MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpprceq3 Structured version   Visualization version   GIF version

Theorem tpprceq3 4804
Description: An unordered triple is an unordered pair if one of its elements is a proper class or is identical with another element. (Contributed by Alexander van der Vekens, 6-Oct-2017.)
Assertion
Ref Expression
tpprceq3 (¬ (𝐶 ∈ V ∧ 𝐶𝐵) → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐵})

Proof of Theorem tpprceq3
StepHypRef Expression
1 ianor 980 . 2 (¬ (𝐶 ∈ V ∧ 𝐶𝐵) ↔ (¬ 𝐶 ∈ V ∨ ¬ 𝐶𝐵))
2 prprc2 4767 . . . . 5 𝐶 ∈ V → {𝐵, 𝐶} = {𝐵})
32uneq1d 4159 . . . 4 𝐶 ∈ V → ({𝐵, 𝐶} ∪ {𝐴}) = ({𝐵} ∪ {𝐴}))
4 tprot 4750 . . . . 5 {𝐴, 𝐵, 𝐶} = {𝐵, 𝐶, 𝐴}
5 df-tp 4630 . . . . 5 {𝐵, 𝐶, 𝐴} = ({𝐵, 𝐶} ∪ {𝐴})
64, 5eqtri 2756 . . . 4 {𝐴, 𝐵, 𝐶} = ({𝐵, 𝐶} ∪ {𝐴})
7 prcom 4733 . . . . 5 {𝐴, 𝐵} = {𝐵, 𝐴}
8 df-pr 4628 . . . . 5 {𝐵, 𝐴} = ({𝐵} ∪ {𝐴})
97, 8eqtri 2756 . . . 4 {𝐴, 𝐵} = ({𝐵} ∪ {𝐴})
103, 6, 93eqtr4g 2793 . . 3 𝐶 ∈ V → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐵})
11 nne 2940 . . . 4 𝐶𝐵𝐶 = 𝐵)
12 tppreq3 4760 . . . . 5 (𝐵 = 𝐶 → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐵})
1312eqcoms 2736 . . . 4 (𝐶 = 𝐵 → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐵})
1411, 13sylbi 216 . . 3 𝐶𝐵 → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐵})
1510, 14jaoi 856 . 2 ((¬ 𝐶 ∈ V ∨ ¬ 𝐶𝐵) → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐵})
161, 15sylbi 216 1 (¬ (𝐶 ∈ V ∧ 𝐶𝐵) → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐵})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 846   = wceq 1534  wcel 2099  wne 2936  Vcvv 3470  cun 3943  {csn 4625  {cpr 4627  {ctp 4629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-ne 2937  df-v 3472  df-dif 3948  df-un 3950  df-nul 4320  df-sn 4626  df-pr 4628  df-tp 4630
This theorem is referenced by:  tppreqb  4805  1to3vfriswmgr  30084
  Copyright terms: Public domain W3C validator