MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpcomb Structured version   Visualization version   GIF version

Theorem tpcomb 4698
Description: Swap 2nd and 3rd members of an unordered triple. (Contributed by NM, 22-May-2015.)
Assertion
Ref Expression
tpcomb {𝐴, 𝐵, 𝐶} = {𝐴, 𝐶, 𝐵}

Proof of Theorem tpcomb
StepHypRef Expression
1 tpcoma 4697 . 2 {𝐵, 𝐶, 𝐴} = {𝐶, 𝐵, 𝐴}
2 tprot 4696 . 2 {𝐴, 𝐵, 𝐶} = {𝐵, 𝐶, 𝐴}
3 tprot 4696 . 2 {𝐴, 𝐶, 𝐵} = {𝐶, 𝐵, 𝐴}
41, 2, 33eqtr4i 2774 1 {𝐴, 𝐵, 𝐶} = {𝐴, 𝐶, 𝐵}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  {ctp 4576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-v 3443  df-un 3902  df-sn 4573  df-pr 4575  df-tp 4577
This theorem is referenced by:  f13dfv  7196  frgr3v  28840  signswch  32753  signstfvcl  32765  dvh4dimN  39708
  Copyright terms: Public domain W3C validator