| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | llytop 23480 | . . . 4
⊢ (𝑗 ∈ Locally Locally 𝐴 → 𝑗 ∈ Top) | 
| 2 |  | llyi 23482 | . . . . . . 7
⊢ ((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) → ∃𝑢 ∈ 𝑗 (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴)) | 
| 3 |  | simprr3 1224 | . . . . . . . . 9
⊢ (((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) → (𝑗 ↾t 𝑢) ∈ Locally 𝐴) | 
| 4 |  | simprl 771 | . . . . . . . . . 10
⊢ (((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) → 𝑢 ∈ 𝑗) | 
| 5 |  | ssidd 4007 | . . . . . . . . . 10
⊢ (((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) → 𝑢 ⊆ 𝑢) | 
| 6 | 1 | 3ad2ant1 1134 | . . . . . . . . . . . 12
⊢ ((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) → 𝑗 ∈ Top) | 
| 7 | 6 | adantr 480 | . . . . . . . . . . 11
⊢ (((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) → 𝑗 ∈ Top) | 
| 8 |  | restopn2 23185 | . . . . . . . . . . 11
⊢ ((𝑗 ∈ Top ∧ 𝑢 ∈ 𝑗) → (𝑢 ∈ (𝑗 ↾t 𝑢) ↔ (𝑢 ∈ 𝑗 ∧ 𝑢 ⊆ 𝑢))) | 
| 9 | 7, 4, 8 | syl2anc 584 | . . . . . . . . . 10
⊢ (((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) → (𝑢 ∈ (𝑗 ↾t 𝑢) ↔ (𝑢 ∈ 𝑗 ∧ 𝑢 ⊆ 𝑢))) | 
| 10 | 4, 5, 9 | mpbir2and 713 | . . . . . . . . 9
⊢ (((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) → 𝑢 ∈ (𝑗 ↾t 𝑢)) | 
| 11 |  | simprr2 1223 | . . . . . . . . 9
⊢ (((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) → 𝑦 ∈ 𝑢) | 
| 12 |  | llyi 23482 | . . . . . . . . 9
⊢ (((𝑗 ↾t 𝑢) ∈ Locally 𝐴 ∧ 𝑢 ∈ (𝑗 ↾t 𝑢) ∧ 𝑦 ∈ 𝑢) → ∃𝑣 ∈ (𝑗 ↾t 𝑢)(𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴)) | 
| 13 | 3, 10, 11, 12 | syl3anc 1373 | . . . . . . . 8
⊢ (((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) → ∃𝑣 ∈ (𝑗 ↾t 𝑢)(𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴)) | 
| 14 |  | restopn2 23185 | . . . . . . . . . . . 12
⊢ ((𝑗 ∈ Top ∧ 𝑢 ∈ 𝑗) → (𝑣 ∈ (𝑗 ↾t 𝑢) ↔ (𝑣 ∈ 𝑗 ∧ 𝑣 ⊆ 𝑢))) | 
| 15 | 7, 4, 14 | syl2anc 584 | . . . . . . . . . . 11
⊢ (((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) → (𝑣 ∈ (𝑗 ↾t 𝑢) ↔ (𝑣 ∈ 𝑗 ∧ 𝑣 ⊆ 𝑢))) | 
| 16 |  | simpl 482 | . . . . . . . . . . 11
⊢ ((𝑣 ∈ 𝑗 ∧ 𝑣 ⊆ 𝑢) → 𝑣 ∈ 𝑗) | 
| 17 | 15, 16 | biimtrdi 253 | . . . . . . . . . 10
⊢ (((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) → (𝑣 ∈ (𝑗 ↾t 𝑢) → 𝑣 ∈ 𝑗)) | 
| 18 |  | simprl 771 | . . . . . . . . . . . . 13
⊢ ((((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣 ∈ 𝑗 ∧ (𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣 ∈ 𝑗) | 
| 19 |  | simprr1 1222 | . . . . . . . . . . . . . . 15
⊢ ((((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣 ∈ 𝑗 ∧ (𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣 ⊆ 𝑢) | 
| 20 |  | simprr1 1222 | . . . . . . . . . . . . . . . 16
⊢ (((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) → 𝑢 ⊆ 𝑥) | 
| 21 | 20 | adantr 480 | . . . . . . . . . . . . . . 15
⊢ ((((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣 ∈ 𝑗 ∧ (𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑢 ⊆ 𝑥) | 
| 22 | 19, 21 | sstrd 3994 | . . . . . . . . . . . . . 14
⊢ ((((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣 ∈ 𝑗 ∧ (𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣 ⊆ 𝑥) | 
| 23 |  | velpw 4605 | . . . . . . . . . . . . . 14
⊢ (𝑣 ∈ 𝒫 𝑥 ↔ 𝑣 ⊆ 𝑥) | 
| 24 | 22, 23 | sylibr 234 | . . . . . . . . . . . . 13
⊢ ((((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣 ∈ 𝑗 ∧ (𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣 ∈ 𝒫 𝑥) | 
| 25 | 18, 24 | elind 4200 | . . . . . . . . . . . 12
⊢ ((((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣 ∈ 𝑗 ∧ (𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑣 ∈ (𝑗 ∩ 𝒫 𝑥)) | 
| 26 |  | simprr2 1223 | . . . . . . . . . . . 12
⊢ ((((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣 ∈ 𝑗 ∧ (𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑦 ∈ 𝑣) | 
| 27 | 7 | adantr 480 | . . . . . . . . . . . . . 14
⊢ ((((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣 ∈ 𝑗 ∧ (𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑗 ∈ Top) | 
| 28 |  | simplrl 777 | . . . . . . . . . . . . . 14
⊢ ((((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣 ∈ 𝑗 ∧ (𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → 𝑢 ∈ 𝑗) | 
| 29 |  | restabs 23173 | . . . . . . . . . . . . . 14
⊢ ((𝑗 ∈ Top ∧ 𝑣 ⊆ 𝑢 ∧ 𝑢 ∈ 𝑗) → ((𝑗 ↾t 𝑢) ↾t 𝑣) = (𝑗 ↾t 𝑣)) | 
| 30 | 27, 19, 28, 29 | syl3anc 1373 | . . . . . . . . . . . . 13
⊢ ((((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣 ∈ 𝑗 ∧ (𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → ((𝑗 ↾t 𝑢) ↾t 𝑣) = (𝑗 ↾t 𝑣)) | 
| 31 |  | simprr3 1224 | . . . . . . . . . . . . 13
⊢ ((((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣 ∈ 𝑗 ∧ (𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴) | 
| 32 | 30, 31 | eqeltrrd 2842 | . . . . . . . . . . . 12
⊢ ((((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣 ∈ 𝑗 ∧ (𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → (𝑗 ↾t 𝑣) ∈ 𝐴) | 
| 33 | 25, 26, 32 | jca32 515 | . . . . . . . . . . 11
⊢ ((((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) ∧ (𝑣 ∈ 𝑗 ∧ (𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴))) → (𝑣 ∈ (𝑗 ∩ 𝒫 𝑥) ∧ (𝑦 ∈ 𝑣 ∧ (𝑗 ↾t 𝑣) ∈ 𝐴))) | 
| 34 | 33 | ex 412 | . . . . . . . . . 10
⊢ (((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) → ((𝑣 ∈ 𝑗 ∧ (𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴)) → (𝑣 ∈ (𝑗 ∩ 𝒫 𝑥) ∧ (𝑦 ∈ 𝑣 ∧ (𝑗 ↾t 𝑣) ∈ 𝐴)))) | 
| 35 | 17, 34 | syland 603 | . . . . . . . . 9
⊢ (((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) → ((𝑣 ∈ (𝑗 ↾t 𝑢) ∧ (𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴)) → (𝑣 ∈ (𝑗 ∩ 𝒫 𝑥) ∧ (𝑦 ∈ 𝑣 ∧ (𝑗 ↾t 𝑣) ∈ 𝐴)))) | 
| 36 | 35 | reximdv2 3164 | . . . . . . . 8
⊢ (((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) → (∃𝑣 ∈ (𝑗 ↾t 𝑢)(𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ((𝑗 ↾t 𝑢) ↾t 𝑣) ∈ 𝐴) → ∃𝑣 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑣 ∧ (𝑗 ↾t 𝑣) ∈ 𝐴))) | 
| 37 | 13, 36 | mpd 15 | . . . . . . 7
⊢ (((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) ∧ (𝑢 ∈ 𝑗 ∧ (𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ Locally 𝐴))) → ∃𝑣 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑣 ∧ (𝑗 ↾t 𝑣) ∈ 𝐴)) | 
| 38 | 2, 37 | rexlimddv 3161 | . . . . . 6
⊢ ((𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥) → ∃𝑣 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑣 ∧ (𝑗 ↾t 𝑣) ∈ 𝐴)) | 
| 39 | 38 | 3expb 1121 | . . . . 5
⊢ ((𝑗 ∈ Locally Locally 𝐴 ∧ (𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥)) → ∃𝑣 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑣 ∧ (𝑗 ↾t 𝑣) ∈ 𝐴)) | 
| 40 | 39 | ralrimivva 3202 | . . . 4
⊢ (𝑗 ∈ Locally Locally 𝐴 → ∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑣 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑣 ∧ (𝑗 ↾t 𝑣) ∈ 𝐴)) | 
| 41 |  | islly 23476 | . . . 4
⊢ (𝑗 ∈ Locally 𝐴 ↔ (𝑗 ∈ Top ∧ ∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑣 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑣 ∧ (𝑗 ↾t 𝑣) ∈ 𝐴))) | 
| 42 | 1, 40, 41 | sylanbrc 583 | . . 3
⊢ (𝑗 ∈ Locally Locally 𝐴 → 𝑗 ∈ Locally 𝐴) | 
| 43 | 42 | ssriv 3987 | . 2
⊢ Locally
Locally 𝐴 ⊆ Locally
𝐴 | 
| 44 |  | llyrest 23493 | . . . . 5
⊢ ((𝑗 ∈ Locally 𝐴 ∧ 𝑥 ∈ 𝑗) → (𝑗 ↾t 𝑥) ∈ Locally 𝐴) | 
| 45 | 44 | adantl 481 | . . . 4
⊢
((⊤ ∧ (𝑗
∈ Locally 𝐴 ∧
𝑥 ∈ 𝑗)) → (𝑗 ↾t 𝑥) ∈ Locally 𝐴) | 
| 46 |  | llytop 23480 | . . . . . 6
⊢ (𝑗 ∈ Locally 𝐴 → 𝑗 ∈ Top) | 
| 47 | 46 | ssriv 3987 | . . . . 5
⊢ Locally
𝐴 ⊆
Top | 
| 48 | 47 | a1i 11 | . . . 4
⊢ (⊤
→ Locally 𝐴 ⊆
Top) | 
| 49 | 45, 48 | restlly 23491 | . . 3
⊢ (⊤
→ Locally 𝐴 ⊆
Locally Locally 𝐴) | 
| 50 | 49 | mptru 1547 | . 2
⊢ Locally
𝐴 ⊆ Locally Locally
𝐴 | 
| 51 | 43, 50 | eqssi 4000 | 1
⊢ Locally
Locally 𝐴 = Locally 𝐴 |