘𝑛) ≤ 0 ∨ 0 ≤ ((𝐹‘𝑐)‘𝑛))) → (∀𝑧 ∈ 𝑣 ¬ 0 ≤ ((𝐹‘𝑧)‘𝑛) ∨ ∀𝑧 ∈ 𝑣 ¬ ((𝐹‘𝑧)‘𝑛) ≤ 0))) |
170 | 169 | anim2d 615 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑐 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑣 ∈ (𝑅 ↾t 𝐼)) → ((𝑐 ∈ 𝑣 ∧ (((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛)))(,)(((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛)))) ∧ (((𝐹‘𝑐)‘𝑛) ≤ 0 ∨ 0 ≤ ((𝐹‘𝑐)‘𝑛)))) → (𝑐 ∈ 𝑣 ∧ (∀𝑧 ∈ 𝑣 ¬ 0 ≤ ((𝐹‘𝑧)‘𝑛) ∨ ∀𝑧 ∈ 𝑣 ¬ ((𝐹‘𝑧)‘𝑛) ≤ 0)))) |
171 | 170 | reximdva 3185 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) → (∃𝑣 ∈ (𝑅 ↾t 𝐼)(𝑐 ∈ 𝑣 ∧ (((𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹‘𝑐)‘𝑛) − (abs‘((𝐹‘𝑐)‘𝑛)))(,)(((𝐹‘𝑐)‘𝑛) + (abs‘((𝐹‘𝑐)‘𝑛)))) ∧ (((𝐹‘𝑐)‘𝑛) ≤ 0 ∨ 0 ≤ ((𝐹‘𝑐)‘𝑛)))) → ∃𝑣 ∈ (𝑅 ↾t 𝐼)(𝑐 ∈ 𝑣 ∧ (∀𝑧 ∈ 𝑣 ¬ 0 ≤ ((𝐹‘𝑧)‘𝑛) ∨ ∀𝑧 ∈ 𝑣 ¬ ((𝐹‘𝑧)‘𝑛) ≤ 0)))) |
172 | 99, 171 | syld 47 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) → (((𝐹‘𝑐)‘𝑛) ≠ 0 → ∃𝑣 ∈ (𝑅 ↾t 𝐼)(𝑐 ∈ 𝑣 ∧ (∀𝑧 ∈ 𝑣 ¬ 0 ≤ ((𝐹‘𝑧)‘𝑛) ∨ ∀𝑧 ∈ 𝑣 ¬ ((𝐹‘𝑧)‘𝑛) ≤ 0)))) |
173 | | ralnex 3150 |
. . . . . . . . . . . . . 14
⊢
(∀𝑧 ∈
𝑣 ¬ 0𝑟((𝐹‘𝑧)‘𝑛) ↔ ¬ ∃𝑧 ∈ 𝑣 0𝑟((𝐹‘𝑧)‘𝑛)) |
174 | 173 | rexbii 3162 |
. . . . . . . . . . . . 13
⊢
(∃𝑟 ∈ {
≤ , ◡ ≤ }∀𝑧 ∈ 𝑣 ¬ 0𝑟((𝐹‘𝑧)‘𝑛) ↔ ∃𝑟 ∈ { ≤ , ◡ ≤ } ¬ ∃𝑧 ∈ 𝑣 0𝑟((𝐹‘𝑧)‘𝑛)) |
175 | | letsr 17956 |
. . . . . . . . . . . . . . 15
⊢ ≤
∈ TosetRel |
176 | 175 | elexi 3418 |
. . . . . . . . . . . . . 14
⊢ ≤
∈ V |
177 | 176 | cnvex 7659 |
. . . . . . . . . . . . . 14
⊢ ◡ ≤ ∈ V |
178 | | breq 5033 |
. . . . . . . . . . . . . . . 16
⊢ (𝑟 = ≤ → (0𝑟((𝐹‘𝑧)‘𝑛) ↔ 0 ≤ ((𝐹‘𝑧)‘𝑛))) |
179 | 178 | notbid 321 |
. . . . . . . . . . . . . . 15
⊢ (𝑟 = ≤ → (¬ 0𝑟((𝐹‘𝑧)‘𝑛) ↔ ¬ 0 ≤ ((𝐹‘𝑧)‘𝑛))) |
180 | 179 | ralbidv 3110 |
. . . . . . . . . . . . . 14
⊢ (𝑟 = ≤ → (∀𝑧 ∈ 𝑣 ¬ 0𝑟((𝐹‘𝑧)‘𝑛) ↔ ∀𝑧 ∈ 𝑣 ¬ 0 ≤ ((𝐹‘𝑧)‘𝑛))) |
181 | | breq 5033 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑟 = ◡ ≤ → (0𝑟((𝐹‘𝑧)‘𝑛) ↔ 0◡ ≤ ((𝐹‘𝑧)‘𝑛))) |
182 | | c0ex 10716 |
. . . . . . . . . . . . . . . . . 18
⊢ 0 ∈
V |
183 | 182, 113 | brcnv 5726 |
. . . . . . . . . . . . . . . . 17
⊢ (0◡ ≤ ((𝐹‘𝑧)‘𝑛) ↔ ((𝐹‘𝑧)‘𝑛) ≤ 0) |
184 | 181, 183 | bitrdi 290 |
. . . . . . . . . . . . . . . 16
⊢ (𝑟 = ◡ ≤ → (0𝑟((𝐹‘𝑧)‘𝑛) ↔ ((𝐹‘𝑧)‘𝑛) ≤ 0)) |
185 | 184 | notbid 321 |
. . . . . . . . . . . . . . 15
⊢ (𝑟 = ◡ ≤ → (¬ 0𝑟((𝐹‘𝑧)‘𝑛) ↔ ¬ ((𝐹‘𝑧)‘𝑛) ≤ 0)) |
186 | 185 | ralbidv 3110 |
. . . . . . . . . . . . . 14
⊢ (𝑟 = ◡ ≤ → (∀𝑧 ∈ 𝑣 ¬ 0𝑟((𝐹‘𝑧)‘𝑛) ↔ ∀𝑧 ∈ 𝑣 ¬ ((𝐹‘𝑧)‘𝑛) ≤ 0)) |
187 | 176, 177,
180, 186 | rexpr 4593 |
. . . . . . . . . . . . 13
⊢
(∃𝑟 ∈ {
≤ , ◡ ≤ }∀𝑧 ∈ 𝑣 ¬ 0𝑟((𝐹‘𝑧)‘𝑛) ↔ (∀𝑧 ∈ 𝑣 ¬ 0 ≤ ((𝐹‘𝑧)‘𝑛) ∨ ∀𝑧 ∈ 𝑣 ¬ ((𝐹‘𝑧)‘𝑛) ≤ 0)) |
188 | | rexnal 3152 |
. . . . . . . . . . . . 13
⊢
(∃𝑟 ∈ {
≤ , ◡ ≤ } ¬ ∃𝑧 ∈ 𝑣 0𝑟((𝐹‘𝑧)‘𝑛) ↔ ¬ ∀𝑟 ∈ { ≤ , ◡ ≤ }∃𝑧 ∈ 𝑣 0𝑟((𝐹‘𝑧)‘𝑛)) |
189 | 174, 187,
188 | 3bitr3i 304 |
. . . . . . . . . . . 12
⊢
((∀𝑧 ∈
𝑣 ¬ 0 ≤ ((𝐹‘𝑧)‘𝑛) ∨ ∀𝑧 ∈ 𝑣 ¬ ((𝐹‘𝑧)‘𝑛) ≤ 0) ↔ ¬ ∀𝑟 ∈ { ≤ , ◡ ≤ }∃𝑧 ∈ 𝑣 0𝑟((𝐹‘𝑧)‘𝑛)) |
190 | 189 | anbi2i 626 |
. . . . . . . . . . 11
⊢ ((𝑐 ∈ 𝑣 ∧ (∀𝑧 ∈ 𝑣 ¬ 0 ≤ ((𝐹‘𝑧)‘𝑛) ∨ ∀𝑧 ∈ 𝑣 ¬ ((𝐹‘𝑧)‘𝑛) ≤ 0)) ↔ (𝑐 ∈ 𝑣 ∧ ¬ ∀𝑟 ∈ { ≤ , ◡ ≤ }∃𝑧 ∈ 𝑣 0𝑟((𝐹‘𝑧)‘𝑛))) |
191 | | annim 407 |
. . . . . . . . . . 11
⊢ ((𝑐 ∈ 𝑣 ∧ ¬ ∀𝑟 ∈ { ≤ , ◡ ≤ }∃𝑧 ∈ 𝑣 0𝑟((𝐹‘𝑧)‘𝑛)) ↔ ¬ (𝑐 ∈ 𝑣 → ∀𝑟 ∈ { ≤ , ◡ ≤ }∃𝑧 ∈ 𝑣 0𝑟((𝐹‘𝑧)‘𝑛))) |
192 | 190, 191 | bitri 278 |
. . . . . . . . . 10
⊢ ((𝑐 ∈ 𝑣 ∧ (∀𝑧 ∈ 𝑣 ¬ 0 ≤ ((𝐹‘𝑧)‘𝑛) ∨ ∀𝑧 ∈ 𝑣 ¬ ((𝐹‘𝑧)‘𝑛) ≤ 0)) ↔ ¬ (𝑐 ∈ 𝑣 → ∀𝑟 ∈ { ≤ , ◡ ≤ }∃𝑧 ∈ 𝑣 0𝑟((𝐹‘𝑧)‘𝑛))) |
193 | 192 | rexbii 3162 |
. . . . . . . . 9
⊢
(∃𝑣 ∈
(𝑅 ↾t
𝐼)(𝑐 ∈ 𝑣 ∧ (∀𝑧 ∈ 𝑣 ¬ 0 ≤ ((𝐹‘𝑧)‘𝑛) ∨ ∀𝑧 ∈ 𝑣 ¬ ((𝐹‘𝑧)‘𝑛) ≤ 0)) ↔ ∃𝑣 ∈ (𝑅 ↾t 𝐼) ¬ (𝑐 ∈ 𝑣 → ∀𝑟 ∈ { ≤ , ◡ ≤ }∃𝑧 ∈ 𝑣 0𝑟((𝐹‘𝑧)‘𝑛))) |
194 | | rexnal 3152 |
. . . . . . . . 9
⊢
(∃𝑣 ∈
(𝑅 ↾t
𝐼) ¬ (𝑐 ∈ 𝑣 → ∀𝑟 ∈ { ≤ , ◡ ≤ }∃𝑧 ∈ 𝑣 0𝑟((𝐹‘𝑧)‘𝑛)) ↔ ¬ ∀𝑣 ∈ (𝑅 ↾t 𝐼)(𝑐 ∈ 𝑣 → ∀𝑟 ∈ { ≤ , ◡ ≤ }∃𝑧 ∈ 𝑣 0𝑟((𝐹‘𝑧)‘𝑛))) |
195 | 193, 194 | bitri 278 |
. . . . . . . 8
⊢
(∃𝑣 ∈
(𝑅 ↾t
𝐼)(𝑐 ∈ 𝑣 ∧ (∀𝑧 ∈ 𝑣 ¬ 0 ≤ ((𝐹‘𝑧)‘𝑛) ∨ ∀𝑧 ∈ 𝑣 ¬ ((𝐹‘𝑧)‘𝑛) ≤ 0)) ↔ ¬ ∀𝑣 ∈ (𝑅 ↾t 𝐼)(𝑐 ∈ 𝑣 → ∀𝑟 ∈ { ≤ , ◡ ≤ }∃𝑧 ∈ 𝑣 0𝑟((𝐹‘𝑧)‘𝑛))) |
196 | 172, 195 | syl6ib 254 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) → (((𝐹‘𝑐)‘𝑛) ≠ 0 → ¬ ∀𝑣 ∈ (𝑅 ↾t 𝐼)(𝑐 ∈ 𝑣 → ∀𝑟 ∈ { ≤ , ◡ ≤ }∃𝑧 ∈ 𝑣 0𝑟((𝐹‘𝑧)‘𝑛)))) |
197 | 196 | necon4ad 2954 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐼) ∧ 𝑛 ∈ (1...𝑁)) → (∀𝑣 ∈ (𝑅 ↾t 𝐼)(𝑐 ∈ 𝑣 → ∀𝑟 ∈ { ≤ , ◡ ≤ }∃𝑧 ∈ 𝑣 0𝑟((𝐹‘𝑧)‘𝑛)) → ((𝐹‘𝑐)‘𝑛) = 0)) |
198 | 197 | ralimdva 3092 |
. . . . 5
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐼) → (∀𝑛 ∈ (1...𝑁)∀𝑣 ∈ (𝑅 ↾t 𝐼)(𝑐 ∈ 𝑣 → ∀𝑟 ∈ { ≤ , ◡ ≤ }∃𝑧 ∈ 𝑣 0𝑟((𝐹‘𝑧)‘𝑛)) → ∀𝑛 ∈ (1...𝑁)((𝐹‘𝑐)‘𝑛) = 0)) |
199 | 25 | ffnd 6506 |
. . . . 5
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐼) → (𝐹‘𝑐) Fn (1...𝑁)) |
200 | 198, 199 | jctild 529 |
. . . 4
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐼) → (∀𝑛 ∈ (1...𝑁)∀𝑣 ∈ (𝑅 ↾t 𝐼)(𝑐 ∈ 𝑣 → ∀𝑟 ∈ { ≤ , ◡ ≤ }∃𝑧 ∈ 𝑣 0𝑟((𝐹‘𝑧)‘𝑛)) → ((𝐹‘𝑐) Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)((𝐹‘𝑐)‘𝑛) = 0))) |
201 | | fconstfv 6988 |
. . . . 5
⊢ ((𝐹‘𝑐):(1...𝑁)⟶{0} ↔ ((𝐹‘𝑐) Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)((𝐹‘𝑐)‘𝑛) = 0)) |
202 | 182 | fconst2 6980 |
. . . . 5
⊢ ((𝐹‘𝑐):(1...𝑁)⟶{0} ↔ (𝐹‘𝑐) = ((1...𝑁) × {0})) |
203 | 201, 202 | bitr3i 280 |
. . . 4
⊢ (((𝐹‘𝑐) Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)((𝐹‘𝑐)‘𝑛) = 0) ↔ (𝐹‘𝑐) = ((1...𝑁) × {0})) |
204 | 200, 203 | syl6ib 254 |
. . 3
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐼) → (∀𝑛 ∈ (1...𝑁)∀𝑣 ∈ (𝑅 ↾t 𝐼)(𝑐 ∈ 𝑣 → ∀𝑟 ∈ { ≤ , ◡ ≤ }∃𝑧 ∈ 𝑣 0𝑟((𝐹‘𝑧)‘𝑛)) → (𝐹‘𝑐) = ((1...𝑁) × {0}))) |
205 | 204 | reximdva 3185 |
. 2
⊢ (𝜑 → (∃𝑐 ∈ 𝐼 ∀𝑛 ∈ (1...𝑁)∀𝑣 ∈ (𝑅 ↾t 𝐼)(𝑐 ∈ 𝑣 → ∀𝑟 ∈ { ≤ , ◡ ≤ }∃𝑧 ∈ 𝑣 0𝑟((𝐹‘𝑧)‘𝑛)) → ∃𝑐 ∈ 𝐼 (𝐹‘𝑐) = ((1...𝑁) × {0}))) |
206 | 7, 205 | mpd 15 |
1
⊢ (𝜑 → ∃𝑐 ∈ 𝐼 (𝐹‘𝑐) = ((1...𝑁) × {0})) |