Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > signstfvcl | Structured version Visualization version GIF version |
Description: Closure of the zero skipping sign in case the first letter is not zero. (Contributed by Thierry Arnoux, 10-Oct-2018.) |
Ref | Expression |
---|---|
signsv.p | ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) |
signsv.w | ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} |
signsv.t | ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) |
signsv.v | ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) |
Ref | Expression |
---|---|
signstfvcl | ⊢ (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘𝐹)‘𝑁) ∈ {-1, 1}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 764 | . . . . 5 ⊢ (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → 𝐹 ∈ (Word ℝ ∖ {∅})) | |
2 | 1 | eldifad 3899 | . . . 4 ⊢ (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → 𝐹 ∈ Word ℝ) |
3 | signsv.p | . . . . 5 ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) | |
4 | signsv.w | . . . . 5 ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} | |
5 | signsv.t | . . . . 5 ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) | |
6 | signsv.v | . . . . 5 ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) | |
7 | 3, 4, 5, 6 | signstcl 32530 | . . . 4 ⊢ ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘𝐹)‘𝑁) ∈ {-1, 0, 1}) |
8 | 2, 7 | sylancom 588 | . . 3 ⊢ (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘𝐹)‘𝑁) ∈ {-1, 0, 1}) |
9 | 3, 4, 5, 6 | signstfvneq0 32537 | . . 3 ⊢ (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘𝐹)‘𝑁) ≠ 0) |
10 | eldifsn 4721 | . . 3 ⊢ (((𝑇‘𝐹)‘𝑁) ∈ ({-1, 0, 1} ∖ {0}) ↔ (((𝑇‘𝐹)‘𝑁) ∈ {-1, 0, 1} ∧ ((𝑇‘𝐹)‘𝑁) ≠ 0)) | |
11 | 8, 9, 10 | sylanbrc 583 | . 2 ⊢ (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘𝐹)‘𝑁) ∈ ({-1, 0, 1} ∖ {0})) |
12 | tpcomb 4688 | . . . 4 ⊢ {-1, 0, 1} = {-1, 1, 0} | |
13 | 12 | difeq1i 4053 | . . 3 ⊢ ({-1, 0, 1} ∖ {0}) = ({-1, 1, 0} ∖ {0}) |
14 | neg1ne0 12077 | . . . 4 ⊢ -1 ≠ 0 | |
15 | ax-1ne0 10928 | . . . 4 ⊢ 1 ≠ 0 | |
16 | diftpsn3 4736 | . . . 4 ⊢ ((-1 ≠ 0 ∧ 1 ≠ 0) → ({-1, 1, 0} ∖ {0}) = {-1, 1}) | |
17 | 14, 15, 16 | mp2an 689 | . . 3 ⊢ ({-1, 1, 0} ∖ {0}) = {-1, 1} |
18 | 13, 17 | eqtri 2766 | . 2 ⊢ ({-1, 0, 1} ∖ {0}) = {-1, 1} |
19 | 11, 18 | eleqtrdi 2849 | 1 ⊢ (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇‘𝐹)‘𝑁) ∈ {-1, 1}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∖ cdif 3884 ∅c0 4257 ifcif 4460 {csn 4562 {cpr 4564 {ctp 4566 〈cop 4568 ↦ cmpt 5157 ‘cfv 6427 (class class class)co 7268 ∈ cmpo 7270 ℝcr 10858 0cc0 10859 1c1 10860 − cmin 11193 -cneg 11194 ...cfz 13227 ..^cfzo 13370 ♯chash 14032 Word cword 14205 sgncsgn 14785 Σcsu 15385 ndxcnx 16882 Basecbs 16900 +gcplusg 16950 Σg cgsu 17139 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5222 ax-nul 5229 ax-pow 5287 ax-pr 5351 ax-un 7579 ax-cnex 10915 ax-resscn 10916 ax-1cn 10917 ax-icn 10918 ax-addcl 10919 ax-addrcl 10920 ax-mulcl 10921 ax-mulrcl 10922 ax-mulcom 10923 ax-addass 10924 ax-mulass 10925 ax-distr 10926 ax-i2m1 10927 ax-1ne0 10928 ax-1rid 10929 ax-rnegex 10930 ax-rrecex 10931 ax-cnre 10932 ax-pre-lttri 10933 ax-pre-lttrn 10934 ax-pre-ltadd 10935 ax-pre-mulgt0 10936 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3432 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-tp 4567 df-op 4569 df-uni 4841 df-int 4881 df-iun 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5485 df-eprel 5491 df-po 5499 df-so 5500 df-fr 5540 df-se 5541 df-we 5542 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-res 5597 df-ima 5598 df-pred 6196 df-ord 6263 df-on 6264 df-lim 6265 df-suc 6266 df-iota 6385 df-fun 6429 df-fn 6430 df-f 6431 df-f1 6432 df-fo 6433 df-f1o 6434 df-fv 6435 df-isom 6436 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7704 df-1st 7821 df-2nd 7822 df-supp 7966 df-frecs 8085 df-wrecs 8116 df-recs 8190 df-rdg 8229 df-1o 8285 df-er 8486 df-en 8722 df-dom 8723 df-sdom 8724 df-fin 8725 df-oi 9257 df-card 9685 df-pnf 10999 df-mnf 11000 df-xr 11001 df-ltxr 11002 df-le 11003 df-sub 11195 df-neg 11196 df-nn 11962 df-2 12024 df-n0 12222 df-xnn0 12294 df-z 12308 df-uz 12571 df-fz 13228 df-fzo 13371 df-seq 13710 df-hash 14033 df-word 14206 df-lsw 14254 df-concat 14262 df-s1 14289 df-substr 14342 df-pfx 14372 df-sgn 14786 df-struct 16836 df-slot 16871 df-ndx 16883 df-base 16901 df-plusg 16963 df-0g 17140 df-gsum 17141 df-mgm 18314 df-sgrp 18363 df-mnd 18374 df-mulg 18689 df-cntz 18911 |
This theorem is referenced by: signsvfn 32547 signlem0 32552 |
Copyright terms: Public domain | W3C validator |