| Step | Hyp | Ref
| Expression |
| 1 | | eluni2 4911 |
. . . 4
⊢ (𝑥 ∈ ∪ 𝐹
↔ ∃𝑓 ∈
𝐹 𝑥 ∈ 𝑓) |
| 2 | | ssel2 3978 |
. . . . . . 7
⊢ ((𝐹 ⊆ (Fil‘𝑋) ∧ 𝑓 ∈ 𝐹) → 𝑓 ∈ (Fil‘𝑋)) |
| 3 | | filelss 23860 |
. . . . . . . 8
⊢ ((𝑓 ∈ (Fil‘𝑋) ∧ 𝑥 ∈ 𝑓) → 𝑥 ⊆ 𝑋) |
| 4 | 3 | ex 412 |
. . . . . . 7
⊢ (𝑓 ∈ (Fil‘𝑋) → (𝑥 ∈ 𝑓 → 𝑥 ⊆ 𝑋)) |
| 5 | 2, 4 | syl 17 |
. . . . . 6
⊢ ((𝐹 ⊆ (Fil‘𝑋) ∧ 𝑓 ∈ 𝐹) → (𝑥 ∈ 𝑓 → 𝑥 ⊆ 𝑋)) |
| 6 | 5 | rexlimdva 3155 |
. . . . 5
⊢ (𝐹 ⊆ (Fil‘𝑋) → (∃𝑓 ∈ 𝐹 𝑥 ∈ 𝑓 → 𝑥 ⊆ 𝑋)) |
| 7 | 6 | 3ad2ant1 1134 |
. . . 4
⊢ ((𝐹 ⊆ (Fil‘𝑋) ∧ 𝐹 ≠ ∅ ∧ ∀𝑓 ∈ 𝐹 ∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹) → (∃𝑓 ∈ 𝐹 𝑥 ∈ 𝑓 → 𝑥 ⊆ 𝑋)) |
| 8 | 1, 7 | biimtrid 242 |
. . 3
⊢ ((𝐹 ⊆ (Fil‘𝑋) ∧ 𝐹 ≠ ∅ ∧ ∀𝑓 ∈ 𝐹 ∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹) → (𝑥 ∈ ∪ 𝐹 → 𝑥 ⊆ 𝑋)) |
| 9 | 8 | pm4.71rd 562 |
. 2
⊢ ((𝐹 ⊆ (Fil‘𝑋) ∧ 𝐹 ≠ ∅ ∧ ∀𝑓 ∈ 𝐹 ∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹) → (𝑥 ∈ ∪ 𝐹 ↔ (𝑥 ⊆ 𝑋 ∧ 𝑥 ∈ ∪ 𝐹))) |
| 10 | | ssn0 4404 |
. . . 4
⊢ ((𝐹 ⊆ (Fil‘𝑋) ∧ 𝐹 ≠ ∅) → (Fil‘𝑋) ≠ ∅) |
| 11 | | fvprc 6898 |
. . . . 5
⊢ (¬
𝑋 ∈ V →
(Fil‘𝑋) =
∅) |
| 12 | 11 | necon1ai 2968 |
. . . 4
⊢
((Fil‘𝑋) ≠
∅ → 𝑋 ∈
V) |
| 13 | 10, 12 | syl 17 |
. . 3
⊢ ((𝐹 ⊆ (Fil‘𝑋) ∧ 𝐹 ≠ ∅) → 𝑋 ∈ V) |
| 14 | 13 | 3adant3 1133 |
. 2
⊢ ((𝐹 ⊆ (Fil‘𝑋) ∧ 𝐹 ≠ ∅ ∧ ∀𝑓 ∈ 𝐹 ∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹) → 𝑋 ∈ V) |
| 15 | | filtop 23863 |
. . . . . . . . 9
⊢ (𝑓 ∈ (Fil‘𝑋) → 𝑋 ∈ 𝑓) |
| 16 | 2, 15 | syl 17 |
. . . . . . . 8
⊢ ((𝐹 ⊆ (Fil‘𝑋) ∧ 𝑓 ∈ 𝐹) → 𝑋 ∈ 𝑓) |
| 17 | 16 | a1d 25 |
. . . . . . 7
⊢ ((𝐹 ⊆ (Fil‘𝑋) ∧ 𝑓 ∈ 𝐹) → (∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹 → 𝑋 ∈ 𝑓)) |
| 18 | 17 | ralimdva 3167 |
. . . . . 6
⊢ (𝐹 ⊆ (Fil‘𝑋) → (∀𝑓 ∈ 𝐹 ∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹 → ∀𝑓 ∈ 𝐹 𝑋 ∈ 𝑓)) |
| 19 | | r19.2z 4495 |
. . . . . . 7
⊢ ((𝐹 ≠ ∅ ∧
∀𝑓 ∈ 𝐹 𝑋 ∈ 𝑓) → ∃𝑓 ∈ 𝐹 𝑋 ∈ 𝑓) |
| 20 | 19 | ex 412 |
. . . . . 6
⊢ (𝐹 ≠ ∅ →
(∀𝑓 ∈ 𝐹 𝑋 ∈ 𝑓 → ∃𝑓 ∈ 𝐹 𝑋 ∈ 𝑓)) |
| 21 | 18, 20 | sylan9 507 |
. . . . 5
⊢ ((𝐹 ⊆ (Fil‘𝑋) ∧ 𝐹 ≠ ∅) → (∀𝑓 ∈ 𝐹 ∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹 → ∃𝑓 ∈ 𝐹 𝑋 ∈ 𝑓)) |
| 22 | 21 | 3impia 1118 |
. . . 4
⊢ ((𝐹 ⊆ (Fil‘𝑋) ∧ 𝐹 ≠ ∅ ∧ ∀𝑓 ∈ 𝐹 ∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹) → ∃𝑓 ∈ 𝐹 𝑋 ∈ 𝑓) |
| 23 | | eluni2 4911 |
. . . 4
⊢ (𝑋 ∈ ∪ 𝐹
↔ ∃𝑓 ∈
𝐹 𝑋 ∈ 𝑓) |
| 24 | 22, 23 | sylibr 234 |
. . 3
⊢ ((𝐹 ⊆ (Fil‘𝑋) ∧ 𝐹 ≠ ∅ ∧ ∀𝑓 ∈ 𝐹 ∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹) → 𝑋 ∈ ∪ 𝐹) |
| 25 | | sbcel1v 3856 |
. . 3
⊢
([𝑋 / 𝑥]𝑥 ∈ ∪ 𝐹 ↔ 𝑋 ∈ ∪ 𝐹) |
| 26 | 24, 25 | sylibr 234 |
. 2
⊢ ((𝐹 ⊆ (Fil‘𝑋) ∧ 𝐹 ≠ ∅ ∧ ∀𝑓 ∈ 𝐹 ∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹) → [𝑋 / 𝑥]𝑥 ∈ ∪ 𝐹) |
| 27 | | 0nelfil 23857 |
. . . . . 6
⊢ (𝑓 ∈ (Fil‘𝑋) → ¬ ∅ ∈
𝑓) |
| 28 | 2, 27 | syl 17 |
. . . . 5
⊢ ((𝐹 ⊆ (Fil‘𝑋) ∧ 𝑓 ∈ 𝐹) → ¬ ∅ ∈ 𝑓) |
| 29 | 28 | ralrimiva 3146 |
. . . 4
⊢ (𝐹 ⊆ (Fil‘𝑋) → ∀𝑓 ∈ 𝐹 ¬ ∅ ∈ 𝑓) |
| 30 | 29 | 3ad2ant1 1134 |
. . 3
⊢ ((𝐹 ⊆ (Fil‘𝑋) ∧ 𝐹 ≠ ∅ ∧ ∀𝑓 ∈ 𝐹 ∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹) → ∀𝑓 ∈ 𝐹 ¬ ∅ ∈ 𝑓) |
| 31 | | sbcel1v 3856 |
. . . . . 6
⊢
([∅ / 𝑥]𝑥 ∈ ∪ 𝐹 ↔ ∅ ∈ ∪ 𝐹) |
| 32 | | eluni2 4911 |
. . . . . 6
⊢ (∅
∈ ∪ 𝐹 ↔ ∃𝑓 ∈ 𝐹 ∅ ∈ 𝑓) |
| 33 | 31, 32 | bitri 275 |
. . . . 5
⊢
([∅ / 𝑥]𝑥 ∈ ∪ 𝐹 ↔ ∃𝑓 ∈ 𝐹 ∅ ∈ 𝑓) |
| 34 | 33 | notbii 320 |
. . . 4
⊢ (¬
[∅ / 𝑥]𝑥 ∈ ∪ 𝐹 ↔ ¬ ∃𝑓 ∈ 𝐹 ∅ ∈ 𝑓) |
| 35 | | ralnex 3072 |
. . . 4
⊢
(∀𝑓 ∈
𝐹 ¬ ∅ ∈
𝑓 ↔ ¬ ∃𝑓 ∈ 𝐹 ∅ ∈ 𝑓) |
| 36 | 34, 35 | bitr4i 278 |
. . 3
⊢ (¬
[∅ / 𝑥]𝑥 ∈ ∪ 𝐹 ↔ ∀𝑓 ∈ 𝐹 ¬ ∅ ∈ 𝑓) |
| 37 | 30, 36 | sylibr 234 |
. 2
⊢ ((𝐹 ⊆ (Fil‘𝑋) ∧ 𝐹 ≠ ∅ ∧ ∀𝑓 ∈ 𝐹 ∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹) → ¬ [∅ / 𝑥]𝑥 ∈ ∪ 𝐹) |
| 38 | | simp13 1206 |
. . . . 5
⊢ (((𝐹 ⊆ (Fil‘𝑋) ∧ 𝐹 ≠ ∅ ∧ ∀𝑓 ∈ 𝐹 ∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑦) → ∀𝑓 ∈ 𝐹 ∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹) |
| 39 | | r19.29 3114 |
. . . . . 6
⊢
((∀𝑓 ∈
𝐹 ∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹 ∧ ∃𝑓 ∈ 𝐹 𝑥 ∈ 𝑓) → ∃𝑓 ∈ 𝐹 (∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹 ∧ 𝑥 ∈ 𝑓)) |
| 40 | 39 | ex 412 |
. . . . 5
⊢
(∀𝑓 ∈
𝐹 ∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹 → (∃𝑓 ∈ 𝐹 𝑥 ∈ 𝑓 → ∃𝑓 ∈ 𝐹 (∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹 ∧ 𝑥 ∈ 𝑓))) |
| 41 | 38, 40 | syl 17 |
. . . 4
⊢ (((𝐹 ⊆ (Fil‘𝑋) ∧ 𝐹 ≠ ∅ ∧ ∀𝑓 ∈ 𝐹 ∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑦) → (∃𝑓 ∈ 𝐹 𝑥 ∈ 𝑓 → ∃𝑓 ∈ 𝐹 (∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹 ∧ 𝑥 ∈ 𝑓))) |
| 42 | | simp1 1137 |
. . . . 5
⊢ ((𝐹 ⊆ (Fil‘𝑋) ∧ 𝐹 ≠ ∅ ∧ ∀𝑓 ∈ 𝐹 ∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹) → 𝐹 ⊆ (Fil‘𝑋)) |
| 43 | | simp1 1137 |
. . . . . . . . 9
⊢ ((𝐹 ⊆ (Fil‘𝑋) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑦) → 𝐹 ⊆ (Fil‘𝑋)) |
| 44 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝑓 ∈ 𝐹 ∧ (∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹 ∧ 𝑥 ∈ 𝑓)) → 𝑓 ∈ 𝐹) |
| 45 | 43, 44, 2 | syl2an 596 |
. . . . . . . 8
⊢ (((𝐹 ⊆ (Fil‘𝑋) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑦) ∧ (𝑓 ∈ 𝐹 ∧ (∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹 ∧ 𝑥 ∈ 𝑓))) → 𝑓 ∈ (Fil‘𝑋)) |
| 46 | | simprrr 782 |
. . . . . . . 8
⊢ (((𝐹 ⊆ (Fil‘𝑋) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑦) ∧ (𝑓 ∈ 𝐹 ∧ (∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹 ∧ 𝑥 ∈ 𝑓))) → 𝑥 ∈ 𝑓) |
| 47 | | simpl2 1193 |
. . . . . . . 8
⊢ (((𝐹 ⊆ (Fil‘𝑋) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑦) ∧ (𝑓 ∈ 𝐹 ∧ (∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹 ∧ 𝑥 ∈ 𝑓))) → 𝑦 ⊆ 𝑋) |
| 48 | | simpl3 1194 |
. . . . . . . 8
⊢ (((𝐹 ⊆ (Fil‘𝑋) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑦) ∧ (𝑓 ∈ 𝐹 ∧ (∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹 ∧ 𝑥 ∈ 𝑓))) → 𝑥 ⊆ 𝑦) |
| 49 | | filss 23861 |
. . . . . . . 8
⊢ ((𝑓 ∈ (Fil‘𝑋) ∧ (𝑥 ∈ 𝑓 ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑦)) → 𝑦 ∈ 𝑓) |
| 50 | 45, 46, 47, 48, 49 | syl13anc 1374 |
. . . . . . 7
⊢ (((𝐹 ⊆ (Fil‘𝑋) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑦) ∧ (𝑓 ∈ 𝐹 ∧ (∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹 ∧ 𝑥 ∈ 𝑓))) → 𝑦 ∈ 𝑓) |
| 51 | 50 | expr 456 |
. . . . . 6
⊢ (((𝐹 ⊆ (Fil‘𝑋) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑦) ∧ 𝑓 ∈ 𝐹) → ((∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹 ∧ 𝑥 ∈ 𝑓) → 𝑦 ∈ 𝑓)) |
| 52 | 51 | reximdva 3168 |
. . . . 5
⊢ ((𝐹 ⊆ (Fil‘𝑋) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑦) → (∃𝑓 ∈ 𝐹 (∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹 ∧ 𝑥 ∈ 𝑓) → ∃𝑓 ∈ 𝐹 𝑦 ∈ 𝑓)) |
| 53 | 42, 52 | syl3an1 1164 |
. . . 4
⊢ (((𝐹 ⊆ (Fil‘𝑋) ∧ 𝐹 ≠ ∅ ∧ ∀𝑓 ∈ 𝐹 ∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑦) → (∃𝑓 ∈ 𝐹 (∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹 ∧ 𝑥 ∈ 𝑓) → ∃𝑓 ∈ 𝐹 𝑦 ∈ 𝑓)) |
| 54 | 41, 53 | syld 47 |
. . 3
⊢ (((𝐹 ⊆ (Fil‘𝑋) ∧ 𝐹 ≠ ∅ ∧ ∀𝑓 ∈ 𝐹 ∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑦) → (∃𝑓 ∈ 𝐹 𝑥 ∈ 𝑓 → ∃𝑓 ∈ 𝐹 𝑦 ∈ 𝑓)) |
| 55 | | sbcel1v 3856 |
. . . 4
⊢
([𝑥 / 𝑥]𝑥 ∈ ∪ 𝐹 ↔ 𝑥 ∈ ∪ 𝐹) |
| 56 | 55, 1 | bitri 275 |
. . 3
⊢
([𝑥 / 𝑥]𝑥 ∈ ∪ 𝐹 ↔ ∃𝑓 ∈ 𝐹 𝑥 ∈ 𝑓) |
| 57 | | sbcel1v 3856 |
. . . 4
⊢
([𝑦 / 𝑥]𝑥 ∈ ∪ 𝐹 ↔ 𝑦 ∈ ∪ 𝐹) |
| 58 | | eluni2 4911 |
. . . 4
⊢ (𝑦 ∈ ∪ 𝐹
↔ ∃𝑓 ∈
𝐹 𝑦 ∈ 𝑓) |
| 59 | 57, 58 | bitri 275 |
. . 3
⊢
([𝑦 / 𝑥]𝑥 ∈ ∪ 𝐹 ↔ ∃𝑓 ∈ 𝐹 𝑦 ∈ 𝑓) |
| 60 | 54, 56, 59 | 3imtr4g 296 |
. 2
⊢ (((𝐹 ⊆ (Fil‘𝑋) ∧ 𝐹 ≠ ∅ ∧ ∀𝑓 ∈ 𝐹 ∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑦) → ([𝑥 / 𝑥]𝑥 ∈ ∪ 𝐹 → [𝑦 / 𝑥]𝑥 ∈ ∪ 𝐹)) |
| 61 | | simp13 1206 |
. . . . 5
⊢ (((𝐹 ⊆ (Fil‘𝑋) ∧ 𝐹 ≠ ∅ ∧ ∀𝑓 ∈ 𝐹 ∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑋) → ∀𝑓 ∈ 𝐹 ∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹) |
| 62 | | r19.29 3114 |
. . . . . 6
⊢
((∀𝑓 ∈
𝐹 ∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹 ∧ ∃𝑓 ∈ 𝐹 𝑦 ∈ 𝑓) → ∃𝑓 ∈ 𝐹 (∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹 ∧ 𝑦 ∈ 𝑓)) |
| 63 | 62 | ex 412 |
. . . . 5
⊢
(∀𝑓 ∈
𝐹 ∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹 → (∃𝑓 ∈ 𝐹 𝑦 ∈ 𝑓 → ∃𝑓 ∈ 𝐹 (∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹 ∧ 𝑦 ∈ 𝑓))) |
| 64 | 61, 63 | syl 17 |
. . . 4
⊢ (((𝐹 ⊆ (Fil‘𝑋) ∧ 𝐹 ≠ ∅ ∧ ∀𝑓 ∈ 𝐹 ∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑋) → (∃𝑓 ∈ 𝐹 𝑦 ∈ 𝑓 → ∃𝑓 ∈ 𝐹 (∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹 ∧ 𝑦 ∈ 𝑓))) |
| 65 | | simp11 1204 |
. . . . 5
⊢ (((𝐹 ⊆ (Fil‘𝑋) ∧ 𝐹 ≠ ∅ ∧ ∀𝑓 ∈ 𝐹 ∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑋) → 𝐹 ⊆ (Fil‘𝑋)) |
| 66 | | r19.29 3114 |
. . . . . . . . . . 11
⊢
((∀𝑔 ∈
𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹 ∧ ∃𝑔 ∈ 𝐹 𝑥 ∈ 𝑔) → ∃𝑔 ∈ 𝐹 ((𝑓 ∪ 𝑔) ∈ 𝐹 ∧ 𝑥 ∈ 𝑔)) |
| 67 | 66 | ex 412 |
. . . . . . . . . 10
⊢
(∀𝑔 ∈
𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹 → (∃𝑔 ∈ 𝐹 𝑥 ∈ 𝑔 → ∃𝑔 ∈ 𝐹 ((𝑓 ∪ 𝑔) ∈ 𝐹 ∧ 𝑥 ∈ 𝑔))) |
| 68 | | elun1 4182 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ 𝑓 → 𝑦 ∈ (𝑓 ∪ 𝑔)) |
| 69 | | elun2 4183 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ 𝑔 → 𝑥 ∈ (𝑓 ∪ 𝑔)) |
| 70 | 68, 69 | anim12i 613 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ 𝑓 ∧ 𝑥 ∈ 𝑔) → (𝑦 ∈ (𝑓 ∪ 𝑔) ∧ 𝑥 ∈ (𝑓 ∪ 𝑔))) |
| 71 | | eleq2 2830 |
. . . . . . . . . . . . . . . . 17
⊢ (ℎ = (𝑓 ∪ 𝑔) → (𝑦 ∈ ℎ ↔ 𝑦 ∈ (𝑓 ∪ 𝑔))) |
| 72 | | eleq2 2830 |
. . . . . . . . . . . . . . . . 17
⊢ (ℎ = (𝑓 ∪ 𝑔) → (𝑥 ∈ ℎ ↔ 𝑥 ∈ (𝑓 ∪ 𝑔))) |
| 73 | 71, 72 | anbi12d 632 |
. . . . . . . . . . . . . . . 16
⊢ (ℎ = (𝑓 ∪ 𝑔) → ((𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ) ↔ (𝑦 ∈ (𝑓 ∪ 𝑔) ∧ 𝑥 ∈ (𝑓 ∪ 𝑔)))) |
| 74 | 73 | rspcev 3622 |
. . . . . . . . . . . . . . 15
⊢ (((𝑓 ∪ 𝑔) ∈ 𝐹 ∧ (𝑦 ∈ (𝑓 ∪ 𝑔) ∧ 𝑥 ∈ (𝑓 ∪ 𝑔))) → ∃ℎ ∈ 𝐹 (𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ)) |
| 75 | 70, 74 | sylan2 593 |
. . . . . . . . . . . . . 14
⊢ (((𝑓 ∪ 𝑔) ∈ 𝐹 ∧ (𝑦 ∈ 𝑓 ∧ 𝑥 ∈ 𝑔)) → ∃ℎ ∈ 𝐹 (𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ)) |
| 76 | 75 | an12s 649 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ 𝑓 ∧ ((𝑓 ∪ 𝑔) ∈ 𝐹 ∧ 𝑥 ∈ 𝑔)) → ∃ℎ ∈ 𝐹 (𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ)) |
| 77 | 76 | ex 412 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ 𝑓 → (((𝑓 ∪ 𝑔) ∈ 𝐹 ∧ 𝑥 ∈ 𝑔) → ∃ℎ ∈ 𝐹 (𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ))) |
| 78 | 77 | ad2antlr 727 |
. . . . . . . . . . 11
⊢ (((𝑓 ∈ 𝐹 ∧ 𝑦 ∈ 𝑓) ∧ 𝑔 ∈ 𝐹) → (((𝑓 ∪ 𝑔) ∈ 𝐹 ∧ 𝑥 ∈ 𝑔) → ∃ℎ ∈ 𝐹 (𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ))) |
| 79 | 78 | rexlimdva 3155 |
. . . . . . . . . 10
⊢ ((𝑓 ∈ 𝐹 ∧ 𝑦 ∈ 𝑓) → (∃𝑔 ∈ 𝐹 ((𝑓 ∪ 𝑔) ∈ 𝐹 ∧ 𝑥 ∈ 𝑔) → ∃ℎ ∈ 𝐹 (𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ))) |
| 80 | 67, 79 | syl9r 78 |
. . . . . . . . 9
⊢ ((𝑓 ∈ 𝐹 ∧ 𝑦 ∈ 𝑓) → (∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹 → (∃𝑔 ∈ 𝐹 𝑥 ∈ 𝑔 → ∃ℎ ∈ 𝐹 (𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ)))) |
| 81 | 80 | impr 454 |
. . . . . . . 8
⊢ ((𝑓 ∈ 𝐹 ∧ (𝑦 ∈ 𝑓 ∧ ∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹)) → (∃𝑔 ∈ 𝐹 𝑥 ∈ 𝑔 → ∃ℎ ∈ 𝐹 (𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ))) |
| 82 | 81 | ancom2s 650 |
. . . . . . 7
⊢ ((𝑓 ∈ 𝐹 ∧ (∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹 ∧ 𝑦 ∈ 𝑓)) → (∃𝑔 ∈ 𝐹 𝑥 ∈ 𝑔 → ∃ℎ ∈ 𝐹 (𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ))) |
| 83 | 82 | rexlimiva 3147 |
. . . . . 6
⊢
(∃𝑓 ∈
𝐹 (∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹 ∧ 𝑦 ∈ 𝑓) → (∃𝑔 ∈ 𝐹 𝑥 ∈ 𝑔 → ∃ℎ ∈ 𝐹 (𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ))) |
| 84 | 83 | imp 406 |
. . . . 5
⊢
((∃𝑓 ∈
𝐹 (∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹 ∧ 𝑦 ∈ 𝑓) ∧ ∃𝑔 ∈ 𝐹 𝑥 ∈ 𝑔) → ∃ℎ ∈ 𝐹 (𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ)) |
| 85 | | ssel2 3978 |
. . . . . . 7
⊢ ((𝐹 ⊆ (Fil‘𝑋) ∧ ℎ ∈ 𝐹) → ℎ ∈ (Fil‘𝑋)) |
| 86 | | filin 23862 |
. . . . . . . 8
⊢ ((ℎ ∈ (Fil‘𝑋) ∧ 𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ) → (𝑦 ∩ 𝑥) ∈ ℎ) |
| 87 | 86 | 3expib 1123 |
. . . . . . 7
⊢ (ℎ ∈ (Fil‘𝑋) → ((𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ) → (𝑦 ∩ 𝑥) ∈ ℎ)) |
| 88 | 85, 87 | syl 17 |
. . . . . 6
⊢ ((𝐹 ⊆ (Fil‘𝑋) ∧ ℎ ∈ 𝐹) → ((𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ) → (𝑦 ∩ 𝑥) ∈ ℎ)) |
| 89 | 88 | reximdva 3168 |
. . . . 5
⊢ (𝐹 ⊆ (Fil‘𝑋) → (∃ℎ ∈ 𝐹 (𝑦 ∈ ℎ ∧ 𝑥 ∈ ℎ) → ∃ℎ ∈ 𝐹 (𝑦 ∩ 𝑥) ∈ ℎ)) |
| 90 | 65, 84, 89 | syl2im 40 |
. . . 4
⊢ (((𝐹 ⊆ (Fil‘𝑋) ∧ 𝐹 ≠ ∅ ∧ ∀𝑓 ∈ 𝐹 ∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑋) → ((∃𝑓 ∈ 𝐹 (∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹 ∧ 𝑦 ∈ 𝑓) ∧ ∃𝑔 ∈ 𝐹 𝑥 ∈ 𝑔) → ∃ℎ ∈ 𝐹 (𝑦 ∩ 𝑥) ∈ ℎ)) |
| 91 | 64, 90 | syland 603 |
. . 3
⊢ (((𝐹 ⊆ (Fil‘𝑋) ∧ 𝐹 ≠ ∅ ∧ ∀𝑓 ∈ 𝐹 ∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑋) → ((∃𝑓 ∈ 𝐹 𝑦 ∈ 𝑓 ∧ ∃𝑔 ∈ 𝐹 𝑥 ∈ 𝑔) → ∃ℎ ∈ 𝐹 (𝑦 ∩ 𝑥) ∈ ℎ)) |
| 92 | | eluni2 4911 |
. . . . 5
⊢ (𝑥 ∈ ∪ 𝐹
↔ ∃𝑔 ∈
𝐹 𝑥 ∈ 𝑔) |
| 93 | 55, 92 | bitri 275 |
. . . 4
⊢
([𝑥 / 𝑥]𝑥 ∈ ∪ 𝐹 ↔ ∃𝑔 ∈ 𝐹 𝑥 ∈ 𝑔) |
| 94 | 59, 93 | anbi12i 628 |
. . 3
⊢
(([𝑦 / 𝑥]𝑥 ∈ ∪ 𝐹 ∧ [𝑥 / 𝑥]𝑥 ∈ ∪ 𝐹) ↔ (∃𝑓 ∈ 𝐹 𝑦 ∈ 𝑓 ∧ ∃𝑔 ∈ 𝐹 𝑥 ∈ 𝑔)) |
| 95 | | sbcel1v 3856 |
. . . 4
⊢
([(𝑦 ∩
𝑥) / 𝑥]𝑥 ∈ ∪ 𝐹 ↔ (𝑦 ∩ 𝑥) ∈ ∪ 𝐹) |
| 96 | | eluni2 4911 |
. . . 4
⊢ ((𝑦 ∩ 𝑥) ∈ ∪ 𝐹 ↔ ∃ℎ ∈ 𝐹 (𝑦 ∩ 𝑥) ∈ ℎ) |
| 97 | 95, 96 | bitri 275 |
. . 3
⊢
([(𝑦 ∩
𝑥) / 𝑥]𝑥 ∈ ∪ 𝐹 ↔ ∃ℎ ∈ 𝐹 (𝑦 ∩ 𝑥) ∈ ℎ) |
| 98 | 91, 94, 97 | 3imtr4g 296 |
. 2
⊢ (((𝐹 ⊆ (Fil‘𝑋) ∧ 𝐹 ≠ ∅ ∧ ∀𝑓 ∈ 𝐹 ∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹) ∧ 𝑦 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑋) → (([𝑦 / 𝑥]𝑥 ∈ ∪ 𝐹 ∧ [𝑥 / 𝑥]𝑥 ∈ ∪ 𝐹) → [(𝑦 ∩ 𝑥) / 𝑥]𝑥 ∈ ∪ 𝐹)) |
| 99 | 9, 14, 26, 37, 60, 98 | isfild 23866 |
1
⊢ ((𝐹 ⊆ (Fil‘𝑋) ∧ 𝐹 ≠ ∅ ∧ ∀𝑓 ∈ 𝐹 ∀𝑔 ∈ 𝐹 (𝑓 ∪ 𝑔) ∈ 𝐹) → ∪ 𝐹 ∈ (Fil‘𝑋)) |