| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tpcomb | Structured version Visualization version GIF version | ||
| Description: Swap 2nd and 3rd members of an unordered triple. (Contributed by NM, 22-May-2015.) |
| Ref | Expression |
|---|---|
| tpcomb | ⊢ {𝐴, 𝐵, 𝐶} = {𝐴, 𝐶, 𝐵} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tpcoma 4700 | . 2 ⊢ {𝐵, 𝐶, 𝐴} = {𝐶, 𝐵, 𝐴} | |
| 2 | tprot 4699 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = {𝐵, 𝐶, 𝐴} | |
| 3 | tprot 4699 | . 2 ⊢ {𝐴, 𝐶, 𝐵} = {𝐶, 𝐵, 𝐴} | |
| 4 | 1, 2, 3 | 3eqtr4i 2764 | 1 ⊢ {𝐴, 𝐵, 𝐶} = {𝐴, 𝐶, 𝐵} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 {ctp 4577 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3902 df-sn 4574 df-pr 4576 df-tp 4578 |
| This theorem is referenced by: f13dfv 7208 frgr3v 30255 tpssad 32519 signswch 34574 signstfvcl 34586 dvh4dimN 41494 |
| Copyright terms: Public domain | W3C validator |