Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tpcomb | Structured version Visualization version GIF version |
Description: Swap 2nd and 3rd members of an unordered triple. (Contributed by NM, 22-May-2015.) |
Ref | Expression |
---|---|
tpcomb | ⊢ {𝐴, 𝐵, 𝐶} = {𝐴, 𝐶, 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tpcoma 4686 | . 2 ⊢ {𝐵, 𝐶, 𝐴} = {𝐶, 𝐵, 𝐴} | |
2 | tprot 4685 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = {𝐵, 𝐶, 𝐴} | |
3 | tprot 4685 | . 2 ⊢ {𝐴, 𝐶, 𝐵} = {𝐶, 𝐵, 𝐴} | |
4 | 1, 2, 3 | 3eqtr4i 2776 | 1 ⊢ {𝐴, 𝐵, 𝐶} = {𝐴, 𝐶, 𝐵} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 {ctp 4565 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-un 3892 df-sn 4562 df-pr 4564 df-tp 4566 |
This theorem is referenced by: f13dfv 7146 frgr3v 28639 signswch 32540 signstfvcl 32552 dvh4dimN 39461 |
Copyright terms: Public domain | W3C validator |