Step | Hyp | Ref
| Expression |
1 | | llytop 22623 |
. . . 4
⊢ (𝑗 ∈ Locally Locally 𝐴 → 𝑗 ∈ Top) |
2 | | llyi 22625 |
. . . . . . 7
⊢ ((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) → ∃𝑢 ∈ 𝑗 (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴)) |
3 | | simprr3 1222 |
. . . . . . . . 9
⊢ (((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) → (𝑗 ↾t 𝑢) ∈ Locally 𝐴) |
4 | | simprl 768 |
. . . . . . . . . 10
⊢ (((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) → 𝑢 ∈ 𝑗) |
5 | | ssidd 3944 |
. . . . . . . . . 10
⊢ (((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) → 𝑢 ⊆ 𝑢) |
6 | 1 | 3ad2ant1 1132 |
. . . . . . . . . . . 12
⊢ ((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) → 𝑗 ∈ Top) |
7 | 6 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) → 𝑗 ∈ Top) |
8 | | restopn2 22328 |
. . . . . . . . . . 11
⊢ ((𝑗 ∈ Top ∧ 𝑢 ∈ 𝑗) → (𝑢 ∈ (𝑗 ↾t 𝑢) ↔ (𝑢 ∈ 𝑗 ∧ 𝑢 ⊆ 𝑢))) |
9 | 7, 4, 8 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) → (𝑢 ∈ (𝑗 ↾t 𝑢) ↔ (𝑢 ∈ 𝑗 ∧ 𝑢 ⊆ 𝑢))) |
10 | 4, 5, 9 | mpbir2and 710 |
. . . . . . . . 9
⊢ (((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) → 𝑢 ∈ (𝑗 ↾t 𝑢)) |
11 | | simprr2 1221 |
. . . . . . . . 9
⊢ (((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) → 𝑦 ∈ 𝑢) |
12 | | llyi 22625 |
. . . . . . . . 9
⊢ (((𝑗 ↾t 𝑢) ∈ Locally 𝐴 ∧ 𝑢 ∈ (𝑗 ↾t 𝑢) ∧ 𝑦 ∈ 𝑢) → ∃𝑣 ∈ (𝑗 ↾t 𝑢)(𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴)) |
13 | 3, 10, 11, 12 | syl3anc 1370 |
. . . . . . . 8
⊢ (((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) → ∃𝑣 ∈ (𝑗 ↾t 𝑢)(𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴)) |
14 | | restopn2 22328 |
. . . . . . . . . . . 12
⊢ ((𝑗 ∈ Top ∧ 𝑢 ∈ 𝑗) → (𝑣 ∈ (𝑗 ↾t 𝑢) ↔ (𝑣 ∈ 𝑗 ∧ 𝑣 ⊆ 𝑢))) |
15 | 7, 4, 14 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) → (𝑣 ∈ (𝑗 ↾t 𝑢) ↔ (𝑣 ∈ 𝑗 ∧ 𝑣 ⊆ 𝑢))) |
16 | | simpl 483 |
. . . . . . . . . . 11
⊢ ((𝑣 ∈ 𝑗 ∧ 𝑣 ⊆ 𝑢) → 𝑣 ∈ 𝑗) |
17 | 15, 16 | syl6bi 252 |
. . . . . . . . . 10
⊢ (((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) → (𝑣 ∈ (𝑗 ↾t 𝑢) → 𝑣 ∈ 𝑗)) |
18 | | simprl 768 |
. . . . . . . . . . . . 13
⊢ ((((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣 ∈ 𝑗 ∧ (𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣 ∈ 𝑗) |
19 | | simprr1 1220 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣 ∈ 𝑗 ∧ (𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣 ⊆ 𝑢) |
20 | | simprr1 1220 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) → 𝑢 ⊆ 𝑥) |
21 | 20 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣 ∈ 𝑗 ∧ (𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑢 ⊆ 𝑥) |
22 | 19, 21 | sstrd 3931 |
. . . . . . . . . . . . . 14
⊢ ((((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣 ∈ 𝑗 ∧ (𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣 ⊆ 𝑥) |
23 | | velpw 4538 |
. . . . . . . . . . . . . 14
⊢ (𝑣 ∈ 𝒫 𝑥 ↔ 𝑣 ⊆ 𝑥) |
24 | 22, 23 | sylibr 233 |
. . . . . . . . . . . . 13
⊢ ((((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣 ∈ 𝑗 ∧ (𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣 ∈ 𝒫 𝑥) |
25 | 18, 24 | elind 4128 |
. . . . . . . . . . . 12
⊢ ((((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣 ∈ 𝑗 ∧ (𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣 ∈ (𝑗 ∩ 𝒫 𝑥)) |
26 | | simprr2 1221 |
. . . . . . . . . . . 12
⊢ ((((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣 ∈ 𝑗 ∧ (𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑦 ∈ 𝑣) |
27 | 7 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣 ∈ 𝑗 ∧ (𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑗 ∈ Top) |
28 | | simplrl 774 |
. . . . . . . . . . . . . 14
⊢ ((((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣 ∈ 𝑗 ∧ (𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑢 ∈ 𝑗) |
29 | | restabs 22316 |
. . . . . . . . . . . . . 14
⊢ ((𝑗 ∈ Top ∧ 𝑣 ⊆ 𝑢 ∧ 𝑢 ∈ 𝑗) → ((𝑗 ↾t 𝑢) ↾t 𝑣) = (𝑗 ↾t 𝑣)) |
30 | 27, 19, 28, 29 | syl3anc 1370 |
. . . . . . . . . . . . 13
⊢ ((((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣 ∈ 𝑗 ∧ (𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → ((𝑗 ↾t 𝑢) ↾t 𝑣) = (𝑗 ↾t 𝑣)) |
31 | | simprr3 1222 |
. . . . . . . . . . . . 13
⊢ ((((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣 ∈ 𝑗 ∧ (𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴) |
32 | 30, 31 | eqeltrrd 2840 |
. . . . . . . . . . . 12
⊢ ((((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣 ∈ 𝑗 ∧ (𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → (𝑗 ↾t 𝑣) ∈ 𝐴) |
33 | 25, 26, 32 | jca32 516 |
. . . . . . . . . . 11
⊢ ((((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣 ∈ 𝑗 ∧ (𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → (𝑣 ∈ (𝑗 ∩ 𝒫 𝑥) ∧ (𝑦 ∈ 𝑣 ∧ (𝑗 ↾t 𝑣) ∈ 𝐴))) |
34 | 33 | ex 413 |
. . . . . . . . . 10
⊢ (((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) → ((𝑣 ∈ 𝑗 ∧ (𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴)) → (𝑣 ∈ (𝑗 ∩ 𝒫 𝑥) ∧ (𝑦 ∈ 𝑣 ∧ (𝑗 ↾t 𝑣) ∈ 𝐴)))) |
35 | 17, 34 | syland 603 |
. . . . . . . . 9
⊢ (((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) → ((𝑣 ∈ (𝑗 ↾t 𝑢) ∧ (𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴)) → (𝑣 ∈ (𝑗 ∩ 𝒫 𝑥) ∧ (𝑦 ∈ 𝑣 ∧ (𝑗 ↾t 𝑣) ∈ 𝐴)))) |
36 | 35 | reximdv2 3199 |
. . . . . . . 8
⊢ (((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) → (∃𝑣 ∈ (𝑗 ↾t 𝑢)(𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴) → ∃𝑣 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑣 ∧ (𝑗 ↾t 𝑣) ∈ 𝐴))) |
37 | 13, 36 | mpd 15 |
. . . . . . 7
⊢ (((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) → ∃𝑣 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑣 ∧ (𝑗 ↾t 𝑣) ∈ 𝐴)) |
38 | 2, 37 | rexlimddv 3220 |
. . . . . 6
⊢ ((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) → ∃𝑣 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑣 ∧ (𝑗 ↾t 𝑣) ∈ 𝐴)) |
39 | 38 | 3expb 1119 |
. . . . 5
⊢ ((𝑗 ∈ Locally Locally 𝐴 ∧ (𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥)) → ∃𝑣 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑣 ∧ (𝑗 ↾t 𝑣) ∈ 𝐴)) |
40 | 39 | ralrimivva 3123 |
. . . 4
⊢ (𝑗 ∈ Locally Locally 𝐴 → ∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑣 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑣 ∧ (𝑗 ↾t 𝑣) ∈ 𝐴)) |
41 | | islly 22619 |
. . . 4
⊢ (𝑗 ∈ Locally 𝐴 ↔ (𝑗 ∈ Top ∧ ∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑣 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑣 ∧ (𝑗 ↾t 𝑣) ∈ 𝐴))) |
42 | 1, 40, 41 | sylanbrc 583 |
. . 3
⊢ (𝑗 ∈ Locally Locally 𝐴 → 𝑗 ∈ Locally 𝐴) |
43 | 42 | ssriv 3925 |
. 2
⊢ Locally
Locally 𝐴 ⊆ Locally
𝐴 |
44 | | llyrest 22636 |
. . . . 5
⊢ ((𝑗 ∈ Locally 𝐴 ∧ 𝑥 ∈ 𝑗) → (𝑗 ↾t 𝑥) ∈ Locally 𝐴) |
45 | 44 | adantl 482 |
. . . 4
⊢
((⊤ ∧ (𝑗
∈ Locally 𝐴 ∧
𝑥 ∈ 𝑗)) → (𝑗 ↾t 𝑥) ∈ Locally 𝐴) |
46 | | llytop 22623 |
. . . . . 6
⊢ (𝑗 ∈ Locally 𝐴 → 𝑗 ∈ Top) |
47 | 46 | ssriv 3925 |
. . . . 5
⊢ Locally
𝐴 ⊆
Top |
48 | 47 | a1i 11 |
. . . 4
⊢ (⊤
→ Locally 𝐴 ⊆
Top) |
49 | 45, 48 | restlly 22634 |
. . 3
⊢ (⊤
→ Locally 𝐴 ⊆
Locally Locally 𝐴) |
50 | 49 | mptru 1546 |
. 2
⊢ Locally
𝐴 ⊆ Locally Locally
𝐴 |
51 | 43, 50 | eqssi 3937 |
1
⊢ Locally
Locally 𝐴 = Locally 𝐴 |