Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  constrlccllem Structured version   Visualization version   GIF version

Theorem constrlccllem 33743
Description: Constructible numbers are closed under line-circle intersections. (Contributed by Thierry Arnoux, 2-Nov-2025.)
Hypotheses
Ref Expression
constr0.1 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})
constrlccllem.a (𝜑𝐴 ∈ Constr)
constrlccllem.b (𝜑𝐵 ∈ Constr)
constrlccllem.c (𝜑𝐺 ∈ Constr)
constrlccllem.e (𝜑𝐸 ∈ Constr)
constrlccllem.f (𝜑𝐹 ∈ Constr)
constrlccllem.t (𝜑𝑇 ∈ ℝ)
constrlccllem.x (𝜑𝑋 ∈ ℂ)
constrlccllem.1 (𝜑𝑋 = (𝐴 + (𝑇 · (𝐵𝐴))))
constrlccllem.2 (𝜑 → (abs‘(𝑋𝐺)) = (abs‘(𝐸𝐹)))
Assertion
Ref Expression
constrlccllem (𝜑𝑋 ∈ Constr)
Distinct variable groups:   𝐴,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓,𝑠,𝑡,𝑥   𝐵,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓,𝑠,𝑡,𝑥   𝐶,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓,𝑠,𝑡,𝑥   𝐸,𝑎,𝑏,𝑐,𝑒,𝑓,𝑠,𝑡,𝑥   𝐹,𝑎,𝑏,𝑐,𝑒,𝑓,𝑠,𝑡,𝑥   𝐺,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓,𝑠,𝑡,𝑥   𝑡,𝑇   𝑋,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓,𝑟,𝑡   𝑠,𝑟,𝑥   𝜑,𝑎,𝑏,𝑐,𝑒,𝑓,𝑠,𝑡,𝑥
Allowed substitution hints:   𝜑(𝑟,𝑑)   𝐴(𝑟)   𝐵(𝑟)   𝐶(𝑟)   𝑇(𝑥,𝑒,𝑓,𝑠,𝑟,𝑎,𝑏,𝑐,𝑑)   𝐸(𝑟,𝑑)   𝐹(𝑟,𝑑)   𝐺(𝑟)   𝑋(𝑥,𝑠)

Proof of Theorem constrlccllem
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 peano2b 7859 . . . . . 6 (𝑛 ∈ ω ↔ suc 𝑛 ∈ ω)
21biimpi 216 . . . . 5 (𝑛 ∈ ω → suc 𝑛 ∈ ω)
32ad2antlr 727 . . . 4 (((𝜑𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐸, 𝐹}) ⊆ (𝐶𝑛)) → suc 𝑛 ∈ ω)
4 fveq2 6858 . . . . . 6 (𝑚 = suc 𝑛 → (𝐶𝑚) = (𝐶‘suc 𝑛))
54eleq2d 2814 . . . . 5 (𝑚 = suc 𝑛 → (𝑋 ∈ (𝐶𝑚) ↔ 𝑋 ∈ (𝐶‘suc 𝑛)))
65adantl 481 . . . 4 ((((𝜑𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐸, 𝐹}) ⊆ (𝐶𝑛)) ∧ 𝑚 = suc 𝑛) → (𝑋 ∈ (𝐶𝑚) ↔ 𝑋 ∈ (𝐶‘suc 𝑛)))
7 constrlccllem.x . . . . . 6 (𝜑𝑋 ∈ ℂ)
87ad2antrr 726 . . . . 5 (((𝜑𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐸, 𝐹}) ⊆ (𝐶𝑛)) → 𝑋 ∈ ℂ)
9 id 22 . . . . . . . . . . . 12 (𝑎 = 𝐴𝑎 = 𝐴)
10 oveq2 7395 . . . . . . . . . . . . 13 (𝑎 = 𝐴 → (𝑏𝑎) = (𝑏𝐴))
1110oveq2d 7403 . . . . . . . . . . . 12 (𝑎 = 𝐴 → (𝑡 · (𝑏𝑎)) = (𝑡 · (𝑏𝐴)))
129, 11oveq12d 7405 . . . . . . . . . . 11 (𝑎 = 𝐴 → (𝑎 + (𝑡 · (𝑏𝑎))) = (𝐴 + (𝑡 · (𝑏𝐴))))
1312eqeq2d 2740 . . . . . . . . . 10 (𝑎 = 𝐴 → (𝑋 = (𝑎 + (𝑡 · (𝑏𝑎))) ↔ 𝑋 = (𝐴 + (𝑡 · (𝑏𝐴)))))
1413anbi1d 631 . . . . . . . . 9 (𝑎 = 𝐴 → ((𝑋 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑋𝑐)) = (abs‘(𝑒𝑓))) ↔ (𝑋 = (𝐴 + (𝑡 · (𝑏𝐴))) ∧ (abs‘(𝑋𝑐)) = (abs‘(𝑒𝑓)))))
1514rexbidv 3157 . . . . . . . 8 (𝑎 = 𝐴 → (∃𝑡 ∈ ℝ (𝑋 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑋𝑐)) = (abs‘(𝑒𝑓))) ↔ ∃𝑡 ∈ ℝ (𝑋 = (𝐴 + (𝑡 · (𝑏𝐴))) ∧ (abs‘(𝑋𝑐)) = (abs‘(𝑒𝑓)))))
16152rexbidv 3202 . . . . . . 7 (𝑎 = 𝐴 → (∃𝑒 ∈ (𝐶𝑛)∃𝑓 ∈ (𝐶𝑛)∃𝑡 ∈ ℝ (𝑋 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑋𝑐)) = (abs‘(𝑒𝑓))) ↔ ∃𝑒 ∈ (𝐶𝑛)∃𝑓 ∈ (𝐶𝑛)∃𝑡 ∈ ℝ (𝑋 = (𝐴 + (𝑡 · (𝑏𝐴))) ∧ (abs‘(𝑋𝑐)) = (abs‘(𝑒𝑓)))))
17 oveq1 7394 . . . . . . . . . . . . 13 (𝑏 = 𝐵 → (𝑏𝐴) = (𝐵𝐴))
1817oveq2d 7403 . . . . . . . . . . . 12 (𝑏 = 𝐵 → (𝑡 · (𝑏𝐴)) = (𝑡 · (𝐵𝐴)))
1918oveq2d 7403 . . . . . . . . . . 11 (𝑏 = 𝐵 → (𝐴 + (𝑡 · (𝑏𝐴))) = (𝐴 + (𝑡 · (𝐵𝐴))))
2019eqeq2d 2740 . . . . . . . . . 10 (𝑏 = 𝐵 → (𝑋 = (𝐴 + (𝑡 · (𝑏𝐴))) ↔ 𝑋 = (𝐴 + (𝑡 · (𝐵𝐴)))))
2120anbi1d 631 . . . . . . . . 9 (𝑏 = 𝐵 → ((𝑋 = (𝐴 + (𝑡 · (𝑏𝐴))) ∧ (abs‘(𝑋𝑐)) = (abs‘(𝑒𝑓))) ↔ (𝑋 = (𝐴 + (𝑡 · (𝐵𝐴))) ∧ (abs‘(𝑋𝑐)) = (abs‘(𝑒𝑓)))))
2221rexbidv 3157 . . . . . . . 8 (𝑏 = 𝐵 → (∃𝑡 ∈ ℝ (𝑋 = (𝐴 + (𝑡 · (𝑏𝐴))) ∧ (abs‘(𝑋𝑐)) = (abs‘(𝑒𝑓))) ↔ ∃𝑡 ∈ ℝ (𝑋 = (𝐴 + (𝑡 · (𝐵𝐴))) ∧ (abs‘(𝑋𝑐)) = (abs‘(𝑒𝑓)))))
23222rexbidv 3202 . . . . . . 7 (𝑏 = 𝐵 → (∃𝑒 ∈ (𝐶𝑛)∃𝑓 ∈ (𝐶𝑛)∃𝑡 ∈ ℝ (𝑋 = (𝐴 + (𝑡 · (𝑏𝐴))) ∧ (abs‘(𝑋𝑐)) = (abs‘(𝑒𝑓))) ↔ ∃𝑒 ∈ (𝐶𝑛)∃𝑓 ∈ (𝐶𝑛)∃𝑡 ∈ ℝ (𝑋 = (𝐴 + (𝑡 · (𝐵𝐴))) ∧ (abs‘(𝑋𝑐)) = (abs‘(𝑒𝑓)))))
24 oveq2 7395 . . . . . . . . . . . 12 (𝑐 = 𝐺 → (𝑋𝑐) = (𝑋𝐺))
2524fveq2d 6862 . . . . . . . . . . 11 (𝑐 = 𝐺 → (abs‘(𝑋𝑐)) = (abs‘(𝑋𝐺)))
2625eqeq1d 2731 . . . . . . . . . 10 (𝑐 = 𝐺 → ((abs‘(𝑋𝑐)) = (abs‘(𝑒𝑓)) ↔ (abs‘(𝑋𝐺)) = (abs‘(𝑒𝑓))))
2726anbi2d 630 . . . . . . . . 9 (𝑐 = 𝐺 → ((𝑋 = (𝐴 + (𝑡 · (𝐵𝐴))) ∧ (abs‘(𝑋𝑐)) = (abs‘(𝑒𝑓))) ↔ (𝑋 = (𝐴 + (𝑡 · (𝐵𝐴))) ∧ (abs‘(𝑋𝐺)) = (abs‘(𝑒𝑓)))))
2827rexbidv 3157 . . . . . . . 8 (𝑐 = 𝐺 → (∃𝑡 ∈ ℝ (𝑋 = (𝐴 + (𝑡 · (𝐵𝐴))) ∧ (abs‘(𝑋𝑐)) = (abs‘(𝑒𝑓))) ↔ ∃𝑡 ∈ ℝ (𝑋 = (𝐴 + (𝑡 · (𝐵𝐴))) ∧ (abs‘(𝑋𝐺)) = (abs‘(𝑒𝑓)))))
29282rexbidv 3202 . . . . . . 7 (𝑐 = 𝐺 → (∃𝑒 ∈ (𝐶𝑛)∃𝑓 ∈ (𝐶𝑛)∃𝑡 ∈ ℝ (𝑋 = (𝐴 + (𝑡 · (𝐵𝐴))) ∧ (abs‘(𝑋𝑐)) = (abs‘(𝑒𝑓))) ↔ ∃𝑒 ∈ (𝐶𝑛)∃𝑓 ∈ (𝐶𝑛)∃𝑡 ∈ ℝ (𝑋 = (𝐴 + (𝑡 · (𝐵𝐴))) ∧ (abs‘(𝑋𝐺)) = (abs‘(𝑒𝑓)))))
30 constrlccllem.a . . . . . . . . 9 (𝜑𝐴 ∈ Constr)
3130ad2antrr 726 . . . . . . . 8 (((𝜑𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐸, 𝐹}) ⊆ (𝐶𝑛)) → 𝐴 ∈ Constr)
32 simpr 484 . . . . . . . . 9 (((𝜑𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐸, 𝐹}) ⊆ (𝐶𝑛)) → ({𝐴, 𝐵, 𝐺} ∪ {𝐸, 𝐹}) ⊆ (𝐶𝑛))
3332unssad 4156 . . . . . . . 8 (((𝜑𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐸, 𝐹}) ⊆ (𝐶𝑛)) → {𝐴, 𝐵, 𝐺} ⊆ (𝐶𝑛))
3431, 33tpssad 32468 . . . . . . 7 (((𝜑𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐸, 𝐹}) ⊆ (𝐶𝑛)) → 𝐴 ∈ (𝐶𝑛))
35 constrlccllem.b . . . . . . . . 9 (𝜑𝐵 ∈ Constr)
3635ad2antrr 726 . . . . . . . 8 (((𝜑𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐸, 𝐹}) ⊆ (𝐶𝑛)) → 𝐵 ∈ Constr)
3736, 33tpssbd 32469 . . . . . . 7 (((𝜑𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐸, 𝐹}) ⊆ (𝐶𝑛)) → 𝐵 ∈ (𝐶𝑛))
38 constrlccllem.c . . . . . . . . 9 (𝜑𝐺 ∈ Constr)
3938ad2antrr 726 . . . . . . . 8 (((𝜑𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐸, 𝐹}) ⊆ (𝐶𝑛)) → 𝐺 ∈ Constr)
4039, 33tpsscd 32470 . . . . . . 7 (((𝜑𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐸, 𝐹}) ⊆ (𝐶𝑛)) → 𝐺 ∈ (𝐶𝑛))
41 oveq1 7394 . . . . . . . . . . 11 (𝑒 = 𝐸 → (𝑒𝑓) = (𝐸𝑓))
4241fveq2d 6862 . . . . . . . . . 10 (𝑒 = 𝐸 → (abs‘(𝑒𝑓)) = (abs‘(𝐸𝑓)))
4342eqeq2d 2740 . . . . . . . . 9 (𝑒 = 𝐸 → ((abs‘(𝑋𝐺)) = (abs‘(𝑒𝑓)) ↔ (abs‘(𝑋𝐺)) = (abs‘(𝐸𝑓))))
4443anbi2d 630 . . . . . . . 8 (𝑒 = 𝐸 → ((𝑋 = (𝐴 + (𝑡 · (𝐵𝐴))) ∧ (abs‘(𝑋𝐺)) = (abs‘(𝑒𝑓))) ↔ (𝑋 = (𝐴 + (𝑡 · (𝐵𝐴))) ∧ (abs‘(𝑋𝐺)) = (abs‘(𝐸𝑓)))))
45 oveq2 7395 . . . . . . . . . . 11 (𝑓 = 𝐹 → (𝐸𝑓) = (𝐸𝐹))
4645fveq2d 6862 . . . . . . . . . 10 (𝑓 = 𝐹 → (abs‘(𝐸𝑓)) = (abs‘(𝐸𝐹)))
4746eqeq2d 2740 . . . . . . . . 9 (𝑓 = 𝐹 → ((abs‘(𝑋𝐺)) = (abs‘(𝐸𝑓)) ↔ (abs‘(𝑋𝐺)) = (abs‘(𝐸𝐹))))
4847anbi2d 630 . . . . . . . 8 (𝑓 = 𝐹 → ((𝑋 = (𝐴 + (𝑡 · (𝐵𝐴))) ∧ (abs‘(𝑋𝐺)) = (abs‘(𝐸𝑓))) ↔ (𝑋 = (𝐴 + (𝑡 · (𝐵𝐴))) ∧ (abs‘(𝑋𝐺)) = (abs‘(𝐸𝐹)))))
49 oveq1 7394 . . . . . . . . . . 11 (𝑡 = 𝑇 → (𝑡 · (𝐵𝐴)) = (𝑇 · (𝐵𝐴)))
5049oveq2d 7403 . . . . . . . . . 10 (𝑡 = 𝑇 → (𝐴 + (𝑡 · (𝐵𝐴))) = (𝐴 + (𝑇 · (𝐵𝐴))))
5150eqeq2d 2740 . . . . . . . . 9 (𝑡 = 𝑇 → (𝑋 = (𝐴 + (𝑡 · (𝐵𝐴))) ↔ 𝑋 = (𝐴 + (𝑇 · (𝐵𝐴)))))
5251anbi1d 631 . . . . . . . 8 (𝑡 = 𝑇 → ((𝑋 = (𝐴 + (𝑡 · (𝐵𝐴))) ∧ (abs‘(𝑋𝐺)) = (abs‘(𝐸𝐹))) ↔ (𝑋 = (𝐴 + (𝑇 · (𝐵𝐴))) ∧ (abs‘(𝑋𝐺)) = (abs‘(𝐸𝐹)))))
53 constrlccllem.e . . . . . . . . . 10 (𝜑𝐸 ∈ Constr)
5453ad2antrr 726 . . . . . . . . 9 (((𝜑𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐸, 𝐹}) ⊆ (𝐶𝑛)) → 𝐸 ∈ Constr)
5532unssbd 4157 . . . . . . . . 9 (((𝜑𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐸, 𝐹}) ⊆ (𝐶𝑛)) → {𝐸, 𝐹} ⊆ (𝐶𝑛))
5654, 55prssad 32458 . . . . . . . 8 (((𝜑𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐸, 𝐹}) ⊆ (𝐶𝑛)) → 𝐸 ∈ (𝐶𝑛))
57 constrlccllem.f . . . . . . . . . 10 (𝜑𝐹 ∈ Constr)
5857ad2antrr 726 . . . . . . . . 9 (((𝜑𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐸, 𝐹}) ⊆ (𝐶𝑛)) → 𝐹 ∈ Constr)
5958, 55prssbd 32459 . . . . . . . 8 (((𝜑𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐸, 𝐹}) ⊆ (𝐶𝑛)) → 𝐹 ∈ (𝐶𝑛))
60 constrlccllem.t . . . . . . . . 9 (𝜑𝑇 ∈ ℝ)
6160ad2antrr 726 . . . . . . . 8 (((𝜑𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐸, 𝐹}) ⊆ (𝐶𝑛)) → 𝑇 ∈ ℝ)
62 constrlccllem.1 . . . . . . . . . 10 (𝜑𝑋 = (𝐴 + (𝑇 · (𝐵𝐴))))
6362ad2antrr 726 . . . . . . . . 9 (((𝜑𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐸, 𝐹}) ⊆ (𝐶𝑛)) → 𝑋 = (𝐴 + (𝑇 · (𝐵𝐴))))
64 constrlccllem.2 . . . . . . . . . 10 (𝜑 → (abs‘(𝑋𝐺)) = (abs‘(𝐸𝐹)))
6564ad2antrr 726 . . . . . . . . 9 (((𝜑𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐸, 𝐹}) ⊆ (𝐶𝑛)) → (abs‘(𝑋𝐺)) = (abs‘(𝐸𝐹)))
6663, 65jca 511 . . . . . . . 8 (((𝜑𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐸, 𝐹}) ⊆ (𝐶𝑛)) → (𝑋 = (𝐴 + (𝑇 · (𝐵𝐴))) ∧ (abs‘(𝑋𝐺)) = (abs‘(𝐸𝐹))))
6744, 48, 52, 56, 59, 61, 663rspcedvdw 3606 . . . . . . 7 (((𝜑𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐸, 𝐹}) ⊆ (𝐶𝑛)) → ∃𝑒 ∈ (𝐶𝑛)∃𝑓 ∈ (𝐶𝑛)∃𝑡 ∈ ℝ (𝑋 = (𝐴 + (𝑡 · (𝐵𝐴))) ∧ (abs‘(𝑋𝐺)) = (abs‘(𝑒𝑓))))
6816, 23, 29, 34, 37, 40, 673rspcedvdw 3606 . . . . . 6 (((𝜑𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐸, 𝐹}) ⊆ (𝐶𝑛)) → ∃𝑎 ∈ (𝐶𝑛)∃𝑏 ∈ (𝐶𝑛)∃𝑐 ∈ (𝐶𝑛)∃𝑒 ∈ (𝐶𝑛)∃𝑓 ∈ (𝐶𝑛)∃𝑡 ∈ ℝ (𝑋 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑋𝑐)) = (abs‘(𝑒𝑓))))
69683mix2d 1338 . . . . 5 (((𝜑𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐸, 𝐹}) ⊆ (𝐶𝑛)) → (∃𝑎 ∈ (𝐶𝑛)∃𝑏 ∈ (𝐶𝑛)∃𝑐 ∈ (𝐶𝑛)∃𝑑 ∈ (𝐶𝑛)∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑋 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑋 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎 ∈ (𝐶𝑛)∃𝑏 ∈ (𝐶𝑛)∃𝑐 ∈ (𝐶𝑛)∃𝑒 ∈ (𝐶𝑛)∃𝑓 ∈ (𝐶𝑛)∃𝑡 ∈ ℝ (𝑋 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑋𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎 ∈ (𝐶𝑛)∃𝑏 ∈ (𝐶𝑛)∃𝑐 ∈ (𝐶𝑛)∃𝑑 ∈ (𝐶𝑛)∃𝑒 ∈ (𝐶𝑛)∃𝑓 ∈ (𝐶𝑛)(𝑎𝑑 ∧ (abs‘(𝑋𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑋𝑑)) = (abs‘(𝑒𝑓)))))
70 constr0.1 . . . . . 6 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})
71 nnon 7848 . . . . . . 7 (𝑛 ∈ ω → 𝑛 ∈ On)
7271ad2antlr 727 . . . . . 6 (((𝜑𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐸, 𝐹}) ⊆ (𝐶𝑛)) → 𝑛 ∈ On)
73 eqid 2729 . . . . . 6 (𝐶𝑛) = (𝐶𝑛)
7470, 72, 73constrsuc 33728 . . . . 5 (((𝜑𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐸, 𝐹}) ⊆ (𝐶𝑛)) → (𝑋 ∈ (𝐶‘suc 𝑛) ↔ (𝑋 ∈ ℂ ∧ (∃𝑎 ∈ (𝐶𝑛)∃𝑏 ∈ (𝐶𝑛)∃𝑐 ∈ (𝐶𝑛)∃𝑑 ∈ (𝐶𝑛)∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑋 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑋 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎 ∈ (𝐶𝑛)∃𝑏 ∈ (𝐶𝑛)∃𝑐 ∈ (𝐶𝑛)∃𝑒 ∈ (𝐶𝑛)∃𝑓 ∈ (𝐶𝑛)∃𝑡 ∈ ℝ (𝑋 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑋𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎 ∈ (𝐶𝑛)∃𝑏 ∈ (𝐶𝑛)∃𝑐 ∈ (𝐶𝑛)∃𝑑 ∈ (𝐶𝑛)∃𝑒 ∈ (𝐶𝑛)∃𝑓 ∈ (𝐶𝑛)(𝑎𝑑 ∧ (abs‘(𝑋𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑋𝑑)) = (abs‘(𝑒𝑓)))))))
758, 69, 74mpbir2and 713 . . . 4 (((𝜑𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐸, 𝐹}) ⊆ (𝐶𝑛)) → 𝑋 ∈ (𝐶‘suc 𝑛))
763, 6, 75rspcedvd 3590 . . 3 (((𝜑𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐸, 𝐹}) ⊆ (𝐶𝑛)) → ∃𝑚 ∈ ω 𝑋 ∈ (𝐶𝑚))
7770isconstr 33726 . . 3 (𝑋 ∈ Constr ↔ ∃𝑚 ∈ ω 𝑋 ∈ (𝐶𝑚))
7876, 77sylibr 234 . 2 (((𝜑𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐸, 𝐹}) ⊆ (𝐶𝑛)) → 𝑋 ∈ Constr)
7930, 35, 38tpssd 32467 . . . 4 (𝜑 → {𝐴, 𝐵, 𝐺} ⊆ Constr)
8053, 57prssd 4786 . . . 4 (𝜑 → {𝐸, 𝐹} ⊆ Constr)
8179, 80unssd 4155 . . 3 (𝜑 → ({𝐴, 𝐵, 𝐺} ∪ {𝐸, 𝐹}) ⊆ Constr)
82 tpfi 9276 . . . . 5 {𝐴, 𝐵, 𝐺} ∈ Fin
8382a1i 11 . . . 4 (𝜑 → {𝐴, 𝐵, 𝐺} ∈ Fin)
84 prfi 9274 . . . . 5 {𝐸, 𝐹} ∈ Fin
8584a1i 11 . . . 4 (𝜑 → {𝐸, 𝐹} ∈ Fin)
8683, 85unfid 9136 . . 3 (𝜑 → ({𝐴, 𝐵, 𝐺} ∪ {𝐸, 𝐹}) ∈ Fin)
8770, 81, 86constrfiss 33741 . 2 (𝜑 → ∃𝑛 ∈ ω ({𝐴, 𝐵, 𝐺} ∪ {𝐸, 𝐹}) ⊆ (𝐶𝑛))
8878, 87r19.29a 3141 1 (𝜑𝑋 ∈ Constr)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1085  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  {crab 3405  Vcvv 3447  cun 3912  wss 3914  {cpr 4591  {ctp 4593  cmpt 5188  Oncon0 6332  suc csuc 6334  cfv 6511  (class class class)co 7387  ωcom 7842  reccrdg 8377  Fincfn 8918  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  cmin 11405  ccj 15062  cim 15064  abscabs 15200  Constrcconstr 33719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-pnf 11210  df-mnf 11211  df-ltxr 11213  df-sub 11407  df-constr 33720
This theorem is referenced by:  constrlccl  33747
  Copyright terms: Public domain W3C validator