MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpcoma Structured version   Visualization version   GIF version

Theorem tpcoma 4651
Description: Swap 1st and 2nd members of an unordered triple. (Contributed by NM, 22-May-2015.)
Assertion
Ref Expression
tpcoma {𝐴, 𝐵, 𝐶} = {𝐵, 𝐴, 𝐶}

Proof of Theorem tpcoma
StepHypRef Expression
1 prcom 4633 . . 3 {𝐴, 𝐵} = {𝐵, 𝐴}
21uneq1i 4059 . 2 ({𝐴, 𝐵} ∪ {𝐶}) = ({𝐵, 𝐴} ∪ {𝐶})
3 df-tp 4531 . 2 {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶})
4 df-tp 4531 . 2 {𝐵, 𝐴, 𝐶} = ({𝐵, 𝐴} ∪ {𝐶})
52, 3, 43eqtr4i 2772 1 {𝐴, 𝐵, 𝐶} = {𝐵, 𝐴, 𝐶}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  cun 3851  {csn 4526  {cpr 4528  {ctp 4530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-ext 2711
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-tru 1545  df-ex 1787  df-sb 2075  df-clab 2718  df-cleq 2731  df-clel 2812  df-v 3402  df-un 3858  df-pr 4529  df-tp 4531
This theorem is referenced by:  tpcomb  4652  tppreqb  4703  nb3grpr2  27337  nb3gr2nb  27338  frgr3v  28224  3vfriswmgr  28227  1to3vfriswmgr  28229
  Copyright terms: Public domain W3C validator