MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  riinrab Structured version   Visualization version   GIF version

Theorem riinrab 5077
Description: Relative intersection of a relative abstraction. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
riinrab (𝐴 𝑥𝑋 {𝑦𝐴𝜑}) = {𝑦𝐴 ∣ ∀𝑥𝑋 𝜑}
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem riinrab
StepHypRef Expression
1 riin0 5075 . . 3 (𝑋 = ∅ → (𝐴 𝑥𝑋 {𝑦𝐴𝜑}) = 𝐴)
2 rzal 4500 . . . . 5 (𝑋 = ∅ → ∀𝑥𝑋 𝜑)
32ralrimivw 3142 . . . 4 (𝑋 = ∅ → ∀𝑦𝐴𝑥𝑋 𝜑)
4 rabid2 3456 . . . 4 (𝐴 = {𝑦𝐴 ∣ ∀𝑥𝑋 𝜑} ↔ ∀𝑦𝐴𝑥𝑋 𝜑)
53, 4sylibr 233 . . 3 (𝑋 = ∅ → 𝐴 = {𝑦𝐴 ∣ ∀𝑥𝑋 𝜑})
61, 5eqtrd 2764 . 2 (𝑋 = ∅ → (𝐴 𝑥𝑋 {𝑦𝐴𝜑}) = {𝑦𝐴 ∣ ∀𝑥𝑋 𝜑})
7 ssrab2 4069 . . . . 5 {𝑦𝐴𝜑} ⊆ 𝐴
87rgenw 3057 . . . 4 𝑥𝑋 {𝑦𝐴𝜑} ⊆ 𝐴
9 riinn0 5076 . . . 4 ((∀𝑥𝑋 {𝑦𝐴𝜑} ⊆ 𝐴𝑋 ≠ ∅) → (𝐴 𝑥𝑋 {𝑦𝐴𝜑}) = 𝑥𝑋 {𝑦𝐴𝜑})
108, 9mpan 687 . . 3 (𝑋 ≠ ∅ → (𝐴 𝑥𝑋 {𝑦𝐴𝜑}) = 𝑥𝑋 {𝑦𝐴𝜑})
11 iinrab 5062 . . 3 (𝑋 ≠ ∅ → 𝑥𝑋 {𝑦𝐴𝜑} = {𝑦𝐴 ∣ ∀𝑥𝑋 𝜑})
1210, 11eqtrd 2764 . 2 (𝑋 ≠ ∅ → (𝐴 𝑥𝑋 {𝑦𝐴𝜑}) = {𝑦𝐴 ∣ ∀𝑥𝑋 𝜑})
136, 12pm2.61ine 3017 1 (𝐴 𝑥𝑋 {𝑦𝐴𝜑}) = {𝑦𝐴 ∣ ∀𝑥𝑋 𝜑}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  wne 2932  wral 3053  {crab 3424  cin 3939  wss 3940  c0 4314   ciin 4988
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3943  df-in 3947  df-ss 3957  df-nul 4315  df-iin 4990
This theorem is referenced by:  acsfn1  17601  acsfn1c  17602  acsfn2  17603  cntziinsn  19238  acsfn1p  20635  csscld  25087
  Copyright terms: Public domain W3C validator