MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0seqcvgd Structured version   Visualization version   GIF version

Theorem nn0seqcvgd 16538
Description: A strictly-decreasing nonnegative integer sequence with initial term 𝑁 reaches zero by the 𝑁 th term. Deduction version. (Contributed by Paul Chapman, 31-Mar-2011.)
Hypotheses
Ref Expression
nn0seqcvgd.1 (πœ‘ β†’ 𝐹:β„•0βŸΆβ„•0)
nn0seqcvgd.2 (πœ‘ β†’ 𝑁 = (πΉβ€˜0))
nn0seqcvgd.3 ((πœ‘ ∧ π‘˜ ∈ β„•0) β†’ ((πΉβ€˜(π‘˜ + 1)) β‰  0 β†’ (πΉβ€˜(π‘˜ + 1)) < (πΉβ€˜π‘˜)))
Assertion
Ref Expression
nn0seqcvgd (πœ‘ β†’ (πΉβ€˜π‘) = 0)
Distinct variable groups:   π‘˜,𝐹   π‘˜,𝑁   πœ‘,π‘˜

Proof of Theorem nn0seqcvgd
Dummy variable π‘š is distinct from all other variables.
StepHypRef Expression
1 nn0seqcvgd.2 . . . . . 6 (πœ‘ β†’ 𝑁 = (πΉβ€˜0))
2 nn0seqcvgd.1 . . . . . . 7 (πœ‘ β†’ 𝐹:β„•0βŸΆβ„•0)
3 0nn0 12515 . . . . . . 7 0 ∈ β„•0
4 ffvelcdm 7085 . . . . . . 7 ((𝐹:β„•0βŸΆβ„•0 ∧ 0 ∈ β„•0) β†’ (πΉβ€˜0) ∈ β„•0)
52, 3, 4sylancl 584 . . . . . 6 (πœ‘ β†’ (πΉβ€˜0) ∈ β„•0)
61, 5eqeltrd 2825 . . . . 5 (πœ‘ β†’ 𝑁 ∈ β„•0)
76nn0red 12561 . . . . . 6 (πœ‘ β†’ 𝑁 ∈ ℝ)
87leidd 11808 . . . . 5 (πœ‘ β†’ 𝑁 ≀ 𝑁)
9 fveq2 6891 . . . . . . . 8 (π‘š = 0 β†’ (πΉβ€˜π‘š) = (πΉβ€˜0))
10 oveq2 7423 . . . . . . . 8 (π‘š = 0 β†’ (𝑁 βˆ’ π‘š) = (𝑁 βˆ’ 0))
119, 10breq12d 5156 . . . . . . 7 (π‘š = 0 β†’ ((πΉβ€˜π‘š) ≀ (𝑁 βˆ’ π‘š) ↔ (πΉβ€˜0) ≀ (𝑁 βˆ’ 0)))
1211imbi2d 339 . . . . . 6 (π‘š = 0 β†’ ((πœ‘ β†’ (πΉβ€˜π‘š) ≀ (𝑁 βˆ’ π‘š)) ↔ (πœ‘ β†’ (πΉβ€˜0) ≀ (𝑁 βˆ’ 0))))
13 fveq2 6891 . . . . . . . 8 (π‘š = π‘˜ β†’ (πΉβ€˜π‘š) = (πΉβ€˜π‘˜))
14 oveq2 7423 . . . . . . . 8 (π‘š = π‘˜ β†’ (𝑁 βˆ’ π‘š) = (𝑁 βˆ’ π‘˜))
1513, 14breq12d 5156 . . . . . . 7 (π‘š = π‘˜ β†’ ((πΉβ€˜π‘š) ≀ (𝑁 βˆ’ π‘š) ↔ (πΉβ€˜π‘˜) ≀ (𝑁 βˆ’ π‘˜)))
1615imbi2d 339 . . . . . 6 (π‘š = π‘˜ β†’ ((πœ‘ β†’ (πΉβ€˜π‘š) ≀ (𝑁 βˆ’ π‘š)) ↔ (πœ‘ β†’ (πΉβ€˜π‘˜) ≀ (𝑁 βˆ’ π‘˜))))
17 fveq2 6891 . . . . . . . 8 (π‘š = (π‘˜ + 1) β†’ (πΉβ€˜π‘š) = (πΉβ€˜(π‘˜ + 1)))
18 oveq2 7423 . . . . . . . 8 (π‘š = (π‘˜ + 1) β†’ (𝑁 βˆ’ π‘š) = (𝑁 βˆ’ (π‘˜ + 1)))
1917, 18breq12d 5156 . . . . . . 7 (π‘š = (π‘˜ + 1) β†’ ((πΉβ€˜π‘š) ≀ (𝑁 βˆ’ π‘š) ↔ (πΉβ€˜(π‘˜ + 1)) ≀ (𝑁 βˆ’ (π‘˜ + 1))))
2019imbi2d 339 . . . . . 6 (π‘š = (π‘˜ + 1) β†’ ((πœ‘ β†’ (πΉβ€˜π‘š) ≀ (𝑁 βˆ’ π‘š)) ↔ (πœ‘ β†’ (πΉβ€˜(π‘˜ + 1)) ≀ (𝑁 βˆ’ (π‘˜ + 1)))))
21 fveq2 6891 . . . . . . . 8 (π‘š = 𝑁 β†’ (πΉβ€˜π‘š) = (πΉβ€˜π‘))
22 oveq2 7423 . . . . . . . 8 (π‘š = 𝑁 β†’ (𝑁 βˆ’ π‘š) = (𝑁 βˆ’ 𝑁))
2321, 22breq12d 5156 . . . . . . 7 (π‘š = 𝑁 β†’ ((πΉβ€˜π‘š) ≀ (𝑁 βˆ’ π‘š) ↔ (πΉβ€˜π‘) ≀ (𝑁 βˆ’ 𝑁)))
2423imbi2d 339 . . . . . 6 (π‘š = 𝑁 β†’ ((πœ‘ β†’ (πΉβ€˜π‘š) ≀ (𝑁 βˆ’ π‘š)) ↔ (πœ‘ β†’ (πΉβ€˜π‘) ≀ (𝑁 βˆ’ 𝑁))))
251, 8eqbrtrrd 5167 . . . . . . . 8 (πœ‘ β†’ (πΉβ€˜0) ≀ 𝑁)
267recnd 11270 . . . . . . . . 9 (πœ‘ β†’ 𝑁 ∈ β„‚)
2726subid1d 11588 . . . . . . . 8 (πœ‘ β†’ (𝑁 βˆ’ 0) = 𝑁)
2825, 27breqtrrd 5171 . . . . . . 7 (πœ‘ β†’ (πΉβ€˜0) ≀ (𝑁 βˆ’ 0))
2928a1i 11 . . . . . 6 (𝑁 ∈ β„•0 β†’ (πœ‘ β†’ (πΉβ€˜0) ≀ (𝑁 βˆ’ 0)))
30 nn0re 12509 . . . . . . . . . . . . . . . . 17 (π‘˜ ∈ β„•0 β†’ π‘˜ ∈ ℝ)
31 posdif 11735 . . . . . . . . . . . . . . . . 17 ((π‘˜ ∈ ℝ ∧ 𝑁 ∈ ℝ) β†’ (π‘˜ < 𝑁 ↔ 0 < (𝑁 βˆ’ π‘˜)))
3230, 7, 31syl2anr 595 . . . . . . . . . . . . . . . 16 ((πœ‘ ∧ π‘˜ ∈ β„•0) β†’ (π‘˜ < 𝑁 ↔ 0 < (𝑁 βˆ’ π‘˜)))
3332adantr 479 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ π‘˜ ∈ β„•0) ∧ (πΉβ€˜(π‘˜ + 1)) = 0) β†’ (π‘˜ < 𝑁 ↔ 0 < (𝑁 βˆ’ π‘˜)))
34 breq1 5146 . . . . . . . . . . . . . . . 16 ((πΉβ€˜(π‘˜ + 1)) = 0 β†’ ((πΉβ€˜(π‘˜ + 1)) < (𝑁 βˆ’ π‘˜) ↔ 0 < (𝑁 βˆ’ π‘˜)))
3534adantl 480 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ π‘˜ ∈ β„•0) ∧ (πΉβ€˜(π‘˜ + 1)) = 0) β†’ ((πΉβ€˜(π‘˜ + 1)) < (𝑁 βˆ’ π‘˜) ↔ 0 < (𝑁 βˆ’ π‘˜)))
36 peano2nn0 12540 . . . . . . . . . . . . . . . . . . . 20 (π‘˜ ∈ β„•0 β†’ (π‘˜ + 1) ∈ β„•0)
37 ffvelcdm 7085 . . . . . . . . . . . . . . . . . . . 20 ((𝐹:β„•0βŸΆβ„•0 ∧ (π‘˜ + 1) ∈ β„•0) β†’ (πΉβ€˜(π‘˜ + 1)) ∈ β„•0)
382, 36, 37syl2an 594 . . . . . . . . . . . . . . . . . . 19 ((πœ‘ ∧ π‘˜ ∈ β„•0) β†’ (πΉβ€˜(π‘˜ + 1)) ∈ β„•0)
3938nn0zd 12612 . . . . . . . . . . . . . . . . . 18 ((πœ‘ ∧ π‘˜ ∈ β„•0) β†’ (πΉβ€˜(π‘˜ + 1)) ∈ β„€)
406nn0zd 12612 . . . . . . . . . . . . . . . . . . 19 (πœ‘ β†’ 𝑁 ∈ β„€)
41 nn0z 12611 . . . . . . . . . . . . . . . . . . 19 (π‘˜ ∈ β„•0 β†’ π‘˜ ∈ β„€)
42 zsubcl 12632 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ β„€ ∧ π‘˜ ∈ β„€) β†’ (𝑁 βˆ’ π‘˜) ∈ β„€)
4340, 41, 42syl2an 594 . . . . . . . . . . . . . . . . . 18 ((πœ‘ ∧ π‘˜ ∈ β„•0) β†’ (𝑁 βˆ’ π‘˜) ∈ β„€)
44 zltlem1 12643 . . . . . . . . . . . . . . . . . 18 (((πΉβ€˜(π‘˜ + 1)) ∈ β„€ ∧ (𝑁 βˆ’ π‘˜) ∈ β„€) β†’ ((πΉβ€˜(π‘˜ + 1)) < (𝑁 βˆ’ π‘˜) ↔ (πΉβ€˜(π‘˜ + 1)) ≀ ((𝑁 βˆ’ π‘˜) βˆ’ 1)))
4539, 43, 44syl2anc 582 . . . . . . . . . . . . . . . . 17 ((πœ‘ ∧ π‘˜ ∈ β„•0) β†’ ((πΉβ€˜(π‘˜ + 1)) < (𝑁 βˆ’ π‘˜) ↔ (πΉβ€˜(π‘˜ + 1)) ≀ ((𝑁 βˆ’ π‘˜) βˆ’ 1)))
46 nn0cn 12510 . . . . . . . . . . . . . . . . . . 19 (π‘˜ ∈ β„•0 β†’ π‘˜ ∈ β„‚)
47 ax-1cn 11194 . . . . . . . . . . . . . . . . . . . 20 1 ∈ β„‚
48 subsub4 11521 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ β„‚ ∧ π‘˜ ∈ β„‚ ∧ 1 ∈ β„‚) β†’ ((𝑁 βˆ’ π‘˜) βˆ’ 1) = (𝑁 βˆ’ (π‘˜ + 1)))
4947, 48mp3an3 1446 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ β„‚ ∧ π‘˜ ∈ β„‚) β†’ ((𝑁 βˆ’ π‘˜) βˆ’ 1) = (𝑁 βˆ’ (π‘˜ + 1)))
5026, 46, 49syl2an 594 . . . . . . . . . . . . . . . . . 18 ((πœ‘ ∧ π‘˜ ∈ β„•0) β†’ ((𝑁 βˆ’ π‘˜) βˆ’ 1) = (𝑁 βˆ’ (π‘˜ + 1)))
5150breq2d 5155 . . . . . . . . . . . . . . . . 17 ((πœ‘ ∧ π‘˜ ∈ β„•0) β†’ ((πΉβ€˜(π‘˜ + 1)) ≀ ((𝑁 βˆ’ π‘˜) βˆ’ 1) ↔ (πΉβ€˜(π‘˜ + 1)) ≀ (𝑁 βˆ’ (π‘˜ + 1))))
5245, 51bitrd 278 . . . . . . . . . . . . . . . 16 ((πœ‘ ∧ π‘˜ ∈ β„•0) β†’ ((πΉβ€˜(π‘˜ + 1)) < (𝑁 βˆ’ π‘˜) ↔ (πΉβ€˜(π‘˜ + 1)) ≀ (𝑁 βˆ’ (π‘˜ + 1))))
5352adantr 479 . . . . . . . . . . . . . . 15 (((πœ‘ ∧ π‘˜ ∈ β„•0) ∧ (πΉβ€˜(π‘˜ + 1)) = 0) β†’ ((πΉβ€˜(π‘˜ + 1)) < (𝑁 βˆ’ π‘˜) ↔ (πΉβ€˜(π‘˜ + 1)) ≀ (𝑁 βˆ’ (π‘˜ + 1))))
5433, 35, 533bitr2d 306 . . . . . . . . . . . . . 14 (((πœ‘ ∧ π‘˜ ∈ β„•0) ∧ (πΉβ€˜(π‘˜ + 1)) = 0) β†’ (π‘˜ < 𝑁 ↔ (πΉβ€˜(π‘˜ + 1)) ≀ (𝑁 βˆ’ (π‘˜ + 1))))
5554biimpa 475 . . . . . . . . . . . . 13 ((((πœ‘ ∧ π‘˜ ∈ β„•0) ∧ (πΉβ€˜(π‘˜ + 1)) = 0) ∧ π‘˜ < 𝑁) β†’ (πΉβ€˜(π‘˜ + 1)) ≀ (𝑁 βˆ’ (π‘˜ + 1)))
5655an32s 650 . . . . . . . . . . . 12 ((((πœ‘ ∧ π‘˜ ∈ β„•0) ∧ π‘˜ < 𝑁) ∧ (πΉβ€˜(π‘˜ + 1)) = 0) β†’ (πΉβ€˜(π‘˜ + 1)) ≀ (𝑁 βˆ’ (π‘˜ + 1)))
5756a1d 25 . . . . . . . . . . 11 ((((πœ‘ ∧ π‘˜ ∈ β„•0) ∧ π‘˜ < 𝑁) ∧ (πΉβ€˜(π‘˜ + 1)) = 0) β†’ ((πΉβ€˜π‘˜) ≀ (𝑁 βˆ’ π‘˜) β†’ (πΉβ€˜(π‘˜ + 1)) ≀ (𝑁 βˆ’ (π‘˜ + 1))))
58 nn0seqcvgd.3 . . . . . . . . . . . . . 14 ((πœ‘ ∧ π‘˜ ∈ β„•0) β†’ ((πΉβ€˜(π‘˜ + 1)) β‰  0 β†’ (πΉβ€˜(π‘˜ + 1)) < (πΉβ€˜π‘˜)))
5938nn0red 12561 . . . . . . . . . . . . . . . 16 ((πœ‘ ∧ π‘˜ ∈ β„•0) β†’ (πΉβ€˜(π‘˜ + 1)) ∈ ℝ)
602ffvelcdmda 7088 . . . . . . . . . . . . . . . . 17 ((πœ‘ ∧ π‘˜ ∈ β„•0) β†’ (πΉβ€˜π‘˜) ∈ β„•0)
6160nn0red 12561 . . . . . . . . . . . . . . . 16 ((πœ‘ ∧ π‘˜ ∈ β„•0) β†’ (πΉβ€˜π‘˜) ∈ ℝ)
6243zred 12694 . . . . . . . . . . . . . . . 16 ((πœ‘ ∧ π‘˜ ∈ β„•0) β†’ (𝑁 βˆ’ π‘˜) ∈ ℝ)
63 ltletr 11334 . . . . . . . . . . . . . . . 16 (((πΉβ€˜(π‘˜ + 1)) ∈ ℝ ∧ (πΉβ€˜π‘˜) ∈ ℝ ∧ (𝑁 βˆ’ π‘˜) ∈ ℝ) β†’ (((πΉβ€˜(π‘˜ + 1)) < (πΉβ€˜π‘˜) ∧ (πΉβ€˜π‘˜) ≀ (𝑁 βˆ’ π‘˜)) β†’ (πΉβ€˜(π‘˜ + 1)) < (𝑁 βˆ’ π‘˜)))
6459, 61, 62, 63syl3anc 1368 . . . . . . . . . . . . . . 15 ((πœ‘ ∧ π‘˜ ∈ β„•0) β†’ (((πΉβ€˜(π‘˜ + 1)) < (πΉβ€˜π‘˜) ∧ (πΉβ€˜π‘˜) ≀ (𝑁 βˆ’ π‘˜)) β†’ (πΉβ€˜(π‘˜ + 1)) < (𝑁 βˆ’ π‘˜)))
6564, 52sylibd 238 . . . . . . . . . . . . . 14 ((πœ‘ ∧ π‘˜ ∈ β„•0) β†’ (((πΉβ€˜(π‘˜ + 1)) < (πΉβ€˜π‘˜) ∧ (πΉβ€˜π‘˜) ≀ (𝑁 βˆ’ π‘˜)) β†’ (πΉβ€˜(π‘˜ + 1)) ≀ (𝑁 βˆ’ (π‘˜ + 1))))
6658, 65syland 601 . . . . . . . . . . . . 13 ((πœ‘ ∧ π‘˜ ∈ β„•0) β†’ (((πΉβ€˜(π‘˜ + 1)) β‰  0 ∧ (πΉβ€˜π‘˜) ≀ (𝑁 βˆ’ π‘˜)) β†’ (πΉβ€˜(π‘˜ + 1)) ≀ (𝑁 βˆ’ (π‘˜ + 1))))
6766adantr 479 . . . . . . . . . . . 12 (((πœ‘ ∧ π‘˜ ∈ β„•0) ∧ π‘˜ < 𝑁) β†’ (((πΉβ€˜(π‘˜ + 1)) β‰  0 ∧ (πΉβ€˜π‘˜) ≀ (𝑁 βˆ’ π‘˜)) β†’ (πΉβ€˜(π‘˜ + 1)) ≀ (𝑁 βˆ’ (π‘˜ + 1))))
6867expdimp 451 . . . . . . . . . . 11 ((((πœ‘ ∧ π‘˜ ∈ β„•0) ∧ π‘˜ < 𝑁) ∧ (πΉβ€˜(π‘˜ + 1)) β‰  0) β†’ ((πΉβ€˜π‘˜) ≀ (𝑁 βˆ’ π‘˜) β†’ (πΉβ€˜(π‘˜ + 1)) ≀ (𝑁 βˆ’ (π‘˜ + 1))))
6957, 68pm2.61dane 3019 . . . . . . . . . 10 (((πœ‘ ∧ π‘˜ ∈ β„•0) ∧ π‘˜ < 𝑁) β†’ ((πΉβ€˜π‘˜) ≀ (𝑁 βˆ’ π‘˜) β†’ (πΉβ€˜(π‘˜ + 1)) ≀ (𝑁 βˆ’ (π‘˜ + 1))))
7069anasss 465 . . . . . . . . 9 ((πœ‘ ∧ (π‘˜ ∈ β„•0 ∧ π‘˜ < 𝑁)) β†’ ((πΉβ€˜π‘˜) ≀ (𝑁 βˆ’ π‘˜) β†’ (πΉβ€˜(π‘˜ + 1)) ≀ (𝑁 βˆ’ (π‘˜ + 1))))
7170expcom 412 . . . . . . . 8 ((π‘˜ ∈ β„•0 ∧ π‘˜ < 𝑁) β†’ (πœ‘ β†’ ((πΉβ€˜π‘˜) ≀ (𝑁 βˆ’ π‘˜) β†’ (πΉβ€˜(π‘˜ + 1)) ≀ (𝑁 βˆ’ (π‘˜ + 1)))))
7271a2d 29 . . . . . . 7 ((π‘˜ ∈ β„•0 ∧ π‘˜ < 𝑁) β†’ ((πœ‘ β†’ (πΉβ€˜π‘˜) ≀ (𝑁 βˆ’ π‘˜)) β†’ (πœ‘ β†’ (πΉβ€˜(π‘˜ + 1)) ≀ (𝑁 βˆ’ (π‘˜ + 1)))))
73723adant1 1127 . . . . . 6 ((𝑁 ∈ β„•0 ∧ π‘˜ ∈ β„•0 ∧ π‘˜ < 𝑁) β†’ ((πœ‘ β†’ (πΉβ€˜π‘˜) ≀ (𝑁 βˆ’ π‘˜)) β†’ (πœ‘ β†’ (πΉβ€˜(π‘˜ + 1)) ≀ (𝑁 βˆ’ (π‘˜ + 1)))))
7412, 16, 20, 24, 29, 73fnn0ind 12689 . . . . 5 ((𝑁 ∈ β„•0 ∧ 𝑁 ∈ β„•0 ∧ 𝑁 ≀ 𝑁) β†’ (πœ‘ β†’ (πΉβ€˜π‘) ≀ (𝑁 βˆ’ 𝑁)))
756, 6, 8, 74syl3anc 1368 . . . 4 (πœ‘ β†’ (πœ‘ β†’ (πΉβ€˜π‘) ≀ (𝑁 βˆ’ 𝑁)))
7675pm2.43i 52 . . 3 (πœ‘ β†’ (πΉβ€˜π‘) ≀ (𝑁 βˆ’ 𝑁))
7726subidd 11587 . . 3 (πœ‘ β†’ (𝑁 βˆ’ 𝑁) = 0)
7876, 77breqtrd 5169 . 2 (πœ‘ β†’ (πΉβ€˜π‘) ≀ 0)
792, 6ffvelcdmd 7089 . . 3 (πœ‘ β†’ (πΉβ€˜π‘) ∈ β„•0)
8079nn0ge0d 12563 . 2 (πœ‘ β†’ 0 ≀ (πΉβ€˜π‘))
8179nn0red 12561 . . 3 (πœ‘ β†’ (πΉβ€˜π‘) ∈ ℝ)
82 0re 11244 . . 3 0 ∈ ℝ
83 letri3 11327 . . 3 (((πΉβ€˜π‘) ∈ ℝ ∧ 0 ∈ ℝ) β†’ ((πΉβ€˜π‘) = 0 ↔ ((πΉβ€˜π‘) ≀ 0 ∧ 0 ≀ (πΉβ€˜π‘))))
8481, 82, 83sylancl 584 . 2 (πœ‘ β†’ ((πΉβ€˜π‘) = 0 ↔ ((πΉβ€˜π‘) ≀ 0 ∧ 0 ≀ (πΉβ€˜π‘))))
8578, 80, 84mpbir2and 711 1 (πœ‘ β†’ (πΉβ€˜π‘) = 0)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   = wceq 1533   ∈ wcel 2098   β‰  wne 2930   class class class wbr 5143  βŸΆwf 6538  β€˜cfv 6542  (class class class)co 7415  β„‚cc 11134  β„cr 11135  0cc0 11136  1c1 11137   + caddc 11139   < clt 11276   ≀ cle 11277   βˆ’ cmin 11472  β„•0cn0 12500  β„€cz 12586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7737  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3960  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-om 7868  df-2nd 7990  df-frecs 8283  df-wrecs 8314  df-recs 8388  df-rdg 8427  df-er 8721  df-en 8961  df-dom 8962  df-sdom 8963  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11474  df-neg 11475  df-nn 12241  df-n0 12501  df-z 12587
This theorem is referenced by:  algcvg  16544  nn0seqcvg  35336
  Copyright terms: Public domain W3C validator