Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tpprceq3 | Structured version Visualization version GIF version |
Description: An unordered triple is an unordered pair if one of its elements is a proper class or is identical with another element. (Contributed by Alexander van der Vekens, 6-Oct-2017.) |
Ref | Expression |
---|---|
tpprceq3 | ⊢ (¬ (𝐶 ∈ V ∧ 𝐶 ≠ 𝐵) → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ianor 978 | . 2 ⊢ (¬ (𝐶 ∈ V ∧ 𝐶 ≠ 𝐵) ↔ (¬ 𝐶 ∈ V ∨ ¬ 𝐶 ≠ 𝐵)) | |
2 | prprc2 4699 | . . . . 5 ⊢ (¬ 𝐶 ∈ V → {𝐵, 𝐶} = {𝐵}) | |
3 | 2 | uneq1d 4092 | . . . 4 ⊢ (¬ 𝐶 ∈ V → ({𝐵, 𝐶} ∪ {𝐴}) = ({𝐵} ∪ {𝐴})) |
4 | tprot 4682 | . . . . 5 ⊢ {𝐴, 𝐵, 𝐶} = {𝐵, 𝐶, 𝐴} | |
5 | df-tp 4563 | . . . . 5 ⊢ {𝐵, 𝐶, 𝐴} = ({𝐵, 𝐶} ∪ {𝐴}) | |
6 | 4, 5 | eqtri 2766 | . . . 4 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐵, 𝐶} ∪ {𝐴}) |
7 | prcom 4665 | . . . . 5 ⊢ {𝐴, 𝐵} = {𝐵, 𝐴} | |
8 | df-pr 4561 | . . . . 5 ⊢ {𝐵, 𝐴} = ({𝐵} ∪ {𝐴}) | |
9 | 7, 8 | eqtri 2766 | . . . 4 ⊢ {𝐴, 𝐵} = ({𝐵} ∪ {𝐴}) |
10 | 3, 6, 9 | 3eqtr4g 2804 | . . 3 ⊢ (¬ 𝐶 ∈ V → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐵}) |
11 | nne 2946 | . . . 4 ⊢ (¬ 𝐶 ≠ 𝐵 ↔ 𝐶 = 𝐵) | |
12 | tppreq3 4692 | . . . . 5 ⊢ (𝐵 = 𝐶 → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐵}) | |
13 | 12 | eqcoms 2746 | . . . 4 ⊢ (𝐶 = 𝐵 → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐵}) |
14 | 11, 13 | sylbi 216 | . . 3 ⊢ (¬ 𝐶 ≠ 𝐵 → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐵}) |
15 | 10, 14 | jaoi 853 | . 2 ⊢ ((¬ 𝐶 ∈ V ∨ ¬ 𝐶 ≠ 𝐵) → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐵}) |
16 | 1, 15 | sylbi 216 | 1 ⊢ (¬ (𝐶 ∈ V ∧ 𝐶 ≠ 𝐵) → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 843 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 Vcvv 3422 ∪ cun 3881 {csn 4558 {cpr 4560 {ctp 4562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-sn 4559 df-pr 4561 df-tp 4563 |
This theorem is referenced by: tppreqb 4735 1to3vfriswmgr 28545 |
Copyright terms: Public domain | W3C validator |