MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  llyidm Structured version   Visualization version   GIF version

Theorem llyidm 22090
Description: Idempotence of the "locally" predicate, i.e. being "locally 𝐴 " is a local property. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
llyidm Locally Locally 𝐴 = Locally 𝐴

Proof of Theorem llyidm
Dummy variables 𝑗 𝑢 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 llytop 22074 . . . 4 (𝑗 ∈ Locally Locally 𝐴𝑗 ∈ Top)
2 llyi 22076 . . . . . . 7 ((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) → ∃𝑢𝑗 (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))
3 simprr3 1219 . . . . . . . . 9 (((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) → (𝑗t 𝑢) ∈ Locally 𝐴)
4 simprl 769 . . . . . . . . . 10 (((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) → 𝑢𝑗)
5 ssidd 3990 . . . . . . . . . 10 (((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) → 𝑢𝑢)
613ad2ant1 1129 . . . . . . . . . . . 12 ((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) → 𝑗 ∈ Top)
76adantr 483 . . . . . . . . . . 11 (((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) → 𝑗 ∈ Top)
8 restopn2 21779 . . . . . . . . . . 11 ((𝑗 ∈ Top ∧ 𝑢𝑗) → (𝑢 ∈ (𝑗t 𝑢) ↔ (𝑢𝑗𝑢𝑢)))
97, 4, 8syl2anc 586 . . . . . . . . . 10 (((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) → (𝑢 ∈ (𝑗t 𝑢) ↔ (𝑢𝑗𝑢𝑢)))
104, 5, 9mpbir2and 711 . . . . . . . . 9 (((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) → 𝑢 ∈ (𝑗t 𝑢))
11 simprr2 1218 . . . . . . . . 9 (((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) → 𝑦𝑢)
12 llyi 22076 . . . . . . . . 9 (((𝑗t 𝑢) ∈ Locally 𝐴𝑢 ∈ (𝑗t 𝑢) ∧ 𝑦𝑢) → ∃𝑣 ∈ (𝑗t 𝑢)(𝑣𝑢𝑦𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))
133, 10, 11, 12syl3anc 1367 . . . . . . . 8 (((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) → ∃𝑣 ∈ (𝑗t 𝑢)(𝑣𝑢𝑦𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))
14 restopn2 21779 . . . . . . . . . . . 12 ((𝑗 ∈ Top ∧ 𝑢𝑗) → (𝑣 ∈ (𝑗t 𝑢) ↔ (𝑣𝑗𝑣𝑢)))
157, 4, 14syl2anc 586 . . . . . . . . . . 11 (((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) → (𝑣 ∈ (𝑗t 𝑢) ↔ (𝑣𝑗𝑣𝑢)))
16 simpl 485 . . . . . . . . . . 11 ((𝑣𝑗𝑣𝑢) → 𝑣𝑗)
1715, 16syl6bi 255 . . . . . . . . . 10 (((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) → (𝑣 ∈ (𝑗t 𝑢) → 𝑣𝑗))
18 simprl 769 . . . . . . . . . . . . 13 ((((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣𝑗 ∧ (𝑣𝑢𝑦𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣𝑗)
19 simprr1 1217 . . . . . . . . . . . . . . 15 ((((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣𝑗 ∧ (𝑣𝑢𝑦𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣𝑢)
20 simprr1 1217 . . . . . . . . . . . . . . . 16 (((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) → 𝑢𝑥)
2120adantr 483 . . . . . . . . . . . . . . 15 ((((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣𝑗 ∧ (𝑣𝑢𝑦𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑢𝑥)
2219, 21sstrd 3977 . . . . . . . . . . . . . 14 ((((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣𝑗 ∧ (𝑣𝑢𝑦𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣𝑥)
23 velpw 4547 . . . . . . . . . . . . . 14 (𝑣 ∈ 𝒫 𝑥𝑣𝑥)
2422, 23sylibr 236 . . . . . . . . . . . . 13 ((((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣𝑗 ∧ (𝑣𝑢𝑦𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣 ∈ 𝒫 𝑥)
2518, 24elind 4171 . . . . . . . . . . . 12 ((((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣𝑗 ∧ (𝑣𝑢𝑦𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣 ∈ (𝑗 ∩ 𝒫 𝑥))
26 simprr2 1218 . . . . . . . . . . . 12 ((((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣𝑗 ∧ (𝑣𝑢𝑦𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑦𝑣)
277adantr 483 . . . . . . . . . . . . . 14 ((((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣𝑗 ∧ (𝑣𝑢𝑦𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑗 ∈ Top)
28 simplrl 775 . . . . . . . . . . . . . 14 ((((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣𝑗 ∧ (𝑣𝑢𝑦𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑢𝑗)
29 restabs 21767 . . . . . . . . . . . . . 14 ((𝑗 ∈ Top ∧ 𝑣𝑢𝑢𝑗) → ((𝑗t 𝑢) ↾t 𝑣) = (𝑗t 𝑣))
3027, 19, 28, 29syl3anc 1367 . . . . . . . . . . . . 13 ((((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣𝑗 ∧ (𝑣𝑢𝑦𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → ((𝑗t 𝑢) ↾t 𝑣) = (𝑗t 𝑣))
31 simprr3 1219 . . . . . . . . . . . . 13 ((((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣𝑗 ∧ (𝑣𝑢𝑦𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴)
3230, 31eqeltrrd 2914 . . . . . . . . . . . 12 ((((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣𝑗 ∧ (𝑣𝑢𝑦𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → (𝑗t 𝑣) ∈ 𝐴)
3325, 26, 32jca32 518 . . . . . . . . . . 11 ((((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣𝑗 ∧ (𝑣𝑢𝑦𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴))) → (𝑣 ∈ (𝑗 ∩ 𝒫 𝑥) ∧ (𝑦𝑣 ∧ (𝑗t 𝑣) ∈ 𝐴)))
3433ex 415 . . . . . . . . . 10 (((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) → ((𝑣𝑗 ∧ (𝑣𝑢𝑦𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴)) → (𝑣 ∈ (𝑗 ∩ 𝒫 𝑥) ∧ (𝑦𝑣 ∧ (𝑗t 𝑣) ∈ 𝐴))))
3517, 34syland 604 . . . . . . . . 9 (((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) → ((𝑣 ∈ (𝑗t 𝑢) ∧ (𝑣𝑢𝑦𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴)) → (𝑣 ∈ (𝑗 ∩ 𝒫 𝑥) ∧ (𝑦𝑣 ∧ (𝑗t 𝑣) ∈ 𝐴))))
3635reximdv2 3271 . . . . . . . 8 (((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) → (∃𝑣 ∈ (𝑗t 𝑢)(𝑣𝑢𝑦𝑣 ∧ ((𝑗t 𝑢) ↾t 𝑣) ∈ 𝐴) → ∃𝑣 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑣 ∧ (𝑗t 𝑣) ∈ 𝐴)))
3713, 36mpd 15 . . . . . . 7 (((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) ∧ (𝑢𝑗 ∧ (𝑢𝑥𝑦𝑢 ∧ (𝑗t 𝑢) ∈ Locally 𝐴))) → ∃𝑣 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑣 ∧ (𝑗t 𝑣) ∈ 𝐴))
382, 37rexlimddv 3291 . . . . . 6 ((𝑗 ∈ Locally Locally 𝐴𝑥𝑗𝑦𝑥) → ∃𝑣 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑣 ∧ (𝑗t 𝑣) ∈ 𝐴))
39383expb 1116 . . . . 5 ((𝑗 ∈ Locally Locally 𝐴 ∧ (𝑥𝑗𝑦𝑥)) → ∃𝑣 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑣 ∧ (𝑗t 𝑣) ∈ 𝐴))
4039ralrimivva 3191 . . . 4 (𝑗 ∈ Locally Locally 𝐴 → ∀𝑥𝑗𝑦𝑥𝑣 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑣 ∧ (𝑗t 𝑣) ∈ 𝐴))
41 islly 22070 . . . 4 (𝑗 ∈ Locally 𝐴 ↔ (𝑗 ∈ Top ∧ ∀𝑥𝑗𝑦𝑥𝑣 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑣 ∧ (𝑗t 𝑣) ∈ 𝐴)))
421, 40, 41sylanbrc 585 . . 3 (𝑗 ∈ Locally Locally 𝐴𝑗 ∈ Locally 𝐴)
4342ssriv 3971 . 2 Locally Locally 𝐴 ⊆ Locally 𝐴
44 llyrest 22087 . . . . 5 ((𝑗 ∈ Locally 𝐴𝑥𝑗) → (𝑗t 𝑥) ∈ Locally 𝐴)
4544adantl 484 . . . 4 ((⊤ ∧ (𝑗 ∈ Locally 𝐴𝑥𝑗)) → (𝑗t 𝑥) ∈ Locally 𝐴)
46 llytop 22074 . . . . . 6 (𝑗 ∈ Locally 𝐴𝑗 ∈ Top)
4746ssriv 3971 . . . . 5 Locally 𝐴 ⊆ Top
4847a1i 11 . . . 4 (⊤ → Locally 𝐴 ⊆ Top)
4945, 48restlly 22085 . . 3 (⊤ → Locally 𝐴 ⊆ Locally Locally 𝐴)
5049mptru 1540 . 2 Locally 𝐴 ⊆ Locally Locally 𝐴
5143, 50eqssi 3983 1 Locally Locally 𝐴 = Locally 𝐴
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398  w3a 1083   = wceq 1533  wtru 1534  wcel 2110  wral 3138  wrex 3139  cin 3935  wss 3936  𝒫 cpw 4539  (class class class)co 7150  t crest 16688  Topctop 21495  Locally clly 22066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-oadd 8100  df-er 8283  df-en 8504  df-fin 8507  df-fi 8869  df-rest 16690  df-topgen 16711  df-top 21496  df-topon 21513  df-bases 21548  df-lly 22068
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator