Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrntr Structured version   Visualization version   GIF version

Theorem cvrntr 39470
Description: The covers relation is not transitive. (cvntr 32270 analog.) (Contributed by NM, 18-Jun-2012.)
Hypotheses
Ref Expression
cvrntr.b 𝐵 = (Base‘𝐾)
cvrntr.c 𝐶 = ( ⋖ ‘𝐾)
Assertion
Ref Expression
cvrntr ((𝐾𝐴 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋𝐶𝑌𝑌𝐶𝑍) → ¬ 𝑋𝐶𝑍))

Proof of Theorem cvrntr
StepHypRef Expression
1 cvrntr.b . . . . 5 𝐵 = (Base‘𝐾)
2 eqid 2731 . . . . 5 (lt‘𝐾) = (lt‘𝐾)
3 cvrntr.c . . . . 5 𝐶 = ( ⋖ ‘𝐾)
41, 2, 3cvrlt 39315 . . . 4 (((𝐾𝐴𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → 𝑋(lt‘𝐾)𝑌)
54ex 412 . . 3 ((𝐾𝐴𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌𝑋(lt‘𝐾)𝑌))
653adant3r3 1185 . 2 ((𝐾𝐴 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋𝐶𝑌𝑋(lt‘𝐾)𝑌))
71, 2, 3ltcvrntr 39469 . 2 ((𝐾𝐴 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋(lt‘𝐾)𝑌𝑌𝐶𝑍) → ¬ 𝑋𝐶𝑍))
86, 7syland 603 1 ((𝐾𝐴 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋𝐶𝑌𝑌𝐶𝑍) → ¬ 𝑋𝐶𝑍))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111   class class class wbr 5091  cfv 6481  Basecbs 17120  ltcplt 18214  ccvr 39307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-iota 6437  df-fun 6483  df-fv 6489  df-covers 39311
This theorem is referenced by:  atcvr0eq  39471  lnnat  39472
  Copyright terms: Public domain W3C validator