MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  riinrab Structured version   Visualization version   GIF version

Theorem riinrab 5013
Description: Relative intersection of a relative abstraction. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
riinrab (𝐴 𝑥𝑋 {𝑦𝐴𝜑}) = {𝑦𝐴 ∣ ∀𝑥𝑋 𝜑}
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem riinrab
StepHypRef Expression
1 riin0 5011 . . 3 (𝑋 = ∅ → (𝐴 𝑥𝑋 {𝑦𝐴𝜑}) = 𝐴)
2 rzal 4439 . . . . 5 (𝑋 = ∅ → ∀𝑥𝑋 𝜑)
32ralrimivw 3104 . . . 4 (𝑋 = ∅ → ∀𝑦𝐴𝑥𝑋 𝜑)
4 rabid2 3314 . . . 4 (𝐴 = {𝑦𝐴 ∣ ∀𝑥𝑋 𝜑} ↔ ∀𝑦𝐴𝑥𝑋 𝜑)
53, 4sylibr 233 . . 3 (𝑋 = ∅ → 𝐴 = {𝑦𝐴 ∣ ∀𝑥𝑋 𝜑})
61, 5eqtrd 2778 . 2 (𝑋 = ∅ → (𝐴 𝑥𝑋 {𝑦𝐴𝜑}) = {𝑦𝐴 ∣ ∀𝑥𝑋 𝜑})
7 ssrab2 4013 . . . . 5 {𝑦𝐴𝜑} ⊆ 𝐴
87rgenw 3076 . . . 4 𝑥𝑋 {𝑦𝐴𝜑} ⊆ 𝐴
9 riinn0 5012 . . . 4 ((∀𝑥𝑋 {𝑦𝐴𝜑} ⊆ 𝐴𝑋 ≠ ∅) → (𝐴 𝑥𝑋 {𝑦𝐴𝜑}) = 𝑥𝑋 {𝑦𝐴𝜑})
108, 9mpan 687 . . 3 (𝑋 ≠ ∅ → (𝐴 𝑥𝑋 {𝑦𝐴𝜑}) = 𝑥𝑋 {𝑦𝐴𝜑})
11 iinrab 4998 . . 3 (𝑋 ≠ ∅ → 𝑥𝑋 {𝑦𝐴𝜑} = {𝑦𝐴 ∣ ∀𝑥𝑋 𝜑})
1210, 11eqtrd 2778 . 2 (𝑋 ≠ ∅ → (𝐴 𝑥𝑋 {𝑦𝐴𝜑}) = {𝑦𝐴 ∣ ∀𝑥𝑋 𝜑})
136, 12pm2.61ine 3028 1 (𝐴 𝑥𝑋 {𝑦𝐴𝜑}) = {𝑦𝐴 ∣ ∀𝑥𝑋 𝜑}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wne 2943  wral 3064  {crab 3068  cin 3886  wss 3887  c0 4256   ciin 4925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-in 3894  df-ss 3904  df-nul 4257  df-iin 4927
This theorem is referenced by:  acsfn1  17370  acsfn1c  17371  acsfn2  17372  cntziinsn  18941  acsfn1p  20067  csscld  24413
  Copyright terms: Public domain W3C validator