MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpcoma Structured version   Visualization version   GIF version

Theorem tpcoma 4703
Description: Swap 1st and 2nd members of an unordered triple. (Contributed by NM, 22-May-2015.)
Assertion
Ref Expression
tpcoma {𝐴, 𝐵, 𝐶} = {𝐵, 𝐴, 𝐶}

Proof of Theorem tpcoma
StepHypRef Expression
1 prcom 4685 . . 3 {𝐴, 𝐵} = {𝐵, 𝐴}
21uneq1i 4114 . 2 ({𝐴, 𝐵} ∪ {𝐶}) = ({𝐵, 𝐴} ∪ {𝐶})
3 df-tp 4581 . 2 {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶})
4 df-tp 4581 . 2 {𝐵, 𝐴, 𝐶} = ({𝐵, 𝐴} ∪ {𝐶})
52, 3, 43eqtr4i 2764 1 {𝐴, 𝐵, 𝐶} = {𝐵, 𝐴, 𝐶}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  cun 3900  {csn 4576  {cpr 4578  {ctp 4580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-un 3907  df-pr 4579  df-tp 4581
This theorem is referenced by:  tpcomb  4704  tppreqb  4757  nb3grpr2  29359  nb3gr2nb  29360  frgr3v  30250  3vfriswmgr  30253  1to3vfriswmgr  30255
  Copyright terms: Public domain W3C validator