MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  llyidm Structured version   Visualization version   GIF version

Theorem llyidm 22991
Description: Idempotence of the "locally" predicate, i.e. being "locally 𝐴 " is a local property. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
llyidm Locally Locally 𝐴 = Locally 𝐴

Proof of Theorem llyidm
Dummy variables 𝑗 𝑢 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 llytop 22975 . . . 4 (𝑗 ∈ Locally Locally 𝐴𝑗 ∈ Top)
2 llyi 22977 . . . . . . 7 ((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) → ∃𝑢𝑗 (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))
3 simprr3 1223 . . . . . . . . 9 (((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) → (𝑗t 𝑢) ∈ Locally 𝐴)
4 simprl 769 . . . . . . . . . 10 (((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) → 𝑢𝑗)
5 ssidd 4005 . . . . . . . . . 10 (((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) → 𝑢𝑢)
613ad2ant1 1133 . . . . . . . . . . . 12 ((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) → 𝑗 ∈ Top)
76adantr 481 . . . . . . . . . . 11 (((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) → 𝑗 ∈ Top)
8 restopn2 22680 . . . . . . . . . . 11 ((𝑗 ∈ Top ∧ 𝑢𝑗) → (𝑢 ∈ (𝑗t 𝑢) ↔ (𝑢𝑗𝑢𝑢)))
97, 4, 8syl2anc 584 . . . . . . . . . 10 (((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) → (𝑢 ∈ (𝑗t 𝑢) ↔ (𝑢𝑗𝑢𝑢)))
104, 5, 9mpbir2and 711 . . . . . . . . 9 (((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) → 𝑢 ∈ (𝑗t 𝑢))
11 simprr2 1222 . . . . . . . . 9 (((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) → 𝑦𝑢)
12 llyi 22977 . . . . . . . . 9 (((𝑗t 𝑢) ∈ Locally 𝐴𝑢 ∈ (𝑗t 𝑢) ∧ 𝑦𝑢) → ∃𝑣 ∈ (𝑗t 𝑢)(𝑣𝑢𝑦𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))
133, 10, 11, 12syl3anc 1371 . . . . . . . 8 (((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) → ∃𝑣 ∈ (𝑗t 𝑢)(𝑣𝑢𝑦𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))
14 restopn2 22680 . . . . . . . . . . . 12 ((𝑗 ∈ Top ∧ 𝑢𝑗) → (𝑣 ∈ (𝑗t 𝑢) ↔ (𝑣𝑗𝑣𝑢)))
157, 4, 14syl2anc 584 . . . . . . . . . . 11 (((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) → (𝑣 ∈ (𝑗t 𝑢) ↔ (𝑣𝑗𝑣𝑢)))
16 simpl 483 . . . . . . . . . . 11 ((𝑣𝑗𝑣𝑢) → 𝑣𝑗)
1715, 16syl6bi 252 . . . . . . . . . 10 (((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) → (𝑣 ∈ (𝑗t 𝑢) → 𝑣𝑗))
18 simprl 769 . . . . . . . . . . . . 13 ((((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣𝑗 ∧ (𝑣𝑢𝑦𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣𝑗)
19 simprr1 1221 . . . . . . . . . . . . . . 15 ((((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣𝑗 ∧ (𝑣𝑢𝑦𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣𝑢)
20 simprr1 1221 . . . . . . . . . . . . . . . 16 (((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) → 𝑢𝑥)
2120adantr 481 . . . . . . . . . . . . . . 15 ((((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣𝑗 ∧ (𝑣𝑢𝑦𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑢𝑥)
2219, 21sstrd 3992 . . . . . . . . . . . . . 14 ((((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣𝑗 ∧ (𝑣𝑢𝑦𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣𝑥)
23 velpw 4607 . . . . . . . . . . . . . 14 (𝑣 ∈ 𝒫 𝑥𝑣𝑥)
2422, 23sylibr 233 . . . . . . . . . . . . 13 ((((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣𝑗 ∧ (𝑣𝑢𝑦𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣 ∈ 𝒫 𝑥)
2518, 24elind 4194 . . . . . . . . . . . 12 ((((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣𝑗 ∧ (𝑣𝑢𝑦𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣 ∈ (𝑗 ∩ 𝒫 𝑥))
26 simprr2 1222 . . . . . . . . . . . 12 ((((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣𝑗 ∧ (𝑣𝑢𝑦𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑦𝑣)
277adantr 481 . . . . . . . . . . . . . 14 ((((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣𝑗 ∧ (𝑣𝑢𝑦𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑗 ∈ Top)
28 simplrl 775 . . . . . . . . . . . . . 14 ((((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣𝑗 ∧ (𝑣𝑢𝑦𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑢𝑗)
29 restabs 22668 . . . . . . . . . . . . . 14 ((𝑗 ∈ Top ∧ 𝑣𝑢𝑢𝑗) → ((𝑗t 𝑢) ↾t 𝑣) = (𝑗t 𝑣))
3027, 19, 28, 29syl3anc 1371 . . . . . . . . . . . . 13 ((((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣𝑗 ∧ (𝑣𝑢𝑦𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → ((𝑗t 𝑢) ↾t 𝑣) = (𝑗t 𝑣))
31 simprr3 1223 . . . . . . . . . . . . 13 ((((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣𝑗 ∧ (𝑣𝑢𝑦𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴)
3230, 31eqeltrrd 2834 . . . . . . . . . . . 12 ((((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣𝑗 ∧ (𝑣𝑢𝑦𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → (𝑗t 𝑣) ∈ 𝐴)
3325, 26, 32jca32 516 . . . . . . . . . . 11 ((((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣𝑗 ∧ (𝑣𝑢𝑦𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → (𝑣 ∈ (𝑗 ∩ 𝒫 𝑥) ∧ (𝑦𝑣 ∧ (𝑗t 𝑣) ∈ 𝐴)))
3433ex 413 . . . . . . . . . 10 (((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) → ((𝑣𝑗 ∧ (𝑣𝑢𝑦𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴)) → (𝑣 ∈ (𝑗 ∩ 𝒫 𝑥) ∧ (𝑦𝑣 ∧ (𝑗t 𝑣) ∈ 𝐴))))
3517, 34syland 603 . . . . . . . . 9 (((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) → ((𝑣 ∈ (𝑗t 𝑢) ∧ (𝑣𝑢𝑦𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴)) → (𝑣 ∈ (𝑗 ∩ 𝒫 𝑥) ∧ (𝑦𝑣 ∧ (𝑗t 𝑣) ∈ 𝐴))))
3635reximdv2 3164 . . . . . . . 8 (((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) → (∃𝑣 ∈ (𝑗t 𝑢)(𝑣𝑢𝑦𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴) → ∃𝑣 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑣 ∧ (𝑗t 𝑣) ∈ 𝐴)))
3713, 36mpd 15 . . . . . . 7 (((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) → ∃𝑣 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑣 ∧ (𝑗t 𝑣) ∈ 𝐴))
382, 37rexlimddv 3161 . . . . . 6 ((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) → ∃𝑣 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑣 ∧ (𝑗t 𝑣) ∈ 𝐴))
39383expb 1120 . . . . 5 ((𝑗 ∈ Locally Locally 𝐴 ∧ (𝑥𝑗𝑦𝑥)) → ∃𝑣 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑣 ∧ (𝑗t 𝑣) ∈ 𝐴))
4039ralrimivva 3200 . . . 4 (𝑗 ∈ Locally Locally 𝐴 → ∀𝑥𝑗𝑦𝑥𝑣 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑣 ∧ (𝑗t 𝑣) ∈ 𝐴))
41 islly 22971 . . . 4 (𝑗 ∈ Locally 𝐴 ↔ (𝑗 ∈ Top ∧ ∀𝑥𝑗𝑦𝑥𝑣 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑣 ∧ (𝑗t 𝑣) ∈ 𝐴)))
421, 40, 41sylanbrc 583 . . 3 (𝑗 ∈ Locally Locally 𝐴𝑗 ∈ Locally 𝐴)
4342ssriv 3986 . 2 Locally Locally 𝐴 ⊆ Locally 𝐴
44 llyrest 22988 . . . . 5 ((𝑗 ∈ Locally 𝐴𝑥𝑗) → (𝑗t 𝑥) ∈ Locally 𝐴)
4544adantl 482 . . . 4 ((⊤ ∧ (𝑗 ∈ Locally 𝐴𝑥𝑗)) → (𝑗t 𝑥) ∈ Locally 𝐴)
46 llytop 22975 . . . . . 6 (𝑗 ∈ Locally 𝐴𝑗 ∈ Top)
4746ssriv 3986 . . . . 5 Locally 𝐴 ⊆ Top
4847a1i 11 . . . 4 (⊤ → Locally 𝐴 ⊆ Top)
4945, 48restlly 22986 . . 3 (⊤ → Locally 𝐴 ⊆ Locally Locally 𝐴)
5049mptru 1548 . 2 Locally 𝐴 ⊆ Locally Locally 𝐴
5143, 50eqssi 3998 1 Locally Locally 𝐴 = Locally 𝐴
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  w3a 1087   = wceq 1541  wtru 1542  wcel 2106  wral 3061  wrex 3070  cin 3947  wss 3948  𝒫 cpw 4602  (class class class)co 7408  t crest 17365  Topctop 22394  Locally clly 22967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-en 8939  df-fin 8942  df-fi 9405  df-rest 17367  df-topgen 17388  df-top 22395  df-topon 22412  df-bases 22448  df-lly 22969
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator