MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpcoma Structured version   Visualization version   GIF version

Theorem tpcoma 4755
Description: Swap 1st and 2nd members of an unordered triple. (Contributed by NM, 22-May-2015.)
Assertion
Ref Expression
tpcoma {𝐴, 𝐵, 𝐶} = {𝐵, 𝐴, 𝐶}

Proof of Theorem tpcoma
StepHypRef Expression
1 prcom 4737 . . 3 {𝐴, 𝐵} = {𝐵, 𝐴}
21uneq1i 4158 . 2 ({𝐴, 𝐵} ∪ {𝐶}) = ({𝐵, 𝐴} ∪ {𝐶})
3 df-tp 4634 . 2 {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶})
4 df-tp 4634 . 2 {𝐵, 𝐴, 𝐶} = ({𝐵, 𝐴} ∪ {𝐶})
52, 3, 43eqtr4i 2766 1 {𝐴, 𝐵, 𝐶} = {𝐵, 𝐴, 𝐶}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  cun 3945  {csn 4629  {cpr 4631  {ctp 4633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-v 3473  df-un 3952  df-pr 4632  df-tp 4634
This theorem is referenced by:  tpcomb  4756  tppreqb  4809  nb3grpr2  29195  nb3gr2nb  29196  frgr3v  30084  3vfriswmgr  30087  1to3vfriswmgr  30089
  Copyright terms: Public domain W3C validator