Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tpcomb | Structured version Visualization version GIF version |
Description: Swap 2nd and 3rd members of an unordered triple. (Contributed by NM, 22-May-2015.) |
Ref | Expression |
---|---|
tpcomb | ⊢ {𝐴, 𝐵, 𝐶} = {𝐴, 𝐶, 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tpcoma 4697 | . 2 ⊢ {𝐵, 𝐶, 𝐴} = {𝐶, 𝐵, 𝐴} | |
2 | tprot 4696 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = {𝐵, 𝐶, 𝐴} | |
3 | tprot 4696 | . 2 ⊢ {𝐴, 𝐶, 𝐵} = {𝐶, 𝐵, 𝐴} | |
4 | 1, 2, 3 | 3eqtr4i 2774 | 1 ⊢ {𝐴, 𝐵, 𝐶} = {𝐴, 𝐶, 𝐵} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 {ctp 4576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-v 3443 df-un 3902 df-sn 4573 df-pr 4575 df-tp 4577 |
This theorem is referenced by: f13dfv 7196 frgr3v 28840 signswch 32753 signstfvcl 32765 dvh4dimN 39708 |
Copyright terms: Public domain | W3C validator |