MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0seqcvgd Structured version   Visualization version   GIF version

Theorem nn0seqcvgd 16446
Description: A strictly-decreasing nonnegative integer sequence with initial term 𝑁 reaches zero by the 𝑁 th term. Deduction version. (Contributed by Paul Chapman, 31-Mar-2011.)
Hypotheses
Ref Expression
nn0seqcvgd.1 (𝜑𝐹:ℕ0⟶ℕ0)
nn0seqcvgd.2 (𝜑𝑁 = (𝐹‘0))
nn0seqcvgd.3 ((𝜑𝑘 ∈ ℕ0) → ((𝐹‘(𝑘 + 1)) ≠ 0 → (𝐹‘(𝑘 + 1)) < (𝐹𝑘)))
Assertion
Ref Expression
nn0seqcvgd (𝜑 → (𝐹𝑁) = 0)
Distinct variable groups:   𝑘,𝐹   𝑘,𝑁   𝜑,𝑘

Proof of Theorem nn0seqcvgd
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 nn0seqcvgd.2 . . . . . 6 (𝜑𝑁 = (𝐹‘0))
2 nn0seqcvgd.1 . . . . . . 7 (𝜑𝐹:ℕ0⟶ℕ0)
3 0nn0 12428 . . . . . . 7 0 ∈ ℕ0
4 ffvelcdm 7032 . . . . . . 7 ((𝐹:ℕ0⟶ℕ0 ∧ 0 ∈ ℕ0) → (𝐹‘0) ∈ ℕ0)
52, 3, 4sylancl 586 . . . . . 6 (𝜑 → (𝐹‘0) ∈ ℕ0)
61, 5eqeltrd 2838 . . . . 5 (𝜑𝑁 ∈ ℕ0)
76nn0red 12474 . . . . . 6 (𝜑𝑁 ∈ ℝ)
87leidd 11721 . . . . 5 (𝜑𝑁𝑁)
9 fveq2 6842 . . . . . . . 8 (𝑚 = 0 → (𝐹𝑚) = (𝐹‘0))
10 oveq2 7365 . . . . . . . 8 (𝑚 = 0 → (𝑁𝑚) = (𝑁 − 0))
119, 10breq12d 5118 . . . . . . 7 (𝑚 = 0 → ((𝐹𝑚) ≤ (𝑁𝑚) ↔ (𝐹‘0) ≤ (𝑁 − 0)))
1211imbi2d 340 . . . . . 6 (𝑚 = 0 → ((𝜑 → (𝐹𝑚) ≤ (𝑁𝑚)) ↔ (𝜑 → (𝐹‘0) ≤ (𝑁 − 0))))
13 fveq2 6842 . . . . . . . 8 (𝑚 = 𝑘 → (𝐹𝑚) = (𝐹𝑘))
14 oveq2 7365 . . . . . . . 8 (𝑚 = 𝑘 → (𝑁𝑚) = (𝑁𝑘))
1513, 14breq12d 5118 . . . . . . 7 (𝑚 = 𝑘 → ((𝐹𝑚) ≤ (𝑁𝑚) ↔ (𝐹𝑘) ≤ (𝑁𝑘)))
1615imbi2d 340 . . . . . 6 (𝑚 = 𝑘 → ((𝜑 → (𝐹𝑚) ≤ (𝑁𝑚)) ↔ (𝜑 → (𝐹𝑘) ≤ (𝑁𝑘))))
17 fveq2 6842 . . . . . . . 8 (𝑚 = (𝑘 + 1) → (𝐹𝑚) = (𝐹‘(𝑘 + 1)))
18 oveq2 7365 . . . . . . . 8 (𝑚 = (𝑘 + 1) → (𝑁𝑚) = (𝑁 − (𝑘 + 1)))
1917, 18breq12d 5118 . . . . . . 7 (𝑚 = (𝑘 + 1) → ((𝐹𝑚) ≤ (𝑁𝑚) ↔ (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1))))
2019imbi2d 340 . . . . . 6 (𝑚 = (𝑘 + 1) → ((𝜑 → (𝐹𝑚) ≤ (𝑁𝑚)) ↔ (𝜑 → (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1)))))
21 fveq2 6842 . . . . . . . 8 (𝑚 = 𝑁 → (𝐹𝑚) = (𝐹𝑁))
22 oveq2 7365 . . . . . . . 8 (𝑚 = 𝑁 → (𝑁𝑚) = (𝑁𝑁))
2321, 22breq12d 5118 . . . . . . 7 (𝑚 = 𝑁 → ((𝐹𝑚) ≤ (𝑁𝑚) ↔ (𝐹𝑁) ≤ (𝑁𝑁)))
2423imbi2d 340 . . . . . 6 (𝑚 = 𝑁 → ((𝜑 → (𝐹𝑚) ≤ (𝑁𝑚)) ↔ (𝜑 → (𝐹𝑁) ≤ (𝑁𝑁))))
251, 8eqbrtrrd 5129 . . . . . . . 8 (𝜑 → (𝐹‘0) ≤ 𝑁)
267recnd 11183 . . . . . . . . 9 (𝜑𝑁 ∈ ℂ)
2726subid1d 11501 . . . . . . . 8 (𝜑 → (𝑁 − 0) = 𝑁)
2825, 27breqtrrd 5133 . . . . . . 7 (𝜑 → (𝐹‘0) ≤ (𝑁 − 0))
2928a1i 11 . . . . . 6 (𝑁 ∈ ℕ0 → (𝜑 → (𝐹‘0) ≤ (𝑁 − 0)))
30 nn0re 12422 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
31 posdif 11648 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑘 < 𝑁 ↔ 0 < (𝑁𝑘)))
3230, 7, 31syl2anr 597 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ0) → (𝑘 < 𝑁 ↔ 0 < (𝑁𝑘)))
3332adantr 481 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ0) ∧ (𝐹‘(𝑘 + 1)) = 0) → (𝑘 < 𝑁 ↔ 0 < (𝑁𝑘)))
34 breq1 5108 . . . . . . . . . . . . . . . 16 ((𝐹‘(𝑘 + 1)) = 0 → ((𝐹‘(𝑘 + 1)) < (𝑁𝑘) ↔ 0 < (𝑁𝑘)))
3534adantl 482 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ0) ∧ (𝐹‘(𝑘 + 1)) = 0) → ((𝐹‘(𝑘 + 1)) < (𝑁𝑘) ↔ 0 < (𝑁𝑘)))
36 peano2nn0 12453 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0)
37 ffvelcdm 7032 . . . . . . . . . . . . . . . . . . . 20 ((𝐹:ℕ0⟶ℕ0 ∧ (𝑘 + 1) ∈ ℕ0) → (𝐹‘(𝑘 + 1)) ∈ ℕ0)
382, 36, 37syl2an 596 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ ℕ0) → (𝐹‘(𝑘 + 1)) ∈ ℕ0)
3938nn0zd 12525 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℕ0) → (𝐹‘(𝑘 + 1)) ∈ ℤ)
406nn0zd 12525 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑁 ∈ ℤ)
41 nn0z 12524 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ0𝑘 ∈ ℤ)
42 zsubcl 12545 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑁𝑘) ∈ ℤ)
4340, 41, 42syl2an 596 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℕ0) → (𝑁𝑘) ∈ ℤ)
44 zltlem1 12556 . . . . . . . . . . . . . . . . . 18 (((𝐹‘(𝑘 + 1)) ∈ ℤ ∧ (𝑁𝑘) ∈ ℤ) → ((𝐹‘(𝑘 + 1)) < (𝑁𝑘) ↔ (𝐹‘(𝑘 + 1)) ≤ ((𝑁𝑘) − 1)))
4539, 43, 44syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ ℕ0) → ((𝐹‘(𝑘 + 1)) < (𝑁𝑘) ↔ (𝐹‘(𝑘 + 1)) ≤ ((𝑁𝑘) − 1)))
46 nn0cn 12423 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
47 ax-1cn 11109 . . . . . . . . . . . . . . . . . . . 20 1 ∈ ℂ
48 subsub4 11434 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁𝑘) − 1) = (𝑁 − (𝑘 + 1)))
4947, 48mp3an3 1450 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑁𝑘) − 1) = (𝑁 − (𝑘 + 1)))
5026, 46, 49syl2an 596 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ ℕ0) → ((𝑁𝑘) − 1) = (𝑁 − (𝑘 + 1)))
5150breq2d 5117 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ ℕ0) → ((𝐹‘(𝑘 + 1)) ≤ ((𝑁𝑘) − 1) ↔ (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1))))
5245, 51bitrd 278 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ0) → ((𝐹‘(𝑘 + 1)) < (𝑁𝑘) ↔ (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1))))
5352adantr 481 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ0) ∧ (𝐹‘(𝑘 + 1)) = 0) → ((𝐹‘(𝑘 + 1)) < (𝑁𝑘) ↔ (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1))))
5433, 35, 533bitr2d 306 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℕ0) ∧ (𝐹‘(𝑘 + 1)) = 0) → (𝑘 < 𝑁 ↔ (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1))))
5554biimpa 477 . . . . . . . . . . . . 13 ((((𝜑𝑘 ∈ ℕ0) ∧ (𝐹‘(𝑘 + 1)) = 0) ∧ 𝑘 < 𝑁) → (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1)))
5655an32s 650 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ ℕ0) ∧ 𝑘 < 𝑁) ∧ (𝐹‘(𝑘 + 1)) = 0) → (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1)))
5756a1d 25 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ ℕ0) ∧ 𝑘 < 𝑁) ∧ (𝐹‘(𝑘 + 1)) = 0) → ((𝐹𝑘) ≤ (𝑁𝑘) → (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1))))
58 nn0seqcvgd.3 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ0) → ((𝐹‘(𝑘 + 1)) ≠ 0 → (𝐹‘(𝑘 + 1)) < (𝐹𝑘)))
5938nn0red 12474 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ0) → (𝐹‘(𝑘 + 1)) ∈ ℝ)
602ffvelcdmda 7035 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ ℕ0)
6160nn0red 12474 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ ℝ)
6243zred 12607 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ ℕ0) → (𝑁𝑘) ∈ ℝ)
63 ltletr 11247 . . . . . . . . . . . . . . . 16 (((𝐹‘(𝑘 + 1)) ∈ ℝ ∧ (𝐹𝑘) ∈ ℝ ∧ (𝑁𝑘) ∈ ℝ) → (((𝐹‘(𝑘 + 1)) < (𝐹𝑘) ∧ (𝐹𝑘) ≤ (𝑁𝑘)) → (𝐹‘(𝑘 + 1)) < (𝑁𝑘)))
6459, 61, 62, 63syl3anc 1371 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ0) → (((𝐹‘(𝑘 + 1)) < (𝐹𝑘) ∧ (𝐹𝑘) ≤ (𝑁𝑘)) → (𝐹‘(𝑘 + 1)) < (𝑁𝑘)))
6564, 52sylibd 238 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ0) → (((𝐹‘(𝑘 + 1)) < (𝐹𝑘) ∧ (𝐹𝑘) ≤ (𝑁𝑘)) → (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1))))
6658, 65syland 603 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ0) → (((𝐹‘(𝑘 + 1)) ≠ 0 ∧ (𝐹𝑘) ≤ (𝑁𝑘)) → (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1))))
6766adantr 481 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑘 < 𝑁) → (((𝐹‘(𝑘 + 1)) ≠ 0 ∧ (𝐹𝑘) ≤ (𝑁𝑘)) → (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1))))
6867expdimp 453 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ ℕ0) ∧ 𝑘 < 𝑁) ∧ (𝐹‘(𝑘 + 1)) ≠ 0) → ((𝐹𝑘) ≤ (𝑁𝑘) → (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1))))
6957, 68pm2.61dane 3032 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑘 < 𝑁) → ((𝐹𝑘) ≤ (𝑁𝑘) → (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1))))
7069anasss 467 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ ℕ0𝑘 < 𝑁)) → ((𝐹𝑘) ≤ (𝑁𝑘) → (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1))))
7170expcom 414 . . . . . . . 8 ((𝑘 ∈ ℕ0𝑘 < 𝑁) → (𝜑 → ((𝐹𝑘) ≤ (𝑁𝑘) → (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1)))))
7271a2d 29 . . . . . . 7 ((𝑘 ∈ ℕ0𝑘 < 𝑁) → ((𝜑 → (𝐹𝑘) ≤ (𝑁𝑘)) → (𝜑 → (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1)))))
73723adant1 1130 . . . . . 6 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0𝑘 < 𝑁) → ((𝜑 → (𝐹𝑘) ≤ (𝑁𝑘)) → (𝜑 → (𝐹‘(𝑘 + 1)) ≤ (𝑁 − (𝑘 + 1)))))
7412, 16, 20, 24, 29, 73fnn0ind 12602 . . . . 5 ((𝑁 ∈ ℕ0𝑁 ∈ ℕ0𝑁𝑁) → (𝜑 → (𝐹𝑁) ≤ (𝑁𝑁)))
756, 6, 8, 74syl3anc 1371 . . . 4 (𝜑 → (𝜑 → (𝐹𝑁) ≤ (𝑁𝑁)))
7675pm2.43i 52 . . 3 (𝜑 → (𝐹𝑁) ≤ (𝑁𝑁))
7726subidd 11500 . . 3 (𝜑 → (𝑁𝑁) = 0)
7876, 77breqtrd 5131 . 2 (𝜑 → (𝐹𝑁) ≤ 0)
792, 6ffvelcdmd 7036 . . 3 (𝜑 → (𝐹𝑁) ∈ ℕ0)
8079nn0ge0d 12476 . 2 (𝜑 → 0 ≤ (𝐹𝑁))
8179nn0red 12474 . . 3 (𝜑 → (𝐹𝑁) ∈ ℝ)
82 0re 11157 . . 3 0 ∈ ℝ
83 letri3 11240 . . 3 (((𝐹𝑁) ∈ ℝ ∧ 0 ∈ ℝ) → ((𝐹𝑁) = 0 ↔ ((𝐹𝑁) ≤ 0 ∧ 0 ≤ (𝐹𝑁))))
8481, 82, 83sylancl 586 . 2 (𝜑 → ((𝐹𝑁) = 0 ↔ ((𝐹𝑁) ≤ 0 ∧ 0 ≤ (𝐹𝑁))))
8578, 80, 84mpbir2and 711 1 (𝜑 → (𝐹𝑁) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2943   class class class wbr 5105  wf 6492  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   < clt 11189  cle 11190  cmin 11385  0cn0 12413  cz 12499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-n0 12414  df-z 12500
This theorem is referenced by:  algcvg  16452  nn0seqcvg  34264
  Copyright terms: Public domain W3C validator