| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > riinrab | Structured version Visualization version GIF version | ||
| Description: Relative intersection of a relative abstraction. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
| Ref | Expression |
|---|---|
| riinrab | ⊢ (𝐴 ∩ ∩ 𝑥 ∈ 𝑋 {𝑦 ∈ 𝐴 ∣ 𝜑}) = {𝑦 ∈ 𝐴 ∣ ∀𝑥 ∈ 𝑋 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riin0 5082 | . . 3 ⊢ (𝑋 = ∅ → (𝐴 ∩ ∩ 𝑥 ∈ 𝑋 {𝑦 ∈ 𝐴 ∣ 𝜑}) = 𝐴) | |
| 2 | rzal 4509 | . . . . 5 ⊢ (𝑋 = ∅ → ∀𝑥 ∈ 𝑋 𝜑) | |
| 3 | 2 | ralrimivw 3150 | . . . 4 ⊢ (𝑋 = ∅ → ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝑋 𝜑) |
| 4 | rabid2 3470 | . . . 4 ⊢ (𝐴 = {𝑦 ∈ 𝐴 ∣ ∀𝑥 ∈ 𝑋 𝜑} ↔ ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝑋 𝜑) | |
| 5 | 3, 4 | sylibr 234 | . . 3 ⊢ (𝑋 = ∅ → 𝐴 = {𝑦 ∈ 𝐴 ∣ ∀𝑥 ∈ 𝑋 𝜑}) |
| 6 | 1, 5 | eqtrd 2777 | . 2 ⊢ (𝑋 = ∅ → (𝐴 ∩ ∩ 𝑥 ∈ 𝑋 {𝑦 ∈ 𝐴 ∣ 𝜑}) = {𝑦 ∈ 𝐴 ∣ ∀𝑥 ∈ 𝑋 𝜑}) |
| 7 | ssrab2 4080 | . . . . 5 ⊢ {𝑦 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 | |
| 8 | 7 | rgenw 3065 | . . . 4 ⊢ ∀𝑥 ∈ 𝑋 {𝑦 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 |
| 9 | riinn0 5083 | . . . 4 ⊢ ((∀𝑥 ∈ 𝑋 {𝑦 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 ∧ 𝑋 ≠ ∅) → (𝐴 ∩ ∩ 𝑥 ∈ 𝑋 {𝑦 ∈ 𝐴 ∣ 𝜑}) = ∩ 𝑥 ∈ 𝑋 {𝑦 ∈ 𝐴 ∣ 𝜑}) | |
| 10 | 8, 9 | mpan 690 | . . 3 ⊢ (𝑋 ≠ ∅ → (𝐴 ∩ ∩ 𝑥 ∈ 𝑋 {𝑦 ∈ 𝐴 ∣ 𝜑}) = ∩ 𝑥 ∈ 𝑋 {𝑦 ∈ 𝐴 ∣ 𝜑}) |
| 11 | iinrab 5069 | . . 3 ⊢ (𝑋 ≠ ∅ → ∩ 𝑥 ∈ 𝑋 {𝑦 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∈ 𝐴 ∣ ∀𝑥 ∈ 𝑋 𝜑}) | |
| 12 | 10, 11 | eqtrd 2777 | . 2 ⊢ (𝑋 ≠ ∅ → (𝐴 ∩ ∩ 𝑥 ∈ 𝑋 {𝑦 ∈ 𝐴 ∣ 𝜑}) = {𝑦 ∈ 𝐴 ∣ ∀𝑥 ∈ 𝑋 𝜑}) |
| 13 | 6, 12 | pm2.61ine 3025 | 1 ⊢ (𝐴 ∩ ∩ 𝑥 ∈ 𝑋 {𝑦 ∈ 𝐴 ∣ 𝜑}) = {𝑦 ∈ 𝐴 ∣ ∀𝑥 ∈ 𝑋 𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ≠ wne 2940 ∀wral 3061 {crab 3436 ∩ cin 3950 ⊆ wss 3951 ∅c0 4333 ∩ ciin 4992 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-in 3958 df-ss 3968 df-nul 4334 df-iin 4994 |
| This theorem is referenced by: acsfn1 17704 acsfn1c 17705 acsfn2 17706 cntziinsn 19355 acsfn1p 20800 csscld 25283 |
| Copyright terms: Public domain | W3C validator |