Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrntr Structured version   Visualization version   GIF version

Theorem cvrntr 37366
Description: The covers relation is not transitive. (cvntr 30555 analog.) (Contributed by NM, 18-Jun-2012.)
Hypotheses
Ref Expression
cvrntr.b 𝐵 = (Base‘𝐾)
cvrntr.c 𝐶 = ( ⋖ ‘𝐾)
Assertion
Ref Expression
cvrntr ((𝐾𝐴 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋𝐶𝑌𝑌𝐶𝑍) → ¬ 𝑋𝐶𝑍))

Proof of Theorem cvrntr
StepHypRef Expression
1 cvrntr.b . . . . 5 𝐵 = (Base‘𝐾)
2 eqid 2738 . . . . 5 (lt‘𝐾) = (lt‘𝐾)
3 cvrntr.c . . . . 5 𝐶 = ( ⋖ ‘𝐾)
41, 2, 3cvrlt 37211 . . . 4 (((𝐾𝐴𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → 𝑋(lt‘𝐾)𝑌)
54ex 412 . . 3 ((𝐾𝐴𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌𝑋(lt‘𝐾)𝑌))
653adant3r3 1182 . 2 ((𝐾𝐴 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋𝐶𝑌𝑋(lt‘𝐾)𝑌))
71, 2, 3ltcvrntr 37365 . 2 ((𝐾𝐴 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋(lt‘𝐾)𝑌𝑌𝐶𝑍) → ¬ 𝑋𝐶𝑍))
86, 7syland 602 1 ((𝐾𝐴 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋𝐶𝑌𝑌𝐶𝑍) → ¬ 𝑋𝐶𝑍))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108   class class class wbr 5070  cfv 6418  Basecbs 16840  ltcplt 17941  ccvr 37203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-covers 37207
This theorem is referenced by:  atcvr0eq  37367  lnnat  37368
  Copyright terms: Public domain W3C validator