Step | Hyp | Ref
| Expression |
1 | | eluni2 4840 |
. . . 4
⊢ (𝑥 ∈ ∪ 𝐹
↔ ∃𝑓 ∈
𝐹 𝑥 ∈ 𝑓) |
2 | | ssel2 3912 |
. . . . . . 7
⊢ ((𝐹 ⊆ (Fil‘𝑋) ∧ 𝑓 ∈ 𝐹) → 𝑓 ∈ (Fil‘𝑋)) |
3 | | filelss 22911 |
. . . . . . . 8
⊢ ((𝑓 ∈ (Fil‘𝑋) ∧ 𝑥 ∈ 𝑓) → 𝑥 ⊆ 𝑋) |
4 | 3 | ex 412 |
. . . . . . 7
⊢ (𝑓 ∈ (Fil‘𝑋) → (𝑥 ∈ 𝑓 → 𝑥 ⊆ 𝑋)) |
5 | 2, 4 | syl 17 |
. . . . . 6
⊢ ((𝐹 ⊆ (Fil‘𝑋) ∧ 𝑓 ∈ 𝐹) → (𝑥 ∈ 𝑓 → 𝑥 ⊆ 𝑋)) |
6 | 5 | rexlimdva 3212 |
. . . . 5
⊢ (𝐹 ⊆ (Fil‘𝑋) → (∃𝑓 ∈ 𝐹 𝑥 ∈ 𝑓 → 𝑥 ⊆ 𝑋)) |
7 | 6 | 3ad2ant1 1131 |
. . . 4
⊢ ((𝐹 ⊆ (Fil‘𝑋) ∧ 𝐹 ≠ ∅ ∧ ∀𝑓 ∈ 𝐹 ∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹) → (∃𝑓 ∈ 𝐹 𝑥 ∈ 𝑓 → 𝑥 ⊆ 𝑋)) |
8 | 1, 7 | syl5bi 241 |
. . 3
⊢ ((𝐹 ⊆ (Fil‘𝑋) ∧ 𝐹 ≠ ∅ ∧ ∀𝑓 ∈ 𝐹 ∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹) → (𝑥 ∈ ∪ 𝐹 → 𝑥 ⊆ 𝑋)) |
9 | 8 | pm4.71rd 562 |
. 2
⊢ ((𝐹 ⊆ (Fil‘𝑋) ∧ 𝐹 ≠ ∅ ∧ ∀𝑓 ∈ 𝐹 ∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹) → (𝑥 ∈ ∪ 𝐹 ↔ (𝑥 ⊆ 𝑋 ∧ 𝑥 ∈ ∪ 𝐹))) |
10 | | ssn0 4331 |
. . . 4
⊢ ((𝐹 ⊆ (Fil‘𝑋) ∧ 𝐹 ≠ ∅) → (Fil‘𝑋) ≠ ∅) |
11 | | fvprc 6748 |
. . . . 5
⊢ (¬
𝑋 ∈ V →
(Fil‘𝑋) =
∅) |
12 | 11 | necon1ai 2970 |
. . . 4
⊢
((Fil‘𝑋) ≠
∅ → 𝑋 ∈
V) |
13 | 10, 12 | syl 17 |
. . 3
⊢ ((𝐹 ⊆ (Fil‘𝑋) ∧ 𝐹 ≠ ∅) → 𝑋 ∈ V) |
14 | 13 | 3adant3 1130 |
. 2
⊢ ((𝐹 ⊆ (Fil‘𝑋) ∧ 𝐹 ≠ ∅ ∧ ∀𝑓 ∈ 𝐹 ∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹) → 𝑋 ∈ V) |
15 | | filtop 22914 |
. . . . . . . . 9
⊢ (𝑓 ∈ (Fil‘𝑋) → 𝑋 ∈ 𝑓) |
16 | 2, 15 | syl 17 |
. . . . . . . 8
⊢ ((𝐹 ⊆ (Fil‘𝑋) ∧ 𝑓 ∈ 𝐹) → 𝑋 ∈ 𝑓) |
17 | 16 | a1d 25 |
. . . . . . 7
⊢ ((𝐹 ⊆ (Fil‘𝑋) ∧ 𝑓 ∈ 𝐹) → (∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹 → 𝑋 ∈ 𝑓)) |
18 | 17 | ralimdva 3102 |
. . . . . 6
⊢ (𝐹 ⊆ (Fil‘𝑋) → (∀𝑓 ∈ 𝐹 ∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹 → ∀𝑓 ∈ 𝐹 𝑋 ∈ 𝑓)) |
19 | | r19.2z 4422 |
. . . . . . 7
⊢ ((𝐹 ≠ ∅ ∧
∀𝑓 ∈ 𝐹 𝑋 ∈ 𝑓) → ∃𝑓 ∈ 𝐹 𝑋 ∈ 𝑓) |
20 | 19 | ex 412 |
. . . . . 6
⊢ (𝐹 ≠ ∅ →
(∀𝑓 ∈ 𝐹 𝑋 ∈ 𝑓 → ∃𝑓 ∈ 𝐹 𝑋 ∈ 𝑓)) |
21 | 18, 20 | sylan9 507 |
. . . . 5
⊢ ((𝐹 ⊆ (Fil‘𝑋) ∧ 𝐹 ≠ ∅) → (∀𝑓 ∈ 𝐹 ∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹 → ∃𝑓 ∈ 𝐹 𝑋 ∈ 𝑓)) |
22 | 21 | 3impia 1115 |
. . . 4
⊢ ((𝐹 ⊆ (Fil‘𝑋) ∧ 𝐹 ≠ ∅ ∧ ∀𝑓 ∈ 𝐹 ∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹) → ∃𝑓 ∈ 𝐹 𝑋 ∈ 𝑓) |
23 | | eluni2 4840 |
. . . 4
⊢ (𝑋 ∈ ∪ 𝐹
↔ ∃𝑓 ∈
𝐹 𝑋 ∈ 𝑓) |
24 | 22, 23 | sylibr 233 |
. . 3
⊢ ((𝐹 ⊆ (Fil‘𝑋) ∧ 𝐹 ≠ ∅ ∧ ∀𝑓 ∈ 𝐹 ∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹) → 𝑋 ∈ ∪ 𝐹) |
25 | | sbcel1v 3783 |
. . 3
⊢
([𝑋 / 𝑥]𝑥 ∈ ∪ 𝐹 ↔ 𝑋 ∈ ∪ 𝐹) |
26 | 24, 25 | sylibr 233 |
. 2
⊢ ((𝐹 ⊆ (Fil‘𝑋) ∧ 𝐹 ≠ ∅ ∧ ∀𝑓 ∈ 𝐹 ∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹) → [𝑋 / 𝑥]𝑥 ∈ ∪ 𝐹) |
27 | | 0nelfil 22908 |
. . . . . 6
⊢ (𝑓 ∈ (Fil‘𝑋) → ¬ ∅ ∈
𝑓) |
28 | 2, 27 | syl 17 |
. . . . 5
⊢ ((𝐹 ⊆ (Fil‘𝑋) ∧ 𝑓 ∈ 𝐹) → ¬ ∅ ∈ 𝑓) |
29 | 28 | ralrimiva 3107 |
. . . 4
⊢ (𝐹 ⊆ (Fil‘𝑋) → ∀𝑓 ∈ 𝐹 ¬ ∅ ∈ 𝑓) |
30 | 29 | 3ad2ant1 1131 |
. . 3
⊢ ((𝐹 ⊆ (Fil‘𝑋) ∧ 𝐹 ≠ ∅ ∧ ∀𝑓 ∈ 𝐹 ∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹) → ∀𝑓 ∈ 𝐹 ¬ ∅ ∈ 𝑓) |
31 | | sbcel1v 3783 |
. . . . . 6
⊢
([∅ / 𝑥]𝑥 ∈ ∪ 𝐹 ↔ ∅ ∈ ∪ 𝐹) |
32 | | eluni2 4840 |
. . . . . 6
⊢ (∅
∈ ∪ 𝐹 ↔ ∃𝑓 ∈ 𝐹 ∅ ∈ 𝑓) |
33 | 31, 32 | bitri 274 |
. . . . 5
⊢
([∅ / 𝑥]𝑥 ∈ ∪ 𝐹 ↔ ∃𝑓 ∈ 𝐹 ∅ ∈ 𝑓) |
34 | 33 | notbii 319 |
. . . 4
⊢ (¬
[∅ / 𝑥]𝑥 ∈ ∪ 𝐹 ↔ ¬ ∃𝑓 ∈ 𝐹 ∅ ∈ 𝑓) |
35 | | ralnex 3163 |
. . . 4
⊢
(∀𝑓 ∈
𝐹 ¬ ∅ ∈
𝑓 ↔ ¬ ∃𝑓 ∈ 𝐹 ∅ ∈ 𝑓) |
36 | 34, 35 | bitr4i 277 |
. . 3
⊢ (¬
[∅ / 𝑥]𝑥 ∈ ∪ 𝐹 ↔ ∀𝑓 ∈ 𝐹 ¬ ∅ ∈ 𝑓) |
37 | 30, 36 | sylibr 233 |
. 2
⊢ ((𝐹 ⊆ (Fil‘𝑋) ∧ 𝐹 ≠ ∅ ∧ ∀𝑓 ∈ 𝐹 ∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹) → ¬ [∅ / 𝑥]𝑥 ∈ ∪ 𝐹) |
38 | | simp13 1203 |
. . . . 5
⊢ (((𝐹 ⊆ (Fil‘𝑋) ∧ 𝐹 ≠ ∅ ∧ ∀𝑓 ∈ 𝐹 ∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑦) → ∀𝑓 ∈ 𝐹 ∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹) |
39 | | r19.29 3183 |
. . . . . 6
⊢
((∀𝑓 ∈
𝐹 ∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹 ∧ ∃𝑓 ∈ 𝐹 𝑥 ∈ 𝑓) → ∃𝑓 ∈ 𝐹 (∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹 ∧ 𝑥 ∈ 𝑓)) |
40 | 39 | ex 412 |
. . . . 5
⊢
(∀𝑓 ∈
𝐹 ∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹 → (∃𝑓 ∈ 𝐹 𝑥 ∈ 𝑓 → ∃𝑓 ∈ 𝐹 (∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹 ∧ 𝑥 ∈ 𝑓))) |
41 | 38, 40 | syl 17 |
. . . 4
⊢ (((𝐹 ⊆ (Fil‘𝑋) ∧ 𝐹 ≠ ∅ ∧ ∀𝑓 ∈ 𝐹 ∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑦) → (∃𝑓 ∈ 𝐹 𝑥 ∈ 𝑓 → ∃𝑓 ∈ 𝐹 (∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹 ∧ 𝑥 ∈ 𝑓))) |
42 | | simp1 1134 |
. . . . 5
⊢ ((𝐹 ⊆ (Fil‘𝑋) ∧ 𝐹 ≠ ∅ ∧ ∀𝑓 ∈ 𝐹 ∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹) → 𝐹 ⊆ (Fil‘𝑋)) |
43 | | simp1 1134 |
. . . . . . . . 9
⊢ ((𝐹 ⊆ (Fil‘𝑋) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑦) → 𝐹 ⊆ (Fil‘𝑋)) |
44 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝑓 ∈ 𝐹 ∧ (∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹 ∧ 𝑥 ∈ 𝑓)) → 𝑓 ∈ 𝐹) |
45 | 43, 44, 2 | syl2an 595 |
. . . . . . . 8
⊢ (((𝐹 ⊆ (Fil‘𝑋) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑦) ∧ (𝑓 ∈ 𝐹 ∧ (∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹 ∧ 𝑥 ∈ 𝑓))) → 𝑓 ∈ (Fil‘𝑋)) |
46 | | simprrr 778 |
. . . . . . . 8
⊢ (((𝐹 ⊆ (Fil‘𝑋) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑦) ∧ (𝑓 ∈ 𝐹 ∧ (∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹 ∧ 𝑥 ∈ 𝑓))) → 𝑥 ∈ 𝑓) |
47 | | simpl2 1190 |
. . . . . . . 8
⊢ (((𝐹 ⊆ (Fil‘𝑋) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑦) ∧ (𝑓 ∈ 𝐹 ∧ (∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹 ∧ 𝑥 ∈ 𝑓))) → 𝑦 ⊆ 𝑋) |
48 | | simpl3 1191 |
. . . . . . . 8
⊢ (((𝐹 ⊆ (Fil‘𝑋) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑦) ∧ (𝑓 ∈ 𝐹 ∧ (∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹 ∧ 𝑥 ∈ 𝑓))) → 𝑥 ⊆ 𝑦) |
49 | | filss 22912 |
. . . . . . . 8
⊢ ((𝑓 ∈ (Fil‘𝑋) ∧ (𝑥 ∈ 𝑓 ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑦)) → 𝑦 ∈ 𝑓) |
50 | 45, 46, 47, 48, 49 | syl13anc 1370 |
. . . . . . 7
⊢ (((𝐹 ⊆ (Fil‘𝑋) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑦) ∧ (𝑓 ∈ 𝐹 ∧ (∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹 ∧ 𝑥 ∈ 𝑓))) → 𝑦 ∈ 𝑓) |
51 | 50 | expr 456 |
. . . . . 6
⊢ (((𝐹 ⊆ (Fil‘𝑋) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑦) ∧ 𝑓 ∈ 𝐹) → ((∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹 ∧ 𝑥 ∈ 𝑓) → 𝑦 ∈ 𝑓)) |
52 | 51 | reximdva 3202 |
. . . . 5
⊢ ((𝐹 ⊆ (Fil‘𝑋) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑦) → (∃𝑓 ∈ 𝐹 (∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹 ∧ 𝑥 ∈ 𝑓) → ∃𝑓 ∈ 𝐹 𝑦 ∈ 𝑓)) |
53 | 42, 52 | syl3an1 1161 |
. . . 4
⊢ (((𝐹 ⊆ (Fil‘𝑋) ∧ 𝐹 ≠ ∅ ∧ ∀𝑓 ∈ 𝐹 ∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑦) → (∃𝑓 ∈ 𝐹 (∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹 ∧ 𝑥 ∈ 𝑓) → ∃𝑓 ∈ 𝐹 𝑦 ∈ 𝑓)) |
54 | 41, 53 | syld 47 |
. . 3
⊢ (((𝐹 ⊆ (Fil‘𝑋) ∧ 𝐹 ≠ ∅ ∧ ∀𝑓 ∈ 𝐹 ∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑦) → (∃𝑓 ∈ 𝐹 𝑥 ∈ 𝑓 → ∃𝑓 ∈ 𝐹 𝑦 ∈ 𝑓)) |
55 | | sbcel1v 3783 |
. . . 4
⊢
([𝑥 / 𝑥]𝑥 ∈ ∪ 𝐹 ↔ 𝑥 ∈ ∪ 𝐹) |
56 | 55, 1 | bitri 274 |
. . 3
⊢
([𝑥 / 𝑥]𝑥 ∈ ∪ 𝐹 ↔ ∃𝑓 ∈ 𝐹 𝑥 ∈ 𝑓) |
57 | | sbcel1v 3783 |
. . . 4
⊢
([𝑦 / 𝑥]𝑥 ∈ ∪ 𝐹 ↔ 𝑦 ∈ ∪ 𝐹) |
58 | | eluni2 4840 |
. . . 4
⊢ (𝑦 ∈ ∪ 𝐹
↔ ∃𝑓 ∈
𝐹 𝑦 ∈ 𝑓) |
59 | 57, 58 | bitri 274 |
. . 3
⊢
([𝑦 / 𝑥]𝑥 ∈ ∪ 𝐹 ↔ ∃𝑓 ∈ 𝐹 𝑦 ∈ 𝑓) |
60 | 54, 56, 59 | 3imtr4g 295 |
. 2
⊢ (((𝐹 ⊆ (Fil‘𝑋) ∧ 𝐹 ≠ ∅ ∧ ∀𝑓 ∈ 𝐹 ∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑦) → ([𝑥 / 𝑥]𝑥 ∈ ∪ 𝐹 → [𝑦 / 𝑥]𝑥 ∈ ∪ 𝐹)) |
61 | | simp13 1203 |
. . . . 5
⊢ (((𝐹 ⊆ (Fil‘𝑋) ∧ 𝐹 ≠ ∅ ∧ ∀𝑓 ∈ 𝐹 ∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑋) → ∀𝑓 ∈ 𝐹 ∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹) |
62 | | r19.29 3183 |
. . . . . 6
⊢
((∀𝑓 ∈
𝐹 ∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹 ∧ ∃𝑓 ∈ 𝐹 𝑦 ∈ 𝑓) → ∃𝑓 ∈ 𝐹 (∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹 ∧ 𝑦 ∈ 𝑓)) |
63 | 62 | ex 412 |
. . . . 5
⊢
(∀𝑓 ∈
𝐹 ∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹 → (∃𝑓 ∈ 𝐹 𝑦 ∈ 𝑓 → ∃𝑓 ∈ 𝐹 (∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹 ∧ 𝑦 ∈ 𝑓))) |
64 | 61, 63 | syl 17 |
. . . 4
⊢ (((𝐹 ⊆ (Fil‘𝑋) ∧ 𝐹 ≠ ∅ ∧ ∀𝑓 ∈ 𝐹 ∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑋) → (∃𝑓 ∈ 𝐹 𝑦 ∈ 𝑓 → ∃𝑓 ∈ 𝐹 (∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹 ∧ 𝑦 ∈ 𝑓))) |
65 | | simp11 1201 |
. . . . 5
⊢ (((𝐹 ⊆ (Fil‘𝑋) ∧ 𝐹 ≠ ∅ ∧ ∀𝑓 ∈ 𝐹 ∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑋) → 𝐹 ⊆ (Fil‘𝑋)) |
66 | | r19.29 3183 |
. . . . . . . . . . 11
⊢
((∀𝑔 ∈
𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹 ∧ ∃𝑔 ∈ 𝐹 𝑥 ∈ 𝑔) → ∃𝑔 ∈ 𝐹 ((𝑓 ∪ 𝑔) ∈ 𝐹 ∧ 𝑥 ∈ 𝑔)) |
67 | 66 | ex 412 |
. . . . . . . . . 10
⊢
(∀𝑔 ∈
𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹 → (∃𝑔 ∈ 𝐹 𝑥 ∈ 𝑔 → ∃𝑔 ∈ 𝐹 ((𝑓 ∪ 𝑔) ∈ 𝐹 ∧ 𝑥 ∈ 𝑔))) |
68 | | elun1 4106 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ 𝑓 → 𝑦 ∈ (𝑓 ∪ 𝑔)) |
69 | | elun2 4107 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ 𝑔 → 𝑥 ∈ (𝑓 ∪ 𝑔)) |
70 | 68, 69 | anim12i 612 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ 𝑓 ∧ 𝑥 ∈ 𝑔) → (𝑦 ∈ (𝑓 ∪ 𝑔) ∧ 𝑥 ∈ (𝑓 ∪ 𝑔))) |
71 | | eleq2 2827 |
. . . . . . . . . . . . . . . . 17
⊢ (ℎ = (𝑓 ∪ 𝑔) → (𝑦 ∈ ℎ ↔ 𝑦 ∈ (𝑓 ∪ 𝑔))) |
72 | | eleq2 2827 |
. . . . . . . . . . . . . . . . 17
⊢ (ℎ = (𝑓 ∪ 𝑔) → (𝑥 ∈ ℎ ↔ 𝑥 ∈ (𝑓 ∪ 𝑔))) |
73 | 71, 72 | anbi12d 630 |
. . . . . . . . . . . . . . . 16
⊢ (ℎ = (𝑓 ∪ 𝑔) → ((𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ) ↔ (𝑦 ∈ (𝑓 ∪ 𝑔) ∧ 𝑥 ∈ (𝑓 ∪ 𝑔)))) |
74 | 73 | rspcev 3552 |
. . . . . . . . . . . . . . 15
⊢ (((𝑓 ∪ 𝑔) ∈ 𝐹 ∧ (𝑦 ∈ (𝑓 ∪ 𝑔) ∧ 𝑥 ∈ (𝑓 ∪ 𝑔))) → ∃ℎ ∈ 𝐹 (𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ)) |
75 | 70, 74 | sylan2 592 |
. . . . . . . . . . . . . 14
⊢ (((𝑓 ∪ 𝑔) ∈ 𝐹 ∧ (𝑦 ∈ 𝑓 ∧ 𝑥 ∈ 𝑔)) → ∃ℎ ∈ 𝐹 (𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ)) |
76 | 75 | an12s 645 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ 𝑓 ∧ ((𝑓 ∪ 𝑔) ∈ 𝐹 ∧ 𝑥 ∈ 𝑔)) → ∃ℎ ∈ 𝐹 (𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ)) |
77 | 76 | ex 412 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ 𝑓 → (((𝑓 ∪ 𝑔) ∈ 𝐹 ∧ 𝑥 ∈ 𝑔) → ∃ℎ ∈ 𝐹 (𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ))) |
78 | 77 | ad2antlr 723 |
. . . . . . . . . . 11
⊢ (((𝑓 ∈ 𝐹 ∧ 𝑦 ∈ 𝑓) ∧ 𝑔 ∈ 𝐹) → (((𝑓 ∪ 𝑔) ∈ 𝐹 ∧ 𝑥 ∈ 𝑔) → ∃ℎ ∈ 𝐹 (𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ))) |
79 | 78 | rexlimdva 3212 |
. . . . . . . . . 10
⊢ ((𝑓 ∈ 𝐹 ∧ 𝑦 ∈ 𝑓) → (∃𝑔 ∈ 𝐹 ((𝑓 ∪ 𝑔) ∈ 𝐹 ∧ 𝑥 ∈ 𝑔) → ∃ℎ ∈ 𝐹 (𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ))) |
80 | 67, 79 | syl9r 78 |
. . . . . . . . 9
⊢ ((𝑓 ∈ 𝐹 ∧ 𝑦 ∈ 𝑓) → (∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹 → (∃𝑔 ∈ 𝐹 𝑥 ∈ 𝑔 → ∃ℎ ∈ 𝐹 (𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ)))) |
81 | 80 | impr 454 |
. . . . . . . 8
⊢ ((𝑓 ∈ 𝐹 ∧ (𝑦 ∈ 𝑓 ∧ ∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹)) → (∃𝑔 ∈ 𝐹 𝑥 ∈ 𝑔 → ∃ℎ ∈ 𝐹 (𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ))) |
82 | 81 | ancom2s 646 |
. . . . . . 7
⊢ ((𝑓 ∈ 𝐹 ∧ (∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹 ∧ 𝑦 ∈ 𝑓)) → (∃𝑔 ∈ 𝐹 𝑥 ∈ 𝑔 → ∃ℎ ∈ 𝐹 (𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ))) |
83 | 82 | rexlimiva 3209 |
. . . . . 6
⊢
(∃𝑓 ∈
𝐹 (∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹 ∧ 𝑦 ∈ 𝑓) → (∃𝑔 ∈ 𝐹 𝑥 ∈ 𝑔 → ∃ℎ ∈ 𝐹 (𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ))) |
84 | 83 | imp 406 |
. . . . 5
⊢
((∃𝑓 ∈
𝐹 (∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹 ∧ 𝑦 ∈ 𝑓) ∧ ∃𝑔 ∈ 𝐹 𝑥 ∈ 𝑔) → ∃ℎ ∈ 𝐹 (𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ)) |
85 | | ssel2 3912 |
. . . . . . 7
⊢ ((𝐹 ⊆ (Fil‘𝑋) ∧ ℎ ∈ 𝐹) → ℎ ∈ (Fil‘𝑋)) |
86 | | filin 22913 |
. . . . . . . 8
⊢ ((ℎ ∈ (Fil‘𝑋) ∧ 𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ) → (𝑦 ∩ 𝑥) ∈ ℎ) |
87 | 86 | 3expib 1120 |
. . . . . . 7
⊢ (ℎ ∈ (Fil‘𝑋) → ((𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ) → (𝑦 ∩ 𝑥) ∈ ℎ)) |
88 | 85, 87 | syl 17 |
. . . . . 6
⊢ ((𝐹 ⊆ (Fil‘𝑋) ∧ ℎ ∈ 𝐹) → ((𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ) → (𝑦 ∩ 𝑥) ∈ ℎ)) |
89 | 88 | reximdva 3202 |
. . . . 5
⊢ (𝐹 ⊆ (Fil‘𝑋) → (∃ℎ ∈ 𝐹 (𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ) → ∃ℎ ∈ 𝐹 (𝑦 ∩ 𝑥) ∈ ℎ)) |
90 | 65, 84, 89 | syl2im 40 |
. . . 4
⊢ (((𝐹 ⊆ (Fil‘𝑋) ∧ 𝐹 ≠ ∅ ∧ ∀𝑓 ∈ 𝐹 ∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑋) → ((∃𝑓 ∈ 𝐹 (∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹 ∧ 𝑦 ∈ 𝑓) ∧ ∃𝑔 ∈ 𝐹 𝑥 ∈ 𝑔) → ∃ℎ ∈ 𝐹 (𝑦 ∩ 𝑥) ∈ ℎ)) |
91 | 64, 90 | syland 602 |
. . 3
⊢ (((𝐹 ⊆ (Fil‘𝑋) ∧ 𝐹 ≠ ∅ ∧ ∀𝑓 ∈ 𝐹 ∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑋) → ((∃𝑓 ∈ 𝐹 𝑦 ∈ 𝑓 ∧ ∃𝑔 ∈ 𝐹 𝑥 ∈ 𝑔) → ∃ℎ ∈ 𝐹 (𝑦 ∩ 𝑥) ∈ ℎ)) |
92 | | eluni2 4840 |
. . . . 5
⊢ (𝑥 ∈ ∪ 𝐹
↔ ∃𝑔 ∈
𝐹 𝑥 ∈ 𝑔) |
93 | 55, 92 | bitri 274 |
. . . 4
⊢
([𝑥 / 𝑥]𝑥 ∈ ∪ 𝐹 ↔ ∃𝑔 ∈ 𝐹 𝑥 ∈ 𝑔) |
94 | 59, 93 | anbi12i 626 |
. . 3
⊢
(([𝑦 / 𝑥]𝑥 ∈ ∪ 𝐹 ∧ [𝑥 / 𝑥]𝑥 ∈ ∪ 𝐹) ↔ (∃𝑓 ∈ 𝐹 𝑦 ∈ 𝑓 ∧ ∃𝑔 ∈ 𝐹 𝑥 ∈ 𝑔)) |
95 | | sbcel1v 3783 |
. . . 4
⊢
([(𝑦 ∩
𝑥) / 𝑥]𝑥 ∈ ∪ 𝐹 ↔ (𝑦 ∩ 𝑥) ∈ ∪ 𝐹) |
96 | | eluni2 4840 |
. . . 4
⊢ ((𝑦 ∩ 𝑥) ∈ ∪ 𝐹 ↔ ∃ℎ ∈ 𝐹 (𝑦 ∩ 𝑥) ∈ ℎ) |
97 | 95, 96 | bitri 274 |
. . 3
⊢
([(𝑦 ∩
𝑥) / 𝑥]𝑥 ∈ ∪ 𝐹 ↔ ∃ℎ ∈ 𝐹 (𝑦 ∩ 𝑥) ∈ ℎ) |
98 | 91, 94, 97 | 3imtr4g 295 |
. 2
⊢ (((𝐹 ⊆ (Fil‘𝑋) ∧ 𝐹 ≠ ∅ ∧ ∀𝑓 ∈ 𝐹 ∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑋) → (([𝑦 / 𝑥]𝑥 ∈ ∪ 𝐹 ∧ [𝑥 / 𝑥]𝑥 ∈ ∪ 𝐹) → [(𝑦 ∩ 𝑥) / 𝑥]𝑥 ∈ ∪ 𝐹)) |
99 | 9, 14, 26, 37, 60, 98 | isfild 22917 |
1
⊢ ((𝐹 ⊆ (Fil‘𝑋) ∧ 𝐹 ≠ ∅ ∧ ∀𝑓 ∈ 𝐹 ∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹) → ∪ 𝐹 ∈ (Fil‘𝑋)) |