MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpprceq3 Structured version   Visualization version   GIF version

Theorem tpprceq3 4780
Description: An unordered triple is an unordered pair if one of its elements is a proper class or is identical with another element. (Contributed by Alexander van der Vekens, 6-Oct-2017.)
Assertion
Ref Expression
tpprceq3 (¬ (𝐶 ∈ V ∧ 𝐶𝐵) → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐵})

Proof of Theorem tpprceq3
StepHypRef Expression
1 ianor 983 . 2 (¬ (𝐶 ∈ V ∧ 𝐶𝐵) ↔ (¬ 𝐶 ∈ V ∨ ¬ 𝐶𝐵))
2 prprc2 4742 . . . . 5 𝐶 ∈ V → {𝐵, 𝐶} = {𝐵})
32uneq1d 4142 . . . 4 𝐶 ∈ V → ({𝐵, 𝐶} ∪ {𝐴}) = ({𝐵} ∪ {𝐴}))
4 tprot 4725 . . . . 5 {𝐴, 𝐵, 𝐶} = {𝐵, 𝐶, 𝐴}
5 df-tp 4606 . . . . 5 {𝐵, 𝐶, 𝐴} = ({𝐵, 𝐶} ∪ {𝐴})
64, 5eqtri 2758 . . . 4 {𝐴, 𝐵, 𝐶} = ({𝐵, 𝐶} ∪ {𝐴})
7 prcom 4708 . . . . 5 {𝐴, 𝐵} = {𝐵, 𝐴}
8 df-pr 4604 . . . . 5 {𝐵, 𝐴} = ({𝐵} ∪ {𝐴})
97, 8eqtri 2758 . . . 4 {𝐴, 𝐵} = ({𝐵} ∪ {𝐴})
103, 6, 93eqtr4g 2795 . . 3 𝐶 ∈ V → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐵})
11 nne 2936 . . . 4 𝐶𝐵𝐶 = 𝐵)
12 tppreq3 4735 . . . . 5 (𝐵 = 𝐶 → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐵})
1312eqcoms 2743 . . . 4 (𝐶 = 𝐵 → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐵})
1411, 13sylbi 217 . . 3 𝐶𝐵 → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐵})
1510, 14jaoi 857 . 2 ((¬ 𝐶 ∈ V ∨ ¬ 𝐶𝐵) → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐵})
161, 15sylbi 217 1 (¬ (𝐶 ∈ V ∧ 𝐶𝐵) → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐵})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1540  wcel 2108  wne 2932  Vcvv 3459  cun 3924  {csn 4601  {cpr 4603  {ctp 4605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-v 3461  df-dif 3929  df-un 3931  df-nul 4309  df-sn 4602  df-pr 4604  df-tp 4606
This theorem is referenced by:  tppreqb  4781  1to3vfriswmgr  30261  tpssad  32520
  Copyright terms: Public domain W3C validator