| Step | Hyp | Ref
| Expression |
| 1 | | llytop 23415 |
. . . 4
⊢ (𝑗 ∈ Locally Locally 𝐴 → 𝑗 ∈ Top) |
| 2 | | llyi 23417 |
. . . . . . 7
⊢ ((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) → ∃𝑢 ∈ 𝑗 (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴)) |
| 3 | | simprr3 1224 |
. . . . . . . . 9
⊢ (((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) → (𝑗 ↾t 𝑢) ∈ Locally 𝐴) |
| 4 | | simprl 770 |
. . . . . . . . . 10
⊢ (((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) → 𝑢 ∈ 𝑗) |
| 5 | | ssidd 3987 |
. . . . . . . . . 10
⊢ (((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) → 𝑢 ⊆ 𝑢) |
| 6 | 1 | 3ad2ant1 1133 |
. . . . . . . . . . . 12
⊢ ((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) → 𝑗 ∈ Top) |
| 7 | 6 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) → 𝑗 ∈ Top) |
| 8 | | restopn2 23120 |
. . . . . . . . . . 11
⊢ ((𝑗 ∈ Top ∧ 𝑢 ∈ 𝑗) → (𝑢 ∈ (𝑗 ↾t 𝑢) ↔ (𝑢 ∈ 𝑗 ∧ 𝑢 ⊆ 𝑢))) |
| 9 | 7, 4, 8 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) → (𝑢 ∈ (𝑗 ↾t 𝑢) ↔ (𝑢 ∈ 𝑗 ∧ 𝑢 ⊆ 𝑢))) |
| 10 | 4, 5, 9 | mpbir2and 713 |
. . . . . . . . 9
⊢ (((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) → 𝑢 ∈ (𝑗 ↾t 𝑢)) |
| 11 | | simprr2 1223 |
. . . . . . . . 9
⊢ (((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) → 𝑦 ∈ 𝑢) |
| 12 | | llyi 23417 |
. . . . . . . . 9
⊢ (((𝑗 ↾t 𝑢) ∈ Locally 𝐴 ∧ 𝑢 ∈ (𝑗 ↾t 𝑢) ∧ 𝑦 ∈ 𝑢) → ∃𝑣 ∈ (𝑗 ↾t 𝑢)(𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴)) |
| 13 | 3, 10, 11, 12 | syl3anc 1373 |
. . . . . . . 8
⊢ (((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) → ∃𝑣 ∈ (𝑗 ↾t 𝑢)(𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴)) |
| 14 | | restopn2 23120 |
. . . . . . . . . . . 12
⊢ ((𝑗 ∈ Top ∧ 𝑢 ∈ 𝑗) → (𝑣 ∈ (𝑗 ↾t 𝑢) ↔ (𝑣 ∈ 𝑗 ∧ 𝑣 ⊆ 𝑢))) |
| 15 | 7, 4, 14 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) → (𝑣 ∈ (𝑗 ↾t 𝑢) ↔ (𝑣 ∈ 𝑗 ∧ 𝑣 ⊆ 𝑢))) |
| 16 | | simpl 482 |
. . . . . . . . . . 11
⊢ ((𝑣 ∈ 𝑗 ∧ 𝑣 ⊆ 𝑢) → 𝑣 ∈ 𝑗) |
| 17 | 15, 16 | biimtrdi 253 |
. . . . . . . . . 10
⊢ (((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) → (𝑣 ∈ (𝑗 ↾t 𝑢) → 𝑣 ∈ 𝑗)) |
| 18 | | simprl 770 |
. . . . . . . . . . . . 13
⊢ ((((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣 ∈ 𝑗 ∧ (𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣 ∈ 𝑗) |
| 19 | | simprr1 1222 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣 ∈ 𝑗 ∧ (𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣 ⊆ 𝑢) |
| 20 | | simprr1 1222 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) → 𝑢 ⊆ 𝑥) |
| 21 | 20 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣 ∈ 𝑗 ∧ (𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑢 ⊆ 𝑥) |
| 22 | 19, 21 | sstrd 3974 |
. . . . . . . . . . . . . 14
⊢ ((((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣 ∈ 𝑗 ∧ (𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣 ⊆ 𝑥) |
| 23 | | velpw 4585 |
. . . . . . . . . . . . . 14
⊢ (𝑣 ∈ 𝒫 𝑥 ↔ 𝑣 ⊆ 𝑥) |
| 24 | 22, 23 | sylibr 234 |
. . . . . . . . . . . . 13
⊢ ((((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣 ∈ 𝑗 ∧ (𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣 ∈ 𝒫 𝑥) |
| 25 | 18, 24 | elind 4180 |
. . . . . . . . . . . 12
⊢ ((((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣 ∈ 𝑗 ∧ (𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣 ∈ (𝑗 ∩ 𝒫 𝑥)) |
| 26 | | simprr2 1223 |
. . . . . . . . . . . 12
⊢ ((((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣 ∈ 𝑗 ∧ (𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑦 ∈ 𝑣) |
| 27 | 7 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣 ∈ 𝑗 ∧ (𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑗 ∈ Top) |
| 28 | | simplrl 776 |
. . . . . . . . . . . . . 14
⊢ ((((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣 ∈ 𝑗 ∧ (𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑢 ∈ 𝑗) |
| 29 | | restabs 23108 |
. . . . . . . . . . . . . 14
⊢ ((𝑗 ∈ Top ∧ 𝑣 ⊆ 𝑢 ∧ 𝑢 ∈ 𝑗) → ((𝑗 ↾t 𝑢) ↾t 𝑣) = (𝑗 ↾t 𝑣)) |
| 30 | 27, 19, 28, 29 | syl3anc 1373 |
. . . . . . . . . . . . 13
⊢ ((((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣 ∈ 𝑗 ∧ (𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → ((𝑗 ↾t 𝑢) ↾t 𝑣) = (𝑗 ↾t 𝑣)) |
| 31 | | simprr3 1224 |
. . . . . . . . . . . . 13
⊢ ((((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣 ∈ 𝑗 ∧ (𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴) |
| 32 | 30, 31 | eqeltrrd 2836 |
. . . . . . . . . . . 12
⊢ ((((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣 ∈ 𝑗 ∧ (𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → (𝑗 ↾t 𝑣) ∈ 𝐴) |
| 33 | 25, 26, 32 | jca32 515 |
. . . . . . . . . . 11
⊢ ((((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣 ∈ 𝑗 ∧ (𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → (𝑣 ∈ (𝑗 ∩ 𝒫 𝑥) ∧ (𝑦 ∈ 𝑣 ∧ (𝑗 ↾t 𝑣) ∈ 𝐴))) |
| 34 | 33 | ex 412 |
. . . . . . . . . 10
⊢ (((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) → ((𝑣 ∈ 𝑗 ∧ (𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴)) → (𝑣 ∈ (𝑗 ∩ 𝒫 𝑥) ∧ (𝑦 ∈ 𝑣 ∧ (𝑗 ↾t 𝑣) ∈ 𝐴)))) |
| 35 | 17, 34 | syland 603 |
. . . . . . . . 9
⊢ (((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) → ((𝑣 ∈ (𝑗 ↾t 𝑢) ∧ (𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴)) → (𝑣 ∈ (𝑗 ∩ 𝒫 𝑥) ∧ (𝑦 ∈ 𝑣 ∧ (𝑗 ↾t 𝑣) ∈ 𝐴)))) |
| 36 | 35 | reximdv2 3151 |
. . . . . . . 8
⊢ (((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) → (∃𝑣 ∈ (𝑗 ↾t 𝑢)(𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴) → ∃𝑣 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑣 ∧ (𝑗 ↾t 𝑣) ∈ 𝐴))) |
| 37 | 13, 36 | mpd 15 |
. . . . . . 7
⊢ (((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) → ∃𝑣 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑣 ∧ (𝑗 ↾t 𝑣) ∈ 𝐴)) |
| 38 | 2, 37 | rexlimddv 3148 |
. . . . . 6
⊢ ((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) → ∃𝑣 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑣 ∧ (𝑗 ↾t 𝑣) ∈ 𝐴)) |
| 39 | 38 | 3expb 1120 |
. . . . 5
⊢ ((𝑗 ∈ Locally Locally 𝐴 ∧ (𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥)) → ∃𝑣 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑣 ∧ (𝑗 ↾t 𝑣) ∈ 𝐴)) |
| 40 | 39 | ralrimivva 3188 |
. . . 4
⊢ (𝑗 ∈ Locally Locally 𝐴 → ∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑣 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑣 ∧ (𝑗 ↾t 𝑣) ∈ 𝐴)) |
| 41 | | islly 23411 |
. . . 4
⊢ (𝑗 ∈ Locally 𝐴 ↔ (𝑗 ∈ Top ∧ ∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑣 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑣 ∧ (𝑗 ↾t 𝑣) ∈ 𝐴))) |
| 42 | 1, 40, 41 | sylanbrc 583 |
. . 3
⊢ (𝑗 ∈ Locally Locally 𝐴 → 𝑗 ∈ Locally 𝐴) |
| 43 | 42 | ssriv 3967 |
. 2
⊢ Locally
Locally 𝐴 ⊆ Locally
𝐴 |
| 44 | | llyrest 23428 |
. . . . 5
⊢ ((𝑗 ∈ Locally 𝐴 ∧ 𝑥 ∈ 𝑗) → (𝑗 ↾t 𝑥) ∈ Locally 𝐴) |
| 45 | 44 | adantl 481 |
. . . 4
⊢
((⊤ ∧ (𝑗
∈ Locally 𝐴 ∧
𝑥 ∈ 𝑗)) → (𝑗 ↾t 𝑥) ∈ Locally 𝐴) |
| 46 | | llytop 23415 |
. . . . . 6
⊢ (𝑗 ∈ Locally 𝐴 → 𝑗 ∈ Top) |
| 47 | 46 | ssriv 3967 |
. . . . 5
⊢ Locally
𝐴 ⊆
Top |
| 48 | 47 | a1i 11 |
. . . 4
⊢ (⊤
→ Locally 𝐴 ⊆
Top) |
| 49 | 45, 48 | restlly 23426 |
. . 3
⊢ (⊤
→ Locally 𝐴 ⊆
Locally Locally 𝐴) |
| 50 | 49 | mptru 1547 |
. 2
⊢ Locally
𝐴 ⊆ Locally Locally
𝐴 |
| 51 | 43, 50 | eqssi 3980 |
1
⊢ Locally
Locally 𝐴 = Locally 𝐴 |