Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tpssad Structured version   Visualization version   GIF version

Theorem tpssad 32487
Description: If an ordered triple is a subset of a class, the first element of the triple is an element of that class. (Contributed by Thierry Arnoux, 2-Nov-2025.)
Hypotheses
Ref Expression
tpssad.1 (𝜑𝐴𝑉)
tpssad.2 (𝜑 → {𝐴, 𝐵, 𝐶} ⊆ 𝐷)
Assertion
Ref Expression
tpssad (𝜑𝐴𝐷)

Proof of Theorem tpssad
StepHypRef Expression
1 tpssad.1 . . . 4 (𝜑𝐴𝑉)
21adantr 480 . . 3 ((𝜑 ∧ ¬ 𝐵 ∈ V) → 𝐴𝑉)
3 tpcomb 4731 . . . . 5 {𝐴, 𝐵, 𝐶} = {𝐴, 𝐶, 𝐵}
4 simpr 484 . . . . . . 7 ((𝜑 ∧ ¬ 𝐵 ∈ V) → ¬ 𝐵 ∈ V)
54intnanrd 489 . . . . . 6 ((𝜑 ∧ ¬ 𝐵 ∈ V) → ¬ (𝐵 ∈ V ∧ 𝐵𝐶))
6 tpprceq3 4784 . . . . . 6 (¬ (𝐵 ∈ V ∧ 𝐵𝐶) → {𝐴, 𝐶, 𝐵} = {𝐴, 𝐶})
75, 6syl 17 . . . . 5 ((𝜑 ∧ ¬ 𝐵 ∈ V) → {𝐴, 𝐶, 𝐵} = {𝐴, 𝐶})
83, 7eqtrid 2781 . . . 4 ((𝜑 ∧ ¬ 𝐵 ∈ V) → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐶})
9 tpssad.2 . . . . 5 (𝜑 → {𝐴, 𝐵, 𝐶} ⊆ 𝐷)
109adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝐵 ∈ V) → {𝐴, 𝐵, 𝐶} ⊆ 𝐷)
118, 10eqsstrrd 3999 . . 3 ((𝜑 ∧ ¬ 𝐵 ∈ V) → {𝐴, 𝐶} ⊆ 𝐷)
122, 11prssad 32477 . 2 ((𝜑 ∧ ¬ 𝐵 ∈ V) → 𝐴𝐷)
131adantr 480 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ V) → 𝐴𝑉)
14 simpr 484 . . . . . 6 ((𝜑 ∧ ¬ 𝐶 ∈ V) → ¬ 𝐶 ∈ V)
1514intnanrd 489 . . . . 5 ((𝜑 ∧ ¬ 𝐶 ∈ V) → ¬ (𝐶 ∈ V ∧ 𝐶𝐵))
16 tpprceq3 4784 . . . . 5 (¬ (𝐶 ∈ V ∧ 𝐶𝐵) → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐵})
1715, 16syl 17 . . . 4 ((𝜑 ∧ ¬ 𝐶 ∈ V) → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐵})
189adantr 480 . . . 4 ((𝜑 ∧ ¬ 𝐶 ∈ V) → {𝐴, 𝐵, 𝐶} ⊆ 𝐷)
1917, 18eqsstrrd 3999 . . 3 ((𝜑 ∧ ¬ 𝐶 ∈ V) → {𝐴, 𝐵} ⊆ 𝐷)
2013, 19prssad 32477 . 2 ((𝜑 ∧ ¬ 𝐶 ∈ V) → 𝐴𝐷)
211adantr 480 . . . 4 ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐶 ∈ V)) → 𝐴𝑉)
22 simprl 770 . . . 4 ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐶 ∈ V)) → 𝐵 ∈ V)
23 simprr 772 . . . 4 ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐶 ∈ V)) → 𝐶 ∈ V)
249adantr 480 . . . 4 ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐶 ∈ V)) → {𝐴, 𝐵, 𝐶} ⊆ 𝐷)
25 tpssg 32485 . . . . 5 ((𝐴𝑉𝐵 ∈ V ∧ 𝐶 ∈ V) → ((𝐴𝐷𝐵𝐷𝐶𝐷) ↔ {𝐴, 𝐵, 𝐶} ⊆ 𝐷))
2625biimpar 477 . . . 4 (((𝐴𝑉𝐵 ∈ V ∧ 𝐶 ∈ V) ∧ {𝐴, 𝐵, 𝐶} ⊆ 𝐷) → (𝐴𝐷𝐵𝐷𝐶𝐷))
2721, 22, 23, 24, 26syl31anc 1374 . . 3 ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐶 ∈ V)) → (𝐴𝐷𝐵𝐷𝐶𝐷))
2827simp1d 1142 . 2 ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐶 ∈ V)) → 𝐴𝐷)
2912, 20, 28pm2.61dda 814 1 (𝜑𝐴𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2931  Vcvv 3463  wss 3931  {cpr 4608  {ctp 4610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-v 3465  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-sn 4607  df-pr 4609  df-tp 4611
This theorem is referenced by:  tpssbd  32488  tpsscd  32489  constrlccllem  33733  constrcccllem  33734
  Copyright terms: Public domain W3C validator