| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tpcoma | Structured version Visualization version GIF version | ||
| Description: Swap 1st and 2nd members of an unordered triple. (Contributed by NM, 22-May-2015.) |
| Ref | Expression |
|---|---|
| tpcoma | ⊢ {𝐴, 𝐵, 𝐶} = {𝐵, 𝐴, 𝐶} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prcom 4699 | . . 3 ⊢ {𝐴, 𝐵} = {𝐵, 𝐴} | |
| 2 | 1 | uneq1i 4130 | . 2 ⊢ ({𝐴, 𝐵} ∪ {𝐶}) = ({𝐵, 𝐴} ∪ {𝐶}) |
| 3 | df-tp 4597 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
| 4 | df-tp 4597 | . 2 ⊢ {𝐵, 𝐴, 𝐶} = ({𝐵, 𝐴} ∪ {𝐶}) | |
| 5 | 2, 3, 4 | 3eqtr4i 2763 | 1 ⊢ {𝐴, 𝐵, 𝐶} = {𝐵, 𝐴, 𝐶} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∪ cun 3915 {csn 4592 {cpr 4594 {ctp 4596 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-un 3922 df-pr 4595 df-tp 4597 |
| This theorem is referenced by: tpcomb 4718 tppreqb 4772 nb3grpr2 29317 nb3gr2nb 29318 frgr3v 30211 3vfriswmgr 30214 1to3vfriswmgr 30216 |
| Copyright terms: Public domain | W3C validator |