![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > riinrab | Structured version Visualization version GIF version |
Description: Relative intersection of a relative abstraction. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
Ref | Expression |
---|---|
riinrab | ⊢ (𝐴 ∩ ∩ 𝑥 ∈ 𝑋 {𝑦 ∈ 𝐴 ∣ 𝜑}) = {𝑦 ∈ 𝐴 ∣ ∀𝑥 ∈ 𝑋 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | riin0 5105 | . . 3 ⊢ (𝑋 = ∅ → (𝐴 ∩ ∩ 𝑥 ∈ 𝑋 {𝑦 ∈ 𝐴 ∣ 𝜑}) = 𝐴) | |
2 | rzal 4532 | . . . . 5 ⊢ (𝑋 = ∅ → ∀𝑥 ∈ 𝑋 𝜑) | |
3 | 2 | ralrimivw 3156 | . . . 4 ⊢ (𝑋 = ∅ → ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝑋 𝜑) |
4 | rabid2 3478 | . . . 4 ⊢ (𝐴 = {𝑦 ∈ 𝐴 ∣ ∀𝑥 ∈ 𝑋 𝜑} ↔ ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝑋 𝜑) | |
5 | 3, 4 | sylibr 234 | . . 3 ⊢ (𝑋 = ∅ → 𝐴 = {𝑦 ∈ 𝐴 ∣ ∀𝑥 ∈ 𝑋 𝜑}) |
6 | 1, 5 | eqtrd 2780 | . 2 ⊢ (𝑋 = ∅ → (𝐴 ∩ ∩ 𝑥 ∈ 𝑋 {𝑦 ∈ 𝐴 ∣ 𝜑}) = {𝑦 ∈ 𝐴 ∣ ∀𝑥 ∈ 𝑋 𝜑}) |
7 | ssrab2 4103 | . . . . 5 ⊢ {𝑦 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 | |
8 | 7 | rgenw 3071 | . . . 4 ⊢ ∀𝑥 ∈ 𝑋 {𝑦 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 |
9 | riinn0 5106 | . . . 4 ⊢ ((∀𝑥 ∈ 𝑋 {𝑦 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 ∧ 𝑋 ≠ ∅) → (𝐴 ∩ ∩ 𝑥 ∈ 𝑋 {𝑦 ∈ 𝐴 ∣ 𝜑}) = ∩ 𝑥 ∈ 𝑋 {𝑦 ∈ 𝐴 ∣ 𝜑}) | |
10 | 8, 9 | mpan 689 | . . 3 ⊢ (𝑋 ≠ ∅ → (𝐴 ∩ ∩ 𝑥 ∈ 𝑋 {𝑦 ∈ 𝐴 ∣ 𝜑}) = ∩ 𝑥 ∈ 𝑋 {𝑦 ∈ 𝐴 ∣ 𝜑}) |
11 | iinrab 5092 | . . 3 ⊢ (𝑋 ≠ ∅ → ∩ 𝑥 ∈ 𝑋 {𝑦 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∈ 𝐴 ∣ ∀𝑥 ∈ 𝑋 𝜑}) | |
12 | 10, 11 | eqtrd 2780 | . 2 ⊢ (𝑋 ≠ ∅ → (𝐴 ∩ ∩ 𝑥 ∈ 𝑋 {𝑦 ∈ 𝐴 ∣ 𝜑}) = {𝑦 ∈ 𝐴 ∣ ∀𝑥 ∈ 𝑋 𝜑}) |
13 | 6, 12 | pm2.61ine 3031 | 1 ⊢ (𝐴 ∩ ∩ 𝑥 ∈ 𝑋 {𝑦 ∈ 𝐴 ∣ 𝜑}) = {𝑦 ∈ 𝐴 ∣ ∀𝑥 ∈ 𝑋 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ≠ wne 2946 ∀wral 3067 {crab 3443 ∩ cin 3975 ⊆ wss 3976 ∅c0 4352 ∩ ciin 5016 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-in 3983 df-ss 3993 df-nul 4353 df-iin 5018 |
This theorem is referenced by: acsfn1 17719 acsfn1c 17720 acsfn2 17721 cntziinsn 19377 acsfn1p 20822 csscld 25302 |
Copyright terms: Public domain | W3C validator |