| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tpssd | Structured version Visualization version GIF version | ||
| Description: Deduction version of tpssi : An unordered triple of elements of a class is a subset of that class. (Contributed by Thierry Arnoux, 2-Nov-2025.) |
| Ref | Expression |
|---|---|
| tpssd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐷) |
| tpssd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐷) |
| tpssd.3 | ⊢ (𝜑 → 𝐶 ∈ 𝐷) |
| Ref | Expression |
|---|---|
| tpssd | ⊢ (𝜑 → {𝐴, 𝐵, 𝐶} ⊆ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tpssd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐷) | |
| 2 | tpssd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐷) | |
| 3 | tpssd.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝐷) | |
| 4 | tpssi 4818 | . 2 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷) → {𝐴, 𝐵, 𝐶} ⊆ 𝐷) | |
| 5 | 1, 2, 3, 4 | syl3anc 1372 | 1 ⊢ (𝜑 → {𝐴, 𝐵, 𝐶} ⊆ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 ⊆ wss 3931 {ctp 4610 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3465 df-un 3936 df-ss 3948 df-sn 4607 df-pr 4609 df-tp 4611 |
| This theorem is referenced by: constrlccllem 33733 constrcccllem 33734 |
| Copyright terms: Public domain | W3C validator |