MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  llyidm Structured version   Visualization version   GIF version

Theorem llyidm 23403
Description: Idempotence of the "locally" predicate, i.e. being "locally 𝐴 " is a local property. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
llyidm Locally Locally 𝐴 = Locally 𝐴

Proof of Theorem llyidm
Dummy variables 𝑗 𝑢 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 llytop 23387 . . . 4 (𝑗 ∈ Locally Locally 𝐴𝑗 ∈ Top)
2 llyi 23389 . . . . . . 7 ((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) → ∃𝑢𝑗 (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))
3 simprr3 1224 . . . . . . . . 9 (((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) → (𝑗t 𝑢) ∈ Locally 𝐴)
4 simprl 770 . . . . . . . . . 10 (((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) → 𝑢𝑗)
5 ssidd 3953 . . . . . . . . . 10 (((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) → 𝑢𝑢)
613ad2ant1 1133 . . . . . . . . . . . 12 ((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) → 𝑗 ∈ Top)
76adantr 480 . . . . . . . . . . 11 (((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) → 𝑗 ∈ Top)
8 restopn2 23092 . . . . . . . . . . 11 ((𝑗 ∈ Top ∧ 𝑢𝑗) → (𝑢 ∈ (𝑗t 𝑢) ↔ (𝑢𝑗𝑢𝑢)))
97, 4, 8syl2anc 584 . . . . . . . . . 10 (((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) → (𝑢 ∈ (𝑗t 𝑢) ↔ (𝑢𝑗𝑢𝑢)))
104, 5, 9mpbir2and 713 . . . . . . . . 9 (((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) → 𝑢 ∈ (𝑗t 𝑢))
11 simprr2 1223 . . . . . . . . 9 (((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) → 𝑦𝑢)
12 llyi 23389 . . . . . . . . 9 (((𝑗t 𝑢) ∈ Locally 𝐴𝑢 ∈ (𝑗t 𝑢) ∧ 𝑦𝑢) → ∃𝑣 ∈ (𝑗t 𝑢)(𝑣𝑢𝑦𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))
133, 10, 11, 12syl3anc 1373 . . . . . . . 8 (((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) → ∃𝑣 ∈ (𝑗t 𝑢)(𝑣𝑢𝑦𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))
14 restopn2 23092 . . . . . . . . . . . 12 ((𝑗 ∈ Top ∧ 𝑢𝑗) → (𝑣 ∈ (𝑗t 𝑢) ↔ (𝑣𝑗𝑣𝑢)))
157, 4, 14syl2anc 584 . . . . . . . . . . 11 (((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) → (𝑣 ∈ (𝑗t 𝑢) ↔ (𝑣𝑗𝑣𝑢)))
16 simpl 482 . . . . . . . . . . 11 ((𝑣𝑗𝑣𝑢) → 𝑣𝑗)
1715, 16biimtrdi 253 . . . . . . . . . 10 (((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) → (𝑣 ∈ (𝑗t 𝑢) → 𝑣𝑗))
18 simprl 770 . . . . . . . . . . . . 13 ((((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣𝑗 ∧ (𝑣𝑢𝑦𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣𝑗)
19 simprr1 1222 . . . . . . . . . . . . . . 15 ((((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣𝑗 ∧ (𝑣𝑢𝑦𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣𝑢)
20 simprr1 1222 . . . . . . . . . . . . . . . 16 (((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) → 𝑢𝑥)
2120adantr 480 . . . . . . . . . . . . . . 15 ((((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣𝑗 ∧ (𝑣𝑢𝑦𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑢𝑥)
2219, 21sstrd 3940 . . . . . . . . . . . . . 14 ((((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣𝑗 ∧ (𝑣𝑢𝑦𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣𝑥)
23 velpw 4552 . . . . . . . . . . . . . 14 (𝑣 ∈ 𝒫 𝑥𝑣𝑥)
2422, 23sylibr 234 . . . . . . . . . . . . 13 ((((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣𝑗 ∧ (𝑣𝑢𝑦𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣 ∈ 𝒫 𝑥)
2518, 24elind 4147 . . . . . . . . . . . 12 ((((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣𝑗 ∧ (𝑣𝑢𝑦𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣 ∈ (𝑗 ∩ 𝒫 𝑥))
26 simprr2 1223 . . . . . . . . . . . 12 ((((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣𝑗 ∧ (𝑣𝑢𝑦𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑦𝑣)
277adantr 480 . . . . . . . . . . . . . 14 ((((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣𝑗 ∧ (𝑣𝑢𝑦𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑗 ∈ Top)
28 simplrl 776 . . . . . . . . . . . . . 14 ((((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣𝑗 ∧ (𝑣𝑢𝑦𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑢𝑗)
29 restabs 23080 . . . . . . . . . . . . . 14 ((𝑗 ∈ Top ∧ 𝑣𝑢𝑢𝑗) → ((𝑗t 𝑢) ↾t 𝑣) = (𝑗t 𝑣))
3027, 19, 28, 29syl3anc 1373 . . . . . . . . . . . . 13 ((((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣𝑗 ∧ (𝑣𝑢𝑦𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → ((𝑗t 𝑢) ↾t 𝑣) = (𝑗t 𝑣))
31 simprr3 1224 . . . . . . . . . . . . 13 ((((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣𝑗 ∧ (𝑣𝑢𝑦𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴)
3230, 31eqeltrrd 2832 . . . . . . . . . . . 12 ((((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣𝑗 ∧ (𝑣𝑢𝑦𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → (𝑗t 𝑣) ∈ 𝐴)
3325, 26, 32jca32 515 . . . . . . . . . . 11 ((((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣𝑗 ∧ (𝑣𝑢𝑦𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → (𝑣 ∈ (𝑗 ∩ 𝒫 𝑥) ∧ (𝑦𝑣 ∧ (𝑗t 𝑣) ∈ 𝐴)))
3433ex 412 . . . . . . . . . 10 (((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) → ((𝑣𝑗 ∧ (𝑣𝑢𝑦𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴)) → (𝑣 ∈ (𝑗 ∩ 𝒫 𝑥) ∧ (𝑦𝑣 ∧ (𝑗t 𝑣) ∈ 𝐴))))
3517, 34syland 603 . . . . . . . . 9 (((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) → ((𝑣 ∈ (𝑗t 𝑢) ∧ (𝑣𝑢𝑦𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴)) → (𝑣 ∈ (𝑗 ∩ 𝒫 𝑥) ∧ (𝑦𝑣 ∧ (𝑗t 𝑣) ∈ 𝐴))))
3635reximdv2 3142 . . . . . . . 8 (((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) → (∃𝑣 ∈ (𝑗t 𝑢)(𝑣𝑢𝑦𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴) → ∃𝑣 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑣 ∧ (𝑗t 𝑣) ∈ 𝐴)))
3713, 36mpd 15 . . . . . . 7 (((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) → ∃𝑣 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑣 ∧ (𝑗t 𝑣) ∈ 𝐴))
382, 37rexlimddv 3139 . . . . . 6 ((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) → ∃𝑣 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑣 ∧ (𝑗t 𝑣) ∈ 𝐴))
39383expb 1120 . . . . 5 ((𝑗 ∈ Locally Locally 𝐴 ∧ (𝑥𝑗𝑦𝑥)) → ∃𝑣 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑣 ∧ (𝑗t 𝑣) ∈ 𝐴))
4039ralrimivva 3175 . . . 4 (𝑗 ∈ Locally Locally 𝐴 → ∀𝑥𝑗𝑦𝑥𝑣 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑣 ∧ (𝑗t 𝑣) ∈ 𝐴))
41 islly 23383 . . . 4 (𝑗 ∈ Locally 𝐴 ↔ (𝑗 ∈ Top ∧ ∀𝑥𝑗𝑦𝑥𝑣 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑣 ∧ (𝑗t 𝑣) ∈ 𝐴)))
421, 40, 41sylanbrc 583 . . 3 (𝑗 ∈ Locally Locally 𝐴𝑗 ∈ Locally 𝐴)
4342ssriv 3933 . 2 Locally Locally 𝐴 ⊆ Locally 𝐴
44 llyrest 23400 . . . . 5 ((𝑗 ∈ Locally 𝐴𝑥𝑗) → (𝑗t 𝑥) ∈ Locally 𝐴)
4544adantl 481 . . . 4 ((⊤ ∧ (𝑗 ∈ Locally 𝐴𝑥𝑗)) → (𝑗t 𝑥) ∈ Locally 𝐴)
46 llytop 23387 . . . . . 6 (𝑗 ∈ Locally 𝐴𝑗 ∈ Top)
4746ssriv 3933 . . . . 5 Locally 𝐴 ⊆ Top
4847a1i 11 . . . 4 (⊤ → Locally 𝐴 ⊆ Top)
4945, 48restlly 23398 . . 3 (⊤ → Locally 𝐴 ⊆ Locally Locally 𝐴)
5049mptru 1548 . 2 Locally 𝐴 ⊆ Locally Locally 𝐴
5143, 50eqssi 3946 1 Locally Locally 𝐴 = Locally 𝐴
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1541  wtru 1542  wcel 2111  wral 3047  wrex 3056  cin 3896  wss 3897  𝒫 cpw 4547  (class class class)co 7346  t crest 17324  Topctop 22808  Locally clly 23379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-en 8870  df-fin 8873  df-fi 9295  df-rest 17326  df-topgen 17347  df-top 22809  df-topon 22826  df-bases 22861  df-lly 23381
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator