Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tpssd Structured version   Visualization version   GIF version

Theorem tpssd 32474
Description: Deduction version of tpssi : An unordered triple of elements of a class is a subset of that class. (Contributed by Thierry Arnoux, 2-Nov-2025.)
Hypotheses
Ref Expression
tpssd.1 (𝜑𝐴𝐷)
tpssd.2 (𝜑𝐵𝐷)
tpssd.3 (𝜑𝐶𝐷)
Assertion
Ref Expression
tpssd (𝜑 → {𝐴, 𝐵, 𝐶} ⊆ 𝐷)

Proof of Theorem tpssd
StepHypRef Expression
1 tpssd.1 . 2 (𝜑𝐴𝐷)
2 tpssd.2 . 2 (𝜑𝐵𝐷)
3 tpssd.3 . 2 (𝜑𝐶𝐷)
4 tpssi 4810 . 2 ((𝐴𝐷𝐵𝐷𝐶𝐷) → {𝐴, 𝐵, 𝐶} ⊆ 𝐷)
51, 2, 3, 4syl3anc 1373 1 (𝜑 → {𝐴, 𝐵, 𝐶} ⊆ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wss 3922  {ctp 4601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3457  df-un 3927  df-ss 3939  df-sn 4598  df-pr 4600  df-tp 4602
This theorem is referenced by:  constrlccllem  33751  constrcccllem  33752  cos9thpiminplylem2  33781
  Copyright terms: Public domain W3C validator