| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tpssd | Structured version Visualization version GIF version | ||
| Description: Deduction version of tpssi : An unordered triple of elements of a class is a subset of that class. (Contributed by Thierry Arnoux, 2-Nov-2025.) |
| Ref | Expression |
|---|---|
| tpssd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐷) |
| tpssd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐷) |
| tpssd.3 | ⊢ (𝜑 → 𝐶 ∈ 𝐷) |
| Ref | Expression |
|---|---|
| tpssd | ⊢ (𝜑 → {𝐴, 𝐵, 𝐶} ⊆ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tpssd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐷) | |
| 2 | tpssd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐷) | |
| 3 | tpssd.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝐷) | |
| 4 | tpssi 4810 | . 2 ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷) → {𝐴, 𝐵, 𝐶} ⊆ 𝐷) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | 1 ⊢ (𝜑 → {𝐴, 𝐵, 𝐶} ⊆ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ⊆ wss 3922 {ctp 4601 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3457 df-un 3927 df-ss 3939 df-sn 4598 df-pr 4600 df-tp 4602 |
| This theorem is referenced by: constrlccllem 33751 constrcccllem 33752 cos9thpiminplylem2 33781 |
| Copyright terms: Public domain | W3C validator |