MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  riinrab Structured version   Visualization version   GIF version

Theorem riinrab 5030
Description: Relative intersection of a relative abstraction. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
riinrab (𝐴 𝑥𝑋 {𝑦𝐴𝜑}) = {𝑦𝐴 ∣ ∀𝑥𝑋 𝜑}
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem riinrab
StepHypRef Expression
1 riin0 5028 . . 3 (𝑋 = ∅ → (𝐴 𝑥𝑋 {𝑦𝐴𝜑}) = 𝐴)
2 rzal 4456 . . . . 5 (𝑋 = ∅ → ∀𝑥𝑋 𝜑)
32ralrimivw 3128 . . . 4 (𝑋 = ∅ → ∀𝑦𝐴𝑥𝑋 𝜑)
4 rabid2 3428 . . . 4 (𝐴 = {𝑦𝐴 ∣ ∀𝑥𝑋 𝜑} ↔ ∀𝑦𝐴𝑥𝑋 𝜑)
53, 4sylibr 234 . . 3 (𝑋 = ∅ → 𝐴 = {𝑦𝐴 ∣ ∀𝑥𝑋 𝜑})
61, 5eqtrd 2766 . 2 (𝑋 = ∅ → (𝐴 𝑥𝑋 {𝑦𝐴𝜑}) = {𝑦𝐴 ∣ ∀𝑥𝑋 𝜑})
7 ssrab2 4027 . . . . 5 {𝑦𝐴𝜑} ⊆ 𝐴
87rgenw 3051 . . . 4 𝑥𝑋 {𝑦𝐴𝜑} ⊆ 𝐴
9 riinn0 5029 . . . 4 ((∀𝑥𝑋 {𝑦𝐴𝜑} ⊆ 𝐴𝑋 ≠ ∅) → (𝐴 𝑥𝑋 {𝑦𝐴𝜑}) = 𝑥𝑋 {𝑦𝐴𝜑})
108, 9mpan 690 . . 3 (𝑋 ≠ ∅ → (𝐴 𝑥𝑋 {𝑦𝐴𝜑}) = 𝑥𝑋 {𝑦𝐴𝜑})
11 iinrab 5015 . . 3 (𝑋 ≠ ∅ → 𝑥𝑋 {𝑦𝐴𝜑} = {𝑦𝐴 ∣ ∀𝑥𝑋 𝜑})
1210, 11eqtrd 2766 . 2 (𝑋 ≠ ∅ → (𝐴 𝑥𝑋 {𝑦𝐴𝜑}) = {𝑦𝐴 ∣ ∀𝑥𝑋 𝜑})
136, 12pm2.61ine 3011 1 (𝐴 𝑥𝑋 {𝑦𝐴𝜑}) = {𝑦𝐴 ∣ ∀𝑥𝑋 𝜑}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wne 2928  wral 3047  {crab 3395  cin 3896  wss 3897  c0 4280   ciin 4940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-in 3904  df-ss 3914  df-nul 4281  df-iin 4942
This theorem is referenced by:  acsfn1  17567  acsfn1c  17568  acsfn2  17569  cntziinsn  19249  acsfn1p  20714  csscld  25176
  Copyright terms: Public domain W3C validator