MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  llyidm Structured version   Visualization version   GIF version

Theorem llyidm 23512
Description: Idempotence of the "locally" predicate, i.e. being "locally 𝐴 " is a local property. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
llyidm Locally Locally 𝐴 = Locally 𝐴

Proof of Theorem llyidm
Dummy variables 𝑗 𝑢 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 llytop 23496 . . . 4 (𝑗 ∈ Locally Locally 𝐴𝑗 ∈ Top)
2 llyi 23498 . . . . . . 7 ((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) → ∃𝑢𝑗 (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))
3 simprr3 1222 . . . . . . . . 9 (((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) → (𝑗t 𝑢) ∈ Locally 𝐴)
4 simprl 771 . . . . . . . . . 10 (((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) → 𝑢𝑗)
5 ssidd 4019 . . . . . . . . . 10 (((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) → 𝑢𝑢)
613ad2ant1 1132 . . . . . . . . . . . 12 ((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) → 𝑗 ∈ Top)
76adantr 480 . . . . . . . . . . 11 (((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) → 𝑗 ∈ Top)
8 restopn2 23201 . . . . . . . . . . 11 ((𝑗 ∈ Top ∧ 𝑢𝑗) → (𝑢 ∈ (𝑗t 𝑢) ↔ (𝑢𝑗𝑢𝑢)))
97, 4, 8syl2anc 584 . . . . . . . . . 10 (((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) → (𝑢 ∈ (𝑗t 𝑢) ↔ (𝑢𝑗𝑢𝑢)))
104, 5, 9mpbir2and 713 . . . . . . . . 9 (((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) → 𝑢 ∈ (𝑗t 𝑢))
11 simprr2 1221 . . . . . . . . 9 (((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) → 𝑦𝑢)
12 llyi 23498 . . . . . . . . 9 (((𝑗t 𝑢) ∈ Locally 𝐴𝑢 ∈ (𝑗t 𝑢) ∧ 𝑦𝑢) → ∃𝑣 ∈ (𝑗t 𝑢)(𝑣𝑢𝑦𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))
133, 10, 11, 12syl3anc 1370 . . . . . . . 8 (((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) → ∃𝑣 ∈ (𝑗t 𝑢)(𝑣𝑢𝑦𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))
14 restopn2 23201 . . . . . . . . . . . 12 ((𝑗 ∈ Top ∧ 𝑢𝑗) → (𝑣 ∈ (𝑗t 𝑢) ↔ (𝑣𝑗𝑣𝑢)))
157, 4, 14syl2anc 584 . . . . . . . . . . 11 (((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) → (𝑣 ∈ (𝑗t 𝑢) ↔ (𝑣𝑗𝑣𝑢)))
16 simpl 482 . . . . . . . . . . 11 ((𝑣𝑗𝑣𝑢) → 𝑣𝑗)
1715, 16biimtrdi 253 . . . . . . . . . 10 (((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) → (𝑣 ∈ (𝑗t 𝑢) → 𝑣𝑗))
18 simprl 771 . . . . . . . . . . . . 13 ((((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣𝑗 ∧ (𝑣𝑢𝑦𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣𝑗)
19 simprr1 1220 . . . . . . . . . . . . . . 15 ((((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣𝑗 ∧ (𝑣𝑢𝑦𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣𝑢)
20 simprr1 1220 . . . . . . . . . . . . . . . 16 (((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) → 𝑢𝑥)
2120adantr 480 . . . . . . . . . . . . . . 15 ((((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣𝑗 ∧ (𝑣𝑢𝑦𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑢𝑥)
2219, 21sstrd 4006 . . . . . . . . . . . . . 14 ((((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣𝑗 ∧ (𝑣𝑢𝑦𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣𝑥)
23 velpw 4610 . . . . . . . . . . . . . 14 (𝑣 ∈ 𝒫 𝑥𝑣𝑥)
2422, 23sylibr 234 . . . . . . . . . . . . 13 ((((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣𝑗 ∧ (𝑣𝑢𝑦𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣 ∈ 𝒫 𝑥)
2518, 24elind 4210 . . . . . . . . . . . 12 ((((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣𝑗 ∧ (𝑣𝑢𝑦𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣 ∈ (𝑗 ∩ 𝒫 𝑥))
26 simprr2 1221 . . . . . . . . . . . 12 ((((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣𝑗 ∧ (𝑣𝑢𝑦𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑦𝑣)
277adantr 480 . . . . . . . . . . . . . 14 ((((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣𝑗 ∧ (𝑣𝑢𝑦𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑗 ∈ Top)
28 simplrl 777 . . . . . . . . . . . . . 14 ((((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣𝑗 ∧ (𝑣𝑢𝑦𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑢𝑗)
29 restabs 23189 . . . . . . . . . . . . . 14 ((𝑗 ∈ Top ∧ 𝑣𝑢𝑢𝑗) → ((𝑗t 𝑢) ↾t 𝑣) = (𝑗t 𝑣))
3027, 19, 28, 29syl3anc 1370 . . . . . . . . . . . . 13 ((((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣𝑗 ∧ (𝑣𝑢𝑦𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → ((𝑗t 𝑢) ↾t 𝑣) = (𝑗t 𝑣))
31 simprr3 1222 . . . . . . . . . . . . 13 ((((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣𝑗 ∧ (𝑣𝑢𝑦𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴)
3230, 31eqeltrrd 2840 . . . . . . . . . . . 12 ((((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣𝑗 ∧ (𝑣𝑢𝑦𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → (𝑗t 𝑣) ∈ 𝐴)
3325, 26, 32jca32 515 . . . . . . . . . . 11 ((((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣𝑗 ∧ (𝑣𝑢𝑦𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → (𝑣 ∈ (𝑗 ∩ 𝒫 𝑥) ∧ (𝑦𝑣 ∧ (𝑗t 𝑣) ∈ 𝐴)))
3433ex 412 . . . . . . . . . 10 (((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) → ((𝑣𝑗 ∧ (𝑣𝑢𝑦𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴)) → (𝑣 ∈ (𝑗 ∩ 𝒫 𝑥) ∧ (𝑦𝑣 ∧ (𝑗t 𝑣) ∈ 𝐴))))
3517, 34syland 603 . . . . . . . . 9 (((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) → ((𝑣 ∈ (𝑗t 𝑢) ∧ (𝑣𝑢𝑦𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴)) → (𝑣 ∈ (𝑗 ∩ 𝒫 𝑥) ∧ (𝑦𝑣 ∧ (𝑗t 𝑣) ∈ 𝐴))))
3635reximdv2 3162 . . . . . . . 8 (((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) → (∃𝑣 ∈ (𝑗t 𝑢)(𝑣𝑢𝑦𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴) → ∃𝑣 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑣 ∧ (𝑗t 𝑣) ∈ 𝐴)))
3713, 36mpd 15 . . . . . . 7 (((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) → ∃𝑣 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑣 ∧ (𝑗t 𝑣) ∈ 𝐴))
382, 37rexlimddv 3159 . . . . . 6 ((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) → ∃𝑣 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑣 ∧ (𝑗t 𝑣) ∈ 𝐴))
39383expb 1119 . . . . 5 ((𝑗 ∈ Locally Locally 𝐴 ∧ (𝑥𝑗𝑦𝑥)) → ∃𝑣 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑣 ∧ (𝑗t 𝑣) ∈ 𝐴))
4039ralrimivva 3200 . . . 4 (𝑗 ∈ Locally Locally 𝐴 → ∀𝑥𝑗𝑦𝑥𝑣 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑣 ∧ (𝑗t 𝑣) ∈ 𝐴))
41 islly 23492 . . . 4 (𝑗 ∈ Locally 𝐴 ↔ (𝑗 ∈ Top ∧ ∀𝑥𝑗𝑦𝑥𝑣 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑣 ∧ (𝑗t 𝑣) ∈ 𝐴)))
421, 40, 41sylanbrc 583 . . 3 (𝑗 ∈ Locally Locally 𝐴𝑗 ∈ Locally 𝐴)
4342ssriv 3999 . 2 Locally Locally 𝐴 ⊆ Locally 𝐴
44 llyrest 23509 . . . . 5 ((𝑗 ∈ Locally 𝐴𝑥𝑗) → (𝑗t 𝑥) ∈ Locally 𝐴)
4544adantl 481 . . . 4 ((⊤ ∧ (𝑗 ∈ Locally 𝐴𝑥𝑗)) → (𝑗t 𝑥) ∈ Locally 𝐴)
46 llytop 23496 . . . . . 6 (𝑗 ∈ Locally 𝐴𝑗 ∈ Top)
4746ssriv 3999 . . . . 5 Locally 𝐴 ⊆ Top
4847a1i 11 . . . 4 (⊤ → Locally 𝐴 ⊆ Top)
4945, 48restlly 23507 . . 3 (⊤ → Locally 𝐴 ⊆ Locally Locally 𝐴)
5049mptru 1544 . 2 Locally 𝐴 ⊆ Locally Locally 𝐴
5143, 50eqssi 4012 1 Locally Locally 𝐴 = Locally 𝐴
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1537  wtru 1538  wcel 2106  wral 3059  wrex 3068  cin 3962  wss 3963  𝒫 cpw 4605  (class class class)co 7431  t crest 17467  Topctop 22915  Locally clly 23488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-en 8985  df-fin 8988  df-fi 9449  df-rest 17469  df-topgen 17490  df-top 22916  df-topon 22933  df-bases 22969  df-lly 23490
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator