Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > riinrab | Structured version Visualization version GIF version |
Description: Relative intersection of a relative abstraction. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
Ref | Expression |
---|---|
riinrab | ⊢ (𝐴 ∩ ∩ 𝑥 ∈ 𝑋 {𝑦 ∈ 𝐴 ∣ 𝜑}) = {𝑦 ∈ 𝐴 ∣ ∀𝑥 ∈ 𝑋 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | riin0 5011 | . . 3 ⊢ (𝑋 = ∅ → (𝐴 ∩ ∩ 𝑥 ∈ 𝑋 {𝑦 ∈ 𝐴 ∣ 𝜑}) = 𝐴) | |
2 | rzal 4439 | . . . . 5 ⊢ (𝑋 = ∅ → ∀𝑥 ∈ 𝑋 𝜑) | |
3 | 2 | ralrimivw 3104 | . . . 4 ⊢ (𝑋 = ∅ → ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝑋 𝜑) |
4 | rabid2 3314 | . . . 4 ⊢ (𝐴 = {𝑦 ∈ 𝐴 ∣ ∀𝑥 ∈ 𝑋 𝜑} ↔ ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝑋 𝜑) | |
5 | 3, 4 | sylibr 233 | . . 3 ⊢ (𝑋 = ∅ → 𝐴 = {𝑦 ∈ 𝐴 ∣ ∀𝑥 ∈ 𝑋 𝜑}) |
6 | 1, 5 | eqtrd 2778 | . 2 ⊢ (𝑋 = ∅ → (𝐴 ∩ ∩ 𝑥 ∈ 𝑋 {𝑦 ∈ 𝐴 ∣ 𝜑}) = {𝑦 ∈ 𝐴 ∣ ∀𝑥 ∈ 𝑋 𝜑}) |
7 | ssrab2 4013 | . . . . 5 ⊢ {𝑦 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 | |
8 | 7 | rgenw 3076 | . . . 4 ⊢ ∀𝑥 ∈ 𝑋 {𝑦 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 |
9 | riinn0 5012 | . . . 4 ⊢ ((∀𝑥 ∈ 𝑋 {𝑦 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 ∧ 𝑋 ≠ ∅) → (𝐴 ∩ ∩ 𝑥 ∈ 𝑋 {𝑦 ∈ 𝐴 ∣ 𝜑}) = ∩ 𝑥 ∈ 𝑋 {𝑦 ∈ 𝐴 ∣ 𝜑}) | |
10 | 8, 9 | mpan 687 | . . 3 ⊢ (𝑋 ≠ ∅ → (𝐴 ∩ ∩ 𝑥 ∈ 𝑋 {𝑦 ∈ 𝐴 ∣ 𝜑}) = ∩ 𝑥 ∈ 𝑋 {𝑦 ∈ 𝐴 ∣ 𝜑}) |
11 | iinrab 4998 | . . 3 ⊢ (𝑋 ≠ ∅ → ∩ 𝑥 ∈ 𝑋 {𝑦 ∈ 𝐴 ∣ 𝜑} = {𝑦 ∈ 𝐴 ∣ ∀𝑥 ∈ 𝑋 𝜑}) | |
12 | 10, 11 | eqtrd 2778 | . 2 ⊢ (𝑋 ≠ ∅ → (𝐴 ∩ ∩ 𝑥 ∈ 𝑋 {𝑦 ∈ 𝐴 ∣ 𝜑}) = {𝑦 ∈ 𝐴 ∣ ∀𝑥 ∈ 𝑋 𝜑}) |
13 | 6, 12 | pm2.61ine 3028 | 1 ⊢ (𝐴 ∩ ∩ 𝑥 ∈ 𝑋 {𝑦 ∈ 𝐴 ∣ 𝜑}) = {𝑦 ∈ 𝐴 ∣ ∀𝑥 ∈ 𝑋 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ≠ wne 2943 ∀wral 3064 {crab 3068 ∩ cin 3886 ⊆ wss 3887 ∅c0 4256 ∩ ciin 4925 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-in 3894 df-ss 3904 df-nul 4257 df-iin 4927 |
This theorem is referenced by: acsfn1 17370 acsfn1c 17371 acsfn2 17372 cntziinsn 18941 acsfn1p 20067 csscld 24413 |
Copyright terms: Public domain | W3C validator |