Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvrntr | Structured version Visualization version GIF version |
Description: The covers relation is not transitive. (cvntr 30555 analog.) (Contributed by NM, 18-Jun-2012.) |
Ref | Expression |
---|---|
cvrntr.b | ⊢ 𝐵 = (Base‘𝐾) |
cvrntr.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
Ref | Expression |
---|---|
cvrntr | ⊢ ((𝐾 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋𝐶𝑌 ∧ 𝑌𝐶𝑍) → ¬ 𝑋𝐶𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvrntr.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
2 | eqid 2738 | . . . . 5 ⊢ (lt‘𝐾) = (lt‘𝐾) | |
3 | cvrntr.c | . . . . 5 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
4 | 1, 2, 3 | cvrlt 37211 | . . . 4 ⊢ (((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋𝐶𝑌) → 𝑋(lt‘𝐾)𝑌) |
5 | 4 | ex 412 | . . 3 ⊢ ((𝐾 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐶𝑌 → 𝑋(lt‘𝐾)𝑌)) |
6 | 5 | 3adant3r3 1182 | . 2 ⊢ ((𝐾 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋𝐶𝑌 → 𝑋(lt‘𝐾)𝑌)) |
7 | 1, 2, 3 | ltcvrntr 37365 | . 2 ⊢ ((𝐾 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋(lt‘𝐾)𝑌 ∧ 𝑌𝐶𝑍) → ¬ 𝑋𝐶𝑍)) |
8 | 6, 7 | syland 602 | 1 ⊢ ((𝐾 ∈ 𝐴 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋𝐶𝑌 ∧ 𝑌𝐶𝑍) → ¬ 𝑋𝐶𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 ‘cfv 6418 Basecbs 16840 ltcplt 17941 ⋖ ccvr 37203 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-covers 37207 |
This theorem is referenced by: atcvr0eq 37367 lnnat 37368 |
Copyright terms: Public domain | W3C validator |