MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0seqcvgd Structured version   Visualization version   GIF version

Theorem nn0seqcvgd 15891
Description: A strictly-decreasing nonnegative integer sequence with initial term 𝑁 reaches zero by the 𝑁 th term. Deduction version. (Contributed by Paul Chapman, 31-Mar-2011.)
Hypotheses
Ref Expression
nn0seqcvgd.1 (𝜑𝐹:ℕ0⟶ℕ0)
nn0seqcvgd.2 (𝜑𝑁 = (𝐹‘0))
nn0seqcvgd.3 ((𝜑𝑘 ∈ ℕ0) → ((𝐹‘(𝑘 + 1)) ≠ 0 → (𝐹‘(𝑘 + 1)) < (𝐹𝑘)))
Assertion
Ref Expression
nn0seqcvgd (𝜑 → (𝐹𝑁) = 0)
Distinct variable groups:   𝑘,𝐹   𝑘,𝑁   𝜑,𝑘

Proof of Theorem nn0seqcvgd
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 nn0seqcvgd.2 . . . . . 6 (𝜑𝑁 = (𝐹‘0))
2 nn0seqcvgd.1 . . . . . . 7 (𝜑𝐹:ℕ0⟶ℕ0)
3 0nn0 11890 . . . . . . 7 0 ∈ ℕ0
4 ffvelrn 6822 . . . . . . 7 ((𝐹:ℕ0⟶ℕ0 ∧ 0 ∈ ℕ0) → (𝐹‘0) ∈ ℕ0)
52, 3, 4sylancl 589 . . . . . 6 (𝜑 → (𝐹‘0) ∈ ℕ0)
61, 5eqeltrd 2912 . . . . 5 (𝜑𝑁 ∈ ℕ0)
76nn0red 11934 . . . . . 6 (𝜑𝑁 ∈ ℝ)
87leidd 11183 . . . . 5 (𝜑𝑁𝑁)
9 fveq2 6643 . . . . . . . 8 (𝑚 = 0 → (𝐹𝑚) = (𝐹‘0))
10 oveq2 7138 . . . . . . . 8 (𝑚 = 0 → (𝑁𝑚) = (𝑁 − 0))
119, 10breq12d 5052 . . . . . . 7 (𝑚 = 0 → ((𝐹𝑚) ≤ (𝑁𝑚) ↔ (𝐹‘0) ≤ (𝑁 − 0)))
1211imbi2d 344 . . . . . 6 (𝑚 = 0 → ((𝜑 → (𝐹𝑚) ≤ (𝑁𝑚)) ↔ (𝜑 → (𝐹‘0) ≤ (𝑁 − 0))))
13 fveq2 6643 . . . . . . . 8 (𝑚 = 𝑘 → (𝐹𝑚) = (𝐹𝑘))
14 oveq2 7138 . . . . . . . 8 (𝑚 = 𝑘 → (𝑁𝑚) = (𝑁𝑘))
1513, 14breq12d 5052 . . . . . . 7 (𝑚 = 𝑘 → ((𝐹𝑚) ≤ (𝑁𝑚) ↔ (𝐹𝑘) ≤ (𝑁𝑘)))
1615imbi2d 344 . . . . . 6 (𝑚 = 𝑘 → ((𝜑 → (𝐹𝑚) ≤ (𝑁𝑚)) ↔ (𝜑 → (𝐹𝑘) ≤ (𝑁𝑘))))
17 fveq2 6643 . . . . . . . 8 (𝑚 = (𝑘 + 1) → (𝐹𝑚) = (𝐹‘(𝑘 + 1)))
18 oveq2 7138 . . . . . . . 8 (𝑚 = (𝑘 + 1) → (𝑁𝑚) = (𝑁 − (𝑘 + 1)))
1917, 18breq12d 5052 . . . . . . 7 (𝑚 = (𝑘 + 1) → ((𝐹𝑚) ≤ (𝑁𝑚) ↔ (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1))))
2019imbi2d 344 . . . . . 6 (𝑚 = (𝑘 + 1) → ((𝜑 → (𝐹𝑚) ≤ (𝑁𝑚)) ↔ (𝜑 → (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1)))))
21 fveq2 6643 . . . . . . . 8 (𝑚 = 𝑁 → (𝐹𝑚) = (𝐹𝑁))
22 oveq2 7138 . . . . . . . 8 (𝑚 = 𝑁 → (𝑁𝑚) = (𝑁𝑁))
2321, 22breq12d 5052 . . . . . . 7 (𝑚 = 𝑁 → ((𝐹𝑚) ≤ (𝑁𝑚) ↔ (𝐹𝑁) ≤ (𝑁𝑁)))
2423imbi2d 344 . . . . . 6 (𝑚 = 𝑁 → ((𝜑 → (𝐹𝑚) ≤ (𝑁𝑚)) ↔ (𝜑 → (𝐹𝑁) ≤ (𝑁𝑁))))
251, 8eqbrtrrd 5063 . . . . . . . 8 (𝜑 → (𝐹‘0) ≤ 𝑁)
267recnd 10646 . . . . . . . . 9 (𝜑𝑁 ∈ ℂ)
2726subid1d 10963 . . . . . . . 8 (𝜑 → (𝑁 − 0) = 𝑁)
2825, 27breqtrrd 5067 . . . . . . 7 (𝜑 → (𝐹‘0) ≤ (𝑁 − 0))
2928a1i 11 . . . . . 6 (𝑁 ∈ ℕ0 → (𝜑 → (𝐹‘0) ≤ (𝑁 − 0)))
30 nn0re 11884 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
31 posdif 11110 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑘 < 𝑁 ↔ 0 < (𝑁𝑘)))
3230, 7, 31syl2anr 599 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ0) → (𝑘 < 𝑁 ↔ 0 < (𝑁𝑘)))
3332adantr 484 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ0) ∧ (𝐹‘(𝑘 + 1)) = 0) → (𝑘 < 𝑁 ↔ 0 < (𝑁𝑘)))
34 breq1 5042 . . . . . . . . . . . . . . . 16 ((𝐹‘(𝑘 + 1)) = 0 → ((𝐹‘(𝑘 + 1)) < (𝑁𝑘) ↔ 0 < (𝑁𝑘)))
3534adantl 485 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ0) ∧ (𝐹‘(𝑘 + 1)) = 0) → ((𝐹‘(𝑘 + 1)) < (𝑁𝑘) ↔ 0 < (𝑁𝑘)))
36 peano2nn0 11915 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0)
37 ffvelrn 6822 . . . . . . . . . . . . . . . . . . . 20 ((𝐹:ℕ0⟶ℕ0 ∧ (𝑘 + 1) ∈ ℕ0) → (𝐹‘(𝑘 + 1)) ∈ ℕ0)
382, 36, 37syl2an 598 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ ℕ0) → (𝐹‘(𝑘 + 1)) ∈ ℕ0)
3938nn0zd 12063 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℕ0) → (𝐹‘(𝑘 + 1)) ∈ ℤ)
406nn0zd 12063 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑁 ∈ ℤ)
41 nn0z 11983 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ0𝑘 ∈ ℤ)
42 zsubcl 12002 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑁𝑘) ∈ ℤ)
4340, 41, 42syl2an 598 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℕ0) → (𝑁𝑘) ∈ ℤ)
44 zltlem1 12013 . . . . . . . . . . . . . . . . . 18 (((𝐹‘(𝑘 + 1)) ∈ ℤ ∧ (𝑁𝑘) ∈ ℤ) → ((𝐹‘(𝑘 + 1)) < (𝑁𝑘) ↔ (𝐹‘(𝑘 + 1)) ≤ ((𝑁𝑘) − 1)))
4539, 43, 44syl2anc 587 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ ℕ0) → ((𝐹‘(𝑘 + 1)) < (𝑁𝑘) ↔ (𝐹‘(𝑘 + 1)) ≤ ((𝑁𝑘) − 1)))
46 nn0cn 11885 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
47 ax-1cn 10572 . . . . . . . . . . . . . . . . . . . 20 1 ∈ ℂ
48 subsub4 10896 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁𝑘) − 1) = (𝑁 − (𝑘 + 1)))
4947, 48mp3an3 1447 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑁𝑘) − 1) = (𝑁 − (𝑘 + 1)))
5026, 46, 49syl2an 598 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℕ0) → ((𝑁𝑘) − 1) = (𝑁 − (𝑘 + 1)))
5150breq2d 5051 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ ℕ0) → ((𝐹‘(𝑘 + 1)) ≤ ((𝑁𝑘) − 1) ↔ (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1))))
5245, 51bitrd 282 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ0) → ((𝐹‘(𝑘 + 1)) < (𝑁𝑘) ↔ (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1))))
5352adantr 484 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ0) ∧ (𝐹‘(𝑘 + 1)) = 0) → ((𝐹‘(𝑘 + 1)) < (𝑁𝑘) ↔ (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1))))
5433, 35, 533bitr2d 310 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℕ0) ∧ (𝐹‘(𝑘 + 1)) = 0) → (𝑘 < 𝑁 ↔ (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1))))
5554biimpa 480 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ ℕ0) ∧ (𝐹‘(𝑘 + 1)) = 0) ∧ 𝑘 < 𝑁) → (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1)))
5655an32s 651 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ ℕ0) ∧ 𝑘 < 𝑁) ∧ (𝐹‘(𝑘 + 1)) = 0) → (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1)))
5756a1d 25 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ ℕ0) ∧ 𝑘 < 𝑁) ∧ (𝐹‘(𝑘 + 1)) = 0) → ((𝐹𝑘) ≤ (𝑁𝑘) → (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1))))
58 nn0seqcvgd.3 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ0) → ((𝐹‘(𝑘 + 1)) ≠ 0 → (𝐹‘(𝑘 + 1)) < (𝐹𝑘)))
5938nn0red 11934 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ0) → (𝐹‘(𝑘 + 1)) ∈ ℝ)
602ffvelrnda 6824 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ ℕ0)
6160nn0red 11934 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ ℝ)
6243zred 12065 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ0) → (𝑁𝑘) ∈ ℝ)
63 ltletr 10709 . . . . . . . . . . . . . . . 16 (((𝐹‘(𝑘 + 1)) ∈ ℝ ∧ (𝐹𝑘) ∈ ℝ ∧ (𝑁𝑘) ∈ ℝ) → (((𝐹‘(𝑘 + 1)) < (𝐹𝑘) ∧ (𝐹𝑘) ≤ (𝑁𝑘)) → (𝐹‘(𝑘 + 1)) < (𝑁𝑘)))
6459, 61, 62, 63syl3anc 1368 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ0) → (((𝐹‘(𝑘 + 1)) < (𝐹𝑘) ∧ (𝐹𝑘) ≤ (𝑁𝑘)) → (𝐹‘(𝑘 + 1)) < (𝑁𝑘)))
6564, 52sylibd 242 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ0) → (((𝐹‘(𝑘 + 1)) < (𝐹𝑘) ∧ (𝐹𝑘) ≤ (𝑁𝑘)) → (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1))))
6658, 65syland 605 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ0) → (((𝐹‘(𝑘 + 1)) ≠ 0 ∧ (𝐹𝑘) ≤ (𝑁𝑘)) → (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1))))
6766adantr 484 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑘 < 𝑁) → (((𝐹‘(𝑘 + 1)) ≠ 0 ∧ (𝐹𝑘) ≤ (𝑁𝑘)) → (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1))))
6867expdimp 456 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ ℕ0) ∧ 𝑘 < 𝑁) ∧ (𝐹‘(𝑘 + 1)) ≠ 0) → ((𝐹𝑘) ≤ (𝑁𝑘) → (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1))))
6957, 68pm2.61dane 3094 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑘 < 𝑁) → ((𝐹𝑘) ≤ (𝑁𝑘) → (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1))))
7069anasss 470 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ℕ0𝑘 < 𝑁)) → ((𝐹𝑘) ≤ (𝑁𝑘) → (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1))))
7170expcom 417 . . . . . . . 8 ((𝑘 ∈ ℕ0𝑘 < 𝑁) → (𝜑 → ((𝐹𝑘) ≤ (𝑁𝑘) → (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1)))))
7271a2d 29 . . . . . . 7 ((𝑘 ∈ ℕ0𝑘 < 𝑁) → ((𝜑 → (𝐹𝑘) ≤ (𝑁𝑘)) → (𝜑 → (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1)))))
73723adant1 1127 . . . . . 6 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0𝑘 < 𝑁) → ((𝜑 → (𝐹𝑘) ≤ (𝑁𝑘)) → (𝜑 → (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1)))))
7412, 16, 20, 24, 29, 73fnn0ind 12059 . . . . 5 ((𝑁 ∈ ℕ0𝑁 ∈ ℕ0𝑁𝑁) → (𝜑 → (𝐹𝑁) ≤ (𝑁𝑁)))
756, 6, 8, 74syl3anc 1368 . . . 4 (𝜑 → (𝜑 → (𝐹𝑁) ≤ (𝑁𝑁)))
7675pm2.43i 52 . . 3 (𝜑 → (𝐹𝑁) ≤ (𝑁𝑁))
7726subidd 10962 . . 3 (𝜑 → (𝑁𝑁) = 0)
7876, 77breqtrd 5065 . 2 (𝜑 → (𝐹𝑁) ≤ 0)
792, 6ffvelrnd 6825 . . 3 (𝜑 → (𝐹𝑁) ∈ ℕ0)
8079nn0ge0d 11936 . 2 (𝜑 → 0 ≤ (𝐹𝑁))
8179nn0red 11934 . . 3 (𝜑 → (𝐹𝑁) ∈ ℝ)
82 0re 10620 . . 3 0 ∈ ℝ
83 letri3 10703 . . 3 (((𝐹𝑁) ∈ ℝ ∧ 0 ∈ ℝ) → ((𝐹𝑁) = 0 ↔ ((𝐹𝑁) ≤ 0 ∧ 0 ≤ (𝐹𝑁))))
8481, 82, 83sylancl 589 . 2 (𝜑 → ((𝐹𝑁) = 0 ↔ ((𝐹𝑁) ≤ 0 ∧ 0 ≤ (𝐹𝑁))))
8578, 80, 84mpbir2and 712 1 (𝜑 → (𝐹𝑁) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115  wne 3007   class class class wbr 5039  wf 6324  cfv 6328  (class class class)co 7130  cc 10512  cr 10513  0cc0 10514  1c1 10515   + caddc 10517   < clt 10652  cle 10653  cmin 10847  0cn0 11875  cz 11959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-om 7556  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-er 8264  df-en 8485  df-dom 8486  df-sdom 8487  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-nn 11616  df-n0 11876  df-z 11960
This theorem is referenced by:  algcvg  15897  nn0seqcvg  32926
  Copyright terms: Public domain W3C validator