MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0seqcvgd Structured version   Visualization version   GIF version

Theorem nn0seqcvgd 16275
Description: A strictly-decreasing nonnegative integer sequence with initial term 𝑁 reaches zero by the 𝑁 th term. Deduction version. (Contributed by Paul Chapman, 31-Mar-2011.)
Hypotheses
Ref Expression
nn0seqcvgd.1 (𝜑𝐹:ℕ0⟶ℕ0)
nn0seqcvgd.2 (𝜑𝑁 = (𝐹‘0))
nn0seqcvgd.3 ((𝜑𝑘 ∈ ℕ0) → ((𝐹‘(𝑘 + 1)) ≠ 0 → (𝐹‘(𝑘 + 1)) < (𝐹𝑘)))
Assertion
Ref Expression
nn0seqcvgd (𝜑 → (𝐹𝑁) = 0)
Distinct variable groups:   𝑘,𝐹   𝑘,𝑁   𝜑,𝑘

Proof of Theorem nn0seqcvgd
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 nn0seqcvgd.2 . . . . . 6 (𝜑𝑁 = (𝐹‘0))
2 nn0seqcvgd.1 . . . . . . 7 (𝜑𝐹:ℕ0⟶ℕ0)
3 0nn0 12248 . . . . . . 7 0 ∈ ℕ0
4 ffvelrn 6959 . . . . . . 7 ((𝐹:ℕ0⟶ℕ0 ∧ 0 ∈ ℕ0) → (𝐹‘0) ∈ ℕ0)
52, 3, 4sylancl 586 . . . . . 6 (𝜑 → (𝐹‘0) ∈ ℕ0)
61, 5eqeltrd 2839 . . . . 5 (𝜑𝑁 ∈ ℕ0)
76nn0red 12294 . . . . . 6 (𝜑𝑁 ∈ ℝ)
87leidd 11541 . . . . 5 (𝜑𝑁𝑁)
9 fveq2 6774 . . . . . . . 8 (𝑚 = 0 → (𝐹𝑚) = (𝐹‘0))
10 oveq2 7283 . . . . . . . 8 (𝑚 = 0 → (𝑁𝑚) = (𝑁 − 0))
119, 10breq12d 5087 . . . . . . 7 (𝑚 = 0 → ((𝐹𝑚) ≤ (𝑁𝑚) ↔ (𝐹‘0) ≤ (𝑁 − 0)))
1211imbi2d 341 . . . . . 6 (𝑚 = 0 → ((𝜑 → (𝐹𝑚) ≤ (𝑁𝑚)) ↔ (𝜑 → (𝐹‘0) ≤ (𝑁 − 0))))
13 fveq2 6774 . . . . . . . 8 (𝑚 = 𝑘 → (𝐹𝑚) = (𝐹𝑘))
14 oveq2 7283 . . . . . . . 8 (𝑚 = 𝑘 → (𝑁𝑚) = (𝑁𝑘))
1513, 14breq12d 5087 . . . . . . 7 (𝑚 = 𝑘 → ((𝐹𝑚) ≤ (𝑁𝑚) ↔ (𝐹𝑘) ≤ (𝑁𝑘)))
1615imbi2d 341 . . . . . 6 (𝑚 = 𝑘 → ((𝜑 → (𝐹𝑚) ≤ (𝑁𝑚)) ↔ (𝜑 → (𝐹𝑘) ≤ (𝑁𝑘))))
17 fveq2 6774 . . . . . . . 8 (𝑚 = (𝑘 + 1) → (𝐹𝑚) = (𝐹‘(𝑘 + 1)))
18 oveq2 7283 . . . . . . . 8 (𝑚 = (𝑘 + 1) → (𝑁𝑚) = (𝑁 − (𝑘 + 1)))
1917, 18breq12d 5087 . . . . . . 7 (𝑚 = (𝑘 + 1) → ((𝐹𝑚) ≤ (𝑁𝑚) ↔ (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1))))
2019imbi2d 341 . . . . . 6 (𝑚 = (𝑘 + 1) → ((𝜑 → (𝐹𝑚) ≤ (𝑁𝑚)) ↔ (𝜑 → (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1)))))
21 fveq2 6774 . . . . . . . 8 (𝑚 = 𝑁 → (𝐹𝑚) = (𝐹𝑁))
22 oveq2 7283 . . . . . . . 8 (𝑚 = 𝑁 → (𝑁𝑚) = (𝑁𝑁))
2321, 22breq12d 5087 . . . . . . 7 (𝑚 = 𝑁 → ((𝐹𝑚) ≤ (𝑁𝑚) ↔ (𝐹𝑁) ≤ (𝑁𝑁)))
2423imbi2d 341 . . . . . 6 (𝑚 = 𝑁 → ((𝜑 → (𝐹𝑚) ≤ (𝑁𝑚)) ↔ (𝜑 → (𝐹𝑁) ≤ (𝑁𝑁))))
251, 8eqbrtrrd 5098 . . . . . . . 8 (𝜑 → (𝐹‘0) ≤ 𝑁)
267recnd 11003 . . . . . . . . 9 (𝜑𝑁 ∈ ℂ)
2726subid1d 11321 . . . . . . . 8 (𝜑 → (𝑁 − 0) = 𝑁)
2825, 27breqtrrd 5102 . . . . . . 7 (𝜑 → (𝐹‘0) ≤ (𝑁 − 0))
2928a1i 11 . . . . . 6 (𝑁 ∈ ℕ0 → (𝜑 → (𝐹‘0) ≤ (𝑁 − 0)))
30 nn0re 12242 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
31 posdif 11468 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑘 < 𝑁 ↔ 0 < (𝑁𝑘)))
3230, 7, 31syl2anr 597 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ0) → (𝑘 < 𝑁 ↔ 0 < (𝑁𝑘)))
3332adantr 481 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ0) ∧ (𝐹‘(𝑘 + 1)) = 0) → (𝑘 < 𝑁 ↔ 0 < (𝑁𝑘)))
34 breq1 5077 . . . . . . . . . . . . . . . 16 ((𝐹‘(𝑘 + 1)) = 0 → ((𝐹‘(𝑘 + 1)) < (𝑁𝑘) ↔ 0 < (𝑁𝑘)))
3534adantl 482 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ0) ∧ (𝐹‘(𝑘 + 1)) = 0) → ((𝐹‘(𝑘 + 1)) < (𝑁𝑘) ↔ 0 < (𝑁𝑘)))
36 peano2nn0 12273 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0)
37 ffvelrn 6959 . . . . . . . . . . . . . . . . . . . 20 ((𝐹:ℕ0⟶ℕ0 ∧ (𝑘 + 1) ∈ ℕ0) → (𝐹‘(𝑘 + 1)) ∈ ℕ0)
382, 36, 37syl2an 596 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ ℕ0) → (𝐹‘(𝑘 + 1)) ∈ ℕ0)
3938nn0zd 12424 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℕ0) → (𝐹‘(𝑘 + 1)) ∈ ℤ)
406nn0zd 12424 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑁 ∈ ℤ)
41 nn0z 12343 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ0𝑘 ∈ ℤ)
42 zsubcl 12362 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑁𝑘) ∈ ℤ)
4340, 41, 42syl2an 596 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℕ0) → (𝑁𝑘) ∈ ℤ)
44 zltlem1 12373 . . . . . . . . . . . . . . . . . 18 (((𝐹‘(𝑘 + 1)) ∈ ℤ ∧ (𝑁𝑘) ∈ ℤ) → ((𝐹‘(𝑘 + 1)) < (𝑁𝑘) ↔ (𝐹‘(𝑘 + 1)) ≤ ((𝑁𝑘) − 1)))
4539, 43, 44syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ ℕ0) → ((𝐹‘(𝑘 + 1)) < (𝑁𝑘) ↔ (𝐹‘(𝑘 + 1)) ≤ ((𝑁𝑘) − 1)))
46 nn0cn 12243 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
47 ax-1cn 10929 . . . . . . . . . . . . . . . . . . . 20 1 ∈ ℂ
48 subsub4 11254 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁𝑘) − 1) = (𝑁 − (𝑘 + 1)))
4947, 48mp3an3 1449 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑁𝑘) − 1) = (𝑁 − (𝑘 + 1)))
5026, 46, 49syl2an 596 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℕ0) → ((𝑁𝑘) − 1) = (𝑁 − (𝑘 + 1)))
5150breq2d 5086 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ ℕ0) → ((𝐹‘(𝑘 + 1)) ≤ ((𝑁𝑘) − 1) ↔ (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1))))
5245, 51bitrd 278 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ0) → ((𝐹‘(𝑘 + 1)) < (𝑁𝑘) ↔ (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1))))
5352adantr 481 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ0) ∧ (𝐹‘(𝑘 + 1)) = 0) → ((𝐹‘(𝑘 + 1)) < (𝑁𝑘) ↔ (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1))))
5433, 35, 533bitr2d 307 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℕ0) ∧ (𝐹‘(𝑘 + 1)) = 0) → (𝑘 < 𝑁 ↔ (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1))))
5554biimpa 477 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ ℕ0) ∧ (𝐹‘(𝑘 + 1)) = 0) ∧ 𝑘 < 𝑁) → (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1)))
5655an32s 649 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ ℕ0) ∧ 𝑘 < 𝑁) ∧ (𝐹‘(𝑘 + 1)) = 0) → (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1)))
5756a1d 25 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ ℕ0) ∧ 𝑘 < 𝑁) ∧ (𝐹‘(𝑘 + 1)) = 0) → ((𝐹𝑘) ≤ (𝑁𝑘) → (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1))))
58 nn0seqcvgd.3 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ0) → ((𝐹‘(𝑘 + 1)) ≠ 0 → (𝐹‘(𝑘 + 1)) < (𝐹𝑘)))
5938nn0red 12294 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ0) → (𝐹‘(𝑘 + 1)) ∈ ℝ)
602ffvelrnda 6961 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ ℕ0)
6160nn0red 12294 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ ℝ)
6243zred 12426 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ0) → (𝑁𝑘) ∈ ℝ)
63 ltletr 11067 . . . . . . . . . . . . . . . 16 (((𝐹‘(𝑘 + 1)) ∈ ℝ ∧ (𝐹𝑘) ∈ ℝ ∧ (𝑁𝑘) ∈ ℝ) → (((𝐹‘(𝑘 + 1)) < (𝐹𝑘) ∧ (𝐹𝑘) ≤ (𝑁𝑘)) → (𝐹‘(𝑘 + 1)) < (𝑁𝑘)))
6459, 61, 62, 63syl3anc 1370 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ0) → (((𝐹‘(𝑘 + 1)) < (𝐹𝑘) ∧ (𝐹𝑘) ≤ (𝑁𝑘)) → (𝐹‘(𝑘 + 1)) < (𝑁𝑘)))
6564, 52sylibd 238 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ0) → (((𝐹‘(𝑘 + 1)) < (𝐹𝑘) ∧ (𝐹𝑘) ≤ (𝑁𝑘)) → (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1))))
6658, 65syland 603 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ0) → (((𝐹‘(𝑘 + 1)) ≠ 0 ∧ (𝐹𝑘) ≤ (𝑁𝑘)) → (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1))))
6766adantr 481 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑘 < 𝑁) → (((𝐹‘(𝑘 + 1)) ≠ 0 ∧ (𝐹𝑘) ≤ (𝑁𝑘)) → (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1))))
6867expdimp 453 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ ℕ0) ∧ 𝑘 < 𝑁) ∧ (𝐹‘(𝑘 + 1)) ≠ 0) → ((𝐹𝑘) ≤ (𝑁𝑘) → (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1))))
6957, 68pm2.61dane 3032 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑘 < 𝑁) → ((𝐹𝑘) ≤ (𝑁𝑘) → (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1))))
7069anasss 467 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ℕ0𝑘 < 𝑁)) → ((𝐹𝑘) ≤ (𝑁𝑘) → (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1))))
7170expcom 414 . . . . . . . 8 ((𝑘 ∈ ℕ0𝑘 < 𝑁) → (𝜑 → ((𝐹𝑘) ≤ (𝑁𝑘) → (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1)))))
7271a2d 29 . . . . . . 7 ((𝑘 ∈ ℕ0𝑘 < 𝑁) → ((𝜑 → (𝐹𝑘) ≤ (𝑁𝑘)) → (𝜑 → (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1)))))
73723adant1 1129 . . . . . 6 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0𝑘 < 𝑁) → ((𝜑 → (𝐹𝑘) ≤ (𝑁𝑘)) → (𝜑 → (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1)))))
7412, 16, 20, 24, 29, 73fnn0ind 12419 . . . . 5 ((𝑁 ∈ ℕ0𝑁 ∈ ℕ0𝑁𝑁) → (𝜑 → (𝐹𝑁) ≤ (𝑁𝑁)))
756, 6, 8, 74syl3anc 1370 . . . 4 (𝜑 → (𝜑 → (𝐹𝑁) ≤ (𝑁𝑁)))
7675pm2.43i 52 . . 3 (𝜑 → (𝐹𝑁) ≤ (𝑁𝑁))
7726subidd 11320 . . 3 (𝜑 → (𝑁𝑁) = 0)
7876, 77breqtrd 5100 . 2 (𝜑 → (𝐹𝑁) ≤ 0)
792, 6ffvelrnd 6962 . . 3 (𝜑 → (𝐹𝑁) ∈ ℕ0)
8079nn0ge0d 12296 . 2 (𝜑 → 0 ≤ (𝐹𝑁))
8179nn0red 12294 . . 3 (𝜑 → (𝐹𝑁) ∈ ℝ)
82 0re 10977 . . 3 0 ∈ ℝ
83 letri3 11060 . . 3 (((𝐹𝑁) ∈ ℝ ∧ 0 ∈ ℝ) → ((𝐹𝑁) = 0 ↔ ((𝐹𝑁) ≤ 0 ∧ 0 ≤ (𝐹𝑁))))
8481, 82, 83sylancl 586 . 2 (𝜑 → ((𝐹𝑁) = 0 ↔ ((𝐹𝑁) ≤ 0 ∧ 0 ≤ (𝐹𝑁))))
8578, 80, 84mpbir2and 710 1 (𝜑 → (𝐹𝑁) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943   class class class wbr 5074  wf 6429  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   < clt 11009  cle 11010  cmin 11205  0cn0 12233  cz 12319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320
This theorem is referenced by:  algcvg  16281  nn0seqcvg  33634
  Copyright terms: Public domain W3C validator