![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tpprceq3 | Structured version Visualization version GIF version |
Description: An unordered triple is an unordered pair if one of its elements is a proper class or is identical with another element. (Contributed by Alexander van der Vekens, 6-Oct-2017.) |
Ref | Expression |
---|---|
tpprceq3 | ⊢ (¬ (𝐶 ∈ V ∧ 𝐶 ≠ 𝐵) → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ianor 979 | . 2 ⊢ (¬ (𝐶 ∈ V ∧ 𝐶 ≠ 𝐵) ↔ (¬ 𝐶 ∈ V ∨ ¬ 𝐶 ≠ 𝐵)) | |
2 | prprc2 4770 | . . . . 5 ⊢ (¬ 𝐶 ∈ V → {𝐵, 𝐶} = {𝐵}) | |
3 | 2 | uneq1d 4162 | . . . 4 ⊢ (¬ 𝐶 ∈ V → ({𝐵, 𝐶} ∪ {𝐴}) = ({𝐵} ∪ {𝐴})) |
4 | tprot 4753 | . . . . 5 ⊢ {𝐴, 𝐵, 𝐶} = {𝐵, 𝐶, 𝐴} | |
5 | df-tp 4633 | . . . . 5 ⊢ {𝐵, 𝐶, 𝐴} = ({𝐵, 𝐶} ∪ {𝐴}) | |
6 | 4, 5 | eqtri 2759 | . . . 4 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐵, 𝐶} ∪ {𝐴}) |
7 | prcom 4736 | . . . . 5 ⊢ {𝐴, 𝐵} = {𝐵, 𝐴} | |
8 | df-pr 4631 | . . . . 5 ⊢ {𝐵, 𝐴} = ({𝐵} ∪ {𝐴}) | |
9 | 7, 8 | eqtri 2759 | . . . 4 ⊢ {𝐴, 𝐵} = ({𝐵} ∪ {𝐴}) |
10 | 3, 6, 9 | 3eqtr4g 2796 | . . 3 ⊢ (¬ 𝐶 ∈ V → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐵}) |
11 | nne 2943 | . . . 4 ⊢ (¬ 𝐶 ≠ 𝐵 ↔ 𝐶 = 𝐵) | |
12 | tppreq3 4763 | . . . . 5 ⊢ (𝐵 = 𝐶 → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐵}) | |
13 | 12 | eqcoms 2739 | . . . 4 ⊢ (𝐶 = 𝐵 → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐵}) |
14 | 11, 13 | sylbi 216 | . . 3 ⊢ (¬ 𝐶 ≠ 𝐵 → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐵}) |
15 | 10, 14 | jaoi 854 | . 2 ⊢ ((¬ 𝐶 ∈ V ∨ ¬ 𝐶 ≠ 𝐵) → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐵}) |
16 | 1, 15 | sylbi 216 | 1 ⊢ (¬ (𝐶 ∈ V ∧ 𝐶 ≠ 𝐵) → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 844 = wceq 1540 ∈ wcel 2105 ≠ wne 2939 Vcvv 3473 ∪ cun 3946 {csn 4628 {cpr 4630 {ctp 4632 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ne 2940 df-v 3475 df-dif 3951 df-un 3953 df-nul 4323 df-sn 4629 df-pr 4631 df-tp 4633 |
This theorem is referenced by: tppreqb 4808 1to3vfriswmgr 29801 |
Copyright terms: Public domain | W3C validator |