Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signstfvcl Structured version   Visualization version   GIF version

Theorem signstfvcl 31953
Description: Closure of the zero skipping sign in case the first letter is not zero. (Contributed by Thierry Arnoux, 10-Oct-2018.)
Hypotheses
Ref Expression
signsv.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsv.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
signsv.t 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
signsv.v 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
Assertion
Ref Expression
signstfvcl (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇𝐹)‘𝑁) ∈ {-1, 1})
Distinct variable groups:   𝑎,𝑏,   𝑓,𝑖,𝑛,𝐹   𝑓,𝑊,𝑖,𝑛   𝑖,𝑁,𝑛   𝑛,𝑎,𝑇,𝑏
Allowed substitution hints:   (𝑓,𝑖,𝑗,𝑛)   𝑇(𝑓,𝑖,𝑗)   𝐹(𝑗,𝑎,𝑏)   𝑁(𝑓,𝑗,𝑎,𝑏)   𝑉(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑊(𝑗,𝑎,𝑏)

Proof of Theorem signstfvcl
StepHypRef Expression
1 simpll 766 . . . . 5 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → 𝐹 ∈ (Word ℝ ∖ {∅}))
21eldifad 3893 . . . 4 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → 𝐹 ∈ Word ℝ)
3 signsv.p . . . . 5 = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
4 signsv.w . . . . 5 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
5 signsv.t . . . . 5 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
6 signsv.v . . . . 5 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
73, 4, 5, 6signstcl 31945 . . . 4 ((𝐹 ∈ Word ℝ ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇𝐹)‘𝑁) ∈ {-1, 0, 1})
82, 7sylancom 591 . . 3 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇𝐹)‘𝑁) ∈ {-1, 0, 1})
93, 4, 5, 6signstfvneq0 31952 . . 3 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇𝐹)‘𝑁) ≠ 0)
10 eldifsn 4680 . . 3 (((𝑇𝐹)‘𝑁) ∈ ({-1, 0, 1} ∖ {0}) ↔ (((𝑇𝐹)‘𝑁) ∈ {-1, 0, 1} ∧ ((𝑇𝐹)‘𝑁) ≠ 0))
118, 9, 10sylanbrc 586 . 2 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇𝐹)‘𝑁) ∈ ({-1, 0, 1} ∖ {0}))
12 tpcomb 4647 . . . 4 {-1, 0, 1} = {-1, 1, 0}
1312difeq1i 4046 . . 3 ({-1, 0, 1} ∖ {0}) = ({-1, 1, 0} ∖ {0})
14 neg1ne0 11741 . . . 4 -1 ≠ 0
15 ax-1ne0 10595 . . . 4 1 ≠ 0
16 diftpsn3 4695 . . . 4 ((-1 ≠ 0 ∧ 1 ≠ 0) → ({-1, 1, 0} ∖ {0}) = {-1, 1})
1714, 15, 16mp2an 691 . . 3 ({-1, 1, 0} ∖ {0}) = {-1, 1}
1813, 17eqtri 2821 . 2 ({-1, 0, 1} ∖ {0}) = {-1, 1}
1911, 18eleqtrdi 2900 1 (((𝐹 ∈ (Word ℝ ∖ {∅}) ∧ (𝐹‘0) ≠ 0) ∧ 𝑁 ∈ (0..^(♯‘𝐹))) → ((𝑇𝐹)‘𝑁) ∈ {-1, 1})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wne 2987  cdif 3878  c0 4243  ifcif 4425  {csn 4525  {cpr 4527  {ctp 4529  cop 4531  cmpt 5110  cfv 6324  (class class class)co 7135  cmpo 7137  cr 10525  0cc0 10526  1c1 10527  cmin 10859  -cneg 10860  ...cfz 12885  ..^cfzo 13028  chash 13686  Word cword 13857  sgncsgn 14437  Σcsu 15034  ndxcnx 16472  Basecbs 16475  +gcplusg 16557   Σg cgsu 16706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-seq 13365  df-hash 13687  df-word 13858  df-lsw 13906  df-concat 13914  df-s1 13941  df-substr 13994  df-pfx 14024  df-sgn 14438  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-plusg 16570  df-0g 16707  df-gsum 16708  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mulg 18217  df-cntz 18439
This theorem is referenced by:  signsvfn  31962  signlem0  31967
  Copyright terms: Public domain W3C validator