MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpcomb Structured version   Visualization version   GIF version

Theorem tpcomb 4701
Description: Swap 2nd and 3rd members of an unordered triple. (Contributed by NM, 22-May-2015.)
Assertion
Ref Expression
tpcomb {𝐴, 𝐵, 𝐶} = {𝐴, 𝐶, 𝐵}

Proof of Theorem tpcomb
StepHypRef Expression
1 tpcoma 4700 . 2 {𝐵, 𝐶, 𝐴} = {𝐶, 𝐵, 𝐴}
2 tprot 4699 . 2 {𝐴, 𝐵, 𝐶} = {𝐵, 𝐶, 𝐴}
3 tprot 4699 . 2 {𝐴, 𝐶, 𝐵} = {𝐶, 𝐵, 𝐴}
41, 2, 33eqtr4i 2764 1 {𝐴, 𝐵, 𝐶} = {𝐴, 𝐶, 𝐵}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  {ctp 4577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-un 3902  df-sn 4574  df-pr 4576  df-tp 4578
This theorem is referenced by:  f13dfv  7208  frgr3v  30255  tpssad  32519  signswch  34574  signstfvcl  34586  dvh4dimN  41494
  Copyright terms: Public domain W3C validator