MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  riinrab Structured version   Visualization version   GIF version

Theorem riinrab 5009
Description: Relative intersection of a relative abstraction. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
riinrab (𝐴 𝑥𝑋 {𝑦𝐴𝜑}) = {𝑦𝐴 ∣ ∀𝑥𝑋 𝜑}
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem riinrab
StepHypRef Expression
1 riin0 5007 . . 3 (𝑋 = ∅ → (𝐴 𝑥𝑋 {𝑦𝐴𝜑}) = 𝐴)
2 rzal 4436 . . . . 5 (𝑋 = ∅ → ∀𝑥𝑋 𝜑)
32ralrimivw 3108 . . . 4 (𝑋 = ∅ → ∀𝑦𝐴𝑥𝑋 𝜑)
4 rabid2 3307 . . . 4 (𝐴 = {𝑦𝐴 ∣ ∀𝑥𝑋 𝜑} ↔ ∀𝑦𝐴𝑥𝑋 𝜑)
53, 4sylibr 233 . . 3 (𝑋 = ∅ → 𝐴 = {𝑦𝐴 ∣ ∀𝑥𝑋 𝜑})
61, 5eqtrd 2778 . 2 (𝑋 = ∅ → (𝐴 𝑥𝑋 {𝑦𝐴𝜑}) = {𝑦𝐴 ∣ ∀𝑥𝑋 𝜑})
7 ssrab2 4009 . . . . 5 {𝑦𝐴𝜑} ⊆ 𝐴
87rgenw 3075 . . . 4 𝑥𝑋 {𝑦𝐴𝜑} ⊆ 𝐴
9 riinn0 5008 . . . 4 ((∀𝑥𝑋 {𝑦𝐴𝜑} ⊆ 𝐴𝑋 ≠ ∅) → (𝐴 𝑥𝑋 {𝑦𝐴𝜑}) = 𝑥𝑋 {𝑦𝐴𝜑})
108, 9mpan 686 . . 3 (𝑋 ≠ ∅ → (𝐴 𝑥𝑋 {𝑦𝐴𝜑}) = 𝑥𝑋 {𝑦𝐴𝜑})
11 iinrab 4994 . . 3 (𝑋 ≠ ∅ → 𝑥𝑋 {𝑦𝐴𝜑} = {𝑦𝐴 ∣ ∀𝑥𝑋 𝜑})
1210, 11eqtrd 2778 . 2 (𝑋 ≠ ∅ → (𝐴 𝑥𝑋 {𝑦𝐴𝜑}) = {𝑦𝐴 ∣ ∀𝑥𝑋 𝜑})
136, 12pm2.61ine 3027 1 (𝐴 𝑥𝑋 {𝑦𝐴𝜑}) = {𝑦𝐴 ∣ ∀𝑥𝑋 𝜑}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wne 2942  wral 3063  {crab 3067  cin 3882  wss 3883  c0 4253   ciin 4922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-in 3890  df-ss 3900  df-nul 4254  df-iin 4924
This theorem is referenced by:  acsfn1  17287  acsfn1c  17288  acsfn2  17289  cntziinsn  18856  acsfn1p  19982  csscld  24318
  Copyright terms: Public domain W3C validator