MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpcomb Structured version   Visualization version   GIF version

Theorem tpcomb 4715
Description: Swap 2nd and 3rd members of an unordered triple. (Contributed by NM, 22-May-2015.)
Assertion
Ref Expression
tpcomb {𝐴, 𝐵, 𝐶} = {𝐴, 𝐶, 𝐵}

Proof of Theorem tpcomb
StepHypRef Expression
1 tpcoma 4714 . 2 {𝐵, 𝐶, 𝐴} = {𝐶, 𝐵, 𝐴}
2 tprot 4713 . 2 {𝐴, 𝐵, 𝐶} = {𝐵, 𝐶, 𝐴}
3 tprot 4713 . 2 {𝐴, 𝐶, 𝐵} = {𝐶, 𝐵, 𝐴}
41, 2, 33eqtr4i 2762 1 {𝐴, 𝐵, 𝐶} = {𝐴, 𝐶, 𝐵}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  {ctp 4593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3449  df-un 3919  df-sn 4590  df-pr 4592  df-tp 4594
This theorem is referenced by:  f13dfv  7249  frgr3v  30204  tpssad  32468  signswch  34552  signstfvcl  34564  dvh4dimN  41441
  Copyright terms: Public domain W3C validator