Proof of Theorem tpssad
| Step | Hyp | Ref
| Expression |
| 1 | | tpssad.1 |
. . . 4
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| 2 | 1 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝐵 ∈ V) → 𝐴 ∈ 𝑉) |
| 3 | | tpcomb 4731 |
. . . . 5
⊢ {𝐴, 𝐵, 𝐶} = {𝐴, 𝐶, 𝐵} |
| 4 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ 𝐵 ∈ V) → ¬ 𝐵 ∈ V) |
| 5 | 4 | intnanrd 489 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 𝐵 ∈ V) → ¬ (𝐵 ∈ V ∧ 𝐵 ≠ 𝐶)) |
| 6 | | tpprceq3 4784 |
. . . . . 6
⊢ (¬
(𝐵 ∈ V ∧ 𝐵 ≠ 𝐶) → {𝐴, 𝐶, 𝐵} = {𝐴, 𝐶}) |
| 7 | 5, 6 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝐵 ∈ V) → {𝐴, 𝐶, 𝐵} = {𝐴, 𝐶}) |
| 8 | 3, 7 | eqtrid 2781 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝐵 ∈ V) → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐶}) |
| 9 | | tpssad.2 |
. . . . 5
⊢ (𝜑 → {𝐴, 𝐵, 𝐶} ⊆ 𝐷) |
| 10 | 9 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝐵 ∈ V) → {𝐴, 𝐵, 𝐶} ⊆ 𝐷) |
| 11 | 8, 10 | eqsstrrd 3999 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝐵 ∈ V) → {𝐴, 𝐶} ⊆ 𝐷) |
| 12 | 2, 11 | prssad 32477 |
. 2
⊢ ((𝜑 ∧ ¬ 𝐵 ∈ V) → 𝐴 ∈ 𝐷) |
| 13 | 1 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝐶 ∈ V) → 𝐴 ∈ 𝑉) |
| 14 | | simpr 484 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 𝐶 ∈ V) → ¬ 𝐶 ∈ V) |
| 15 | 14 | intnanrd 489 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝐶 ∈ V) → ¬ (𝐶 ∈ V ∧ 𝐶 ≠ 𝐵)) |
| 16 | | tpprceq3 4784 |
. . . . 5
⊢ (¬
(𝐶 ∈ V ∧ 𝐶 ≠ 𝐵) → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐵}) |
| 17 | 15, 16 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝐶 ∈ V) → {𝐴, 𝐵, 𝐶} = {𝐴, 𝐵}) |
| 18 | 9 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝐶 ∈ V) → {𝐴, 𝐵, 𝐶} ⊆ 𝐷) |
| 19 | 17, 18 | eqsstrrd 3999 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝐶 ∈ V) → {𝐴, 𝐵} ⊆ 𝐷) |
| 20 | 13, 19 | prssad 32477 |
. 2
⊢ ((𝜑 ∧ ¬ 𝐶 ∈ V) → 𝐴 ∈ 𝐷) |
| 21 | 1 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐶 ∈ V)) → 𝐴 ∈ 𝑉) |
| 22 | | simprl 770 |
. . . 4
⊢ ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐶 ∈ V)) → 𝐵 ∈ V) |
| 23 | | simprr 772 |
. . . 4
⊢ ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐶 ∈ V)) → 𝐶 ∈ V) |
| 24 | 9 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐶 ∈ V)) → {𝐴, 𝐵, 𝐶} ⊆ 𝐷) |
| 25 | | tpssg 32485 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) → ((𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷) ↔ {𝐴, 𝐵, 𝐶} ⊆ 𝐷)) |
| 26 | 25 | biimpar 477 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) ∧ {𝐴, 𝐵, 𝐶} ⊆ 𝐷) → (𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷)) |
| 27 | 21, 22, 23, 24, 26 | syl31anc 1374 |
. . 3
⊢ ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐶 ∈ V)) → (𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝐷 ∧ 𝐶 ∈ 𝐷)) |
| 28 | 27 | simp1d 1142 |
. 2
⊢ ((𝜑 ∧ (𝐵 ∈ V ∧ 𝐶 ∈ V)) → 𝐴 ∈ 𝐷) |
| 29 | 12, 20, 28 | pm2.61dda 814 |
1
⊢ (𝜑 → 𝐴 ∈ 𝐷) |