| Step | Hyp | Ref
| Expression |
| 1 | | peano2b 7886 |
. . . . . 6
⊢ (𝑛 ∈ ω ↔ suc 𝑛 ∈
ω) |
| 2 | 1 | biimpi 216 |
. . . . 5
⊢ (𝑛 ∈ ω → suc 𝑛 ∈
ω) |
| 3 | 2 | ad2antlr 727 |
. . . 4
⊢ (((𝜑 ∧ 𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐷, 𝐸, 𝐹}) ⊆ (𝐶‘𝑛)) → suc 𝑛 ∈ ω) |
| 4 | | fveq2 6886 |
. . . . . 6
⊢ (𝑚 = suc 𝑛 → (𝐶‘𝑚) = (𝐶‘suc 𝑛)) |
| 5 | 4 | eleq2d 2819 |
. . . . 5
⊢ (𝑚 = suc 𝑛 → (𝑋 ∈ (𝐶‘𝑚) ↔ 𝑋 ∈ (𝐶‘suc 𝑛))) |
| 6 | 5 | adantl 481 |
. . . 4
⊢ ((((𝜑 ∧ 𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐷, 𝐸, 𝐹}) ⊆ (𝐶‘𝑛)) ∧ 𝑚 = suc 𝑛) → (𝑋 ∈ (𝐶‘𝑚) ↔ 𝑋 ∈ (𝐶‘suc 𝑛))) |
| 7 | | constrcccllem.x |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ ℂ) |
| 8 | 7 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐷, 𝐸, 𝐹}) ⊆ (𝐶‘𝑛)) → 𝑋 ∈ ℂ) |
| 9 | | neeq1 2993 |
. . . . . . . . . 10
⊢ (𝑎 = 𝐴 → (𝑎 ≠ 𝑑 ↔ 𝐴 ≠ 𝑑)) |
| 10 | | oveq2 7421 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝐴 → (𝑋 − 𝑎) = (𝑋 − 𝐴)) |
| 11 | 10 | fveq2d 6890 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝐴 → (abs‘(𝑋 − 𝑎)) = (abs‘(𝑋 − 𝐴))) |
| 12 | 11 | eqeq1d 2736 |
. . . . . . . . . 10
⊢ (𝑎 = 𝐴 → ((abs‘(𝑋 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ↔ (abs‘(𝑋 − 𝐴)) = (abs‘(𝑏 − 𝑐)))) |
| 13 | 9, 12 | 3anbi12d 1438 |
. . . . . . . . 9
⊢ (𝑎 = 𝐴 → ((𝑎 ≠ 𝑑 ∧ (abs‘(𝑋 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑋 − 𝑑)) = (abs‘(𝑒 − 𝑓))) ↔ (𝐴 ≠ 𝑑 ∧ (abs‘(𝑋 − 𝐴)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑋 − 𝑑)) = (abs‘(𝑒 − 𝑓))))) |
| 14 | 13 | rexbidv 3166 |
. . . . . . . 8
⊢ (𝑎 = 𝐴 → (∃𝑓 ∈ (𝐶‘𝑛)(𝑎 ≠ 𝑑 ∧ (abs‘(𝑋 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑋 − 𝑑)) = (abs‘(𝑒 − 𝑓))) ↔ ∃𝑓 ∈ (𝐶‘𝑛)(𝐴 ≠ 𝑑 ∧ (abs‘(𝑋 − 𝐴)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑋 − 𝑑)) = (abs‘(𝑒 − 𝑓))))) |
| 15 | 14 | 2rexbidv 3209 |
. . . . . . 7
⊢ (𝑎 = 𝐴 → (∃𝑑 ∈ (𝐶‘𝑛)∃𝑒 ∈ (𝐶‘𝑛)∃𝑓 ∈ (𝐶‘𝑛)(𝑎 ≠ 𝑑 ∧ (abs‘(𝑋 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑋 − 𝑑)) = (abs‘(𝑒 − 𝑓))) ↔ ∃𝑑 ∈ (𝐶‘𝑛)∃𝑒 ∈ (𝐶‘𝑛)∃𝑓 ∈ (𝐶‘𝑛)(𝐴 ≠ 𝑑 ∧ (abs‘(𝑋 − 𝐴)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑋 − 𝑑)) = (abs‘(𝑒 − 𝑓))))) |
| 16 | | oveq1 7420 |
. . . . . . . . . . . 12
⊢ (𝑏 = 𝐵 → (𝑏 − 𝑐) = (𝐵 − 𝑐)) |
| 17 | 16 | fveq2d 6890 |
. . . . . . . . . . 11
⊢ (𝑏 = 𝐵 → (abs‘(𝑏 − 𝑐)) = (abs‘(𝐵 − 𝑐))) |
| 18 | 17 | eqeq2d 2745 |
. . . . . . . . . 10
⊢ (𝑏 = 𝐵 → ((abs‘(𝑋 − 𝐴)) = (abs‘(𝑏 − 𝑐)) ↔ (abs‘(𝑋 − 𝐴)) = (abs‘(𝐵 − 𝑐)))) |
| 19 | 18 | 3anbi2d 1442 |
. . . . . . . . 9
⊢ (𝑏 = 𝐵 → ((𝐴 ≠ 𝑑 ∧ (abs‘(𝑋 − 𝐴)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑋 − 𝑑)) = (abs‘(𝑒 − 𝑓))) ↔ (𝐴 ≠ 𝑑 ∧ (abs‘(𝑋 − 𝐴)) = (abs‘(𝐵 − 𝑐)) ∧ (abs‘(𝑋 − 𝑑)) = (abs‘(𝑒 − 𝑓))))) |
| 20 | 19 | rexbidv 3166 |
. . . . . . . 8
⊢ (𝑏 = 𝐵 → (∃𝑓 ∈ (𝐶‘𝑛)(𝐴 ≠ 𝑑 ∧ (abs‘(𝑋 − 𝐴)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑋 − 𝑑)) = (abs‘(𝑒 − 𝑓))) ↔ ∃𝑓 ∈ (𝐶‘𝑛)(𝐴 ≠ 𝑑 ∧ (abs‘(𝑋 − 𝐴)) = (abs‘(𝐵 − 𝑐)) ∧ (abs‘(𝑋 − 𝑑)) = (abs‘(𝑒 − 𝑓))))) |
| 21 | 20 | 2rexbidv 3209 |
. . . . . . 7
⊢ (𝑏 = 𝐵 → (∃𝑑 ∈ (𝐶‘𝑛)∃𝑒 ∈ (𝐶‘𝑛)∃𝑓 ∈ (𝐶‘𝑛)(𝐴 ≠ 𝑑 ∧ (abs‘(𝑋 − 𝐴)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑋 − 𝑑)) = (abs‘(𝑒 − 𝑓))) ↔ ∃𝑑 ∈ (𝐶‘𝑛)∃𝑒 ∈ (𝐶‘𝑛)∃𝑓 ∈ (𝐶‘𝑛)(𝐴 ≠ 𝑑 ∧ (abs‘(𝑋 − 𝐴)) = (abs‘(𝐵 − 𝑐)) ∧ (abs‘(𝑋 − 𝑑)) = (abs‘(𝑒 − 𝑓))))) |
| 22 | | oveq2 7421 |
. . . . . . . . . . . 12
⊢ (𝑐 = 𝐺 → (𝐵 − 𝑐) = (𝐵 − 𝐺)) |
| 23 | 22 | fveq2d 6890 |
. . . . . . . . . . 11
⊢ (𝑐 = 𝐺 → (abs‘(𝐵 − 𝑐)) = (abs‘(𝐵 − 𝐺))) |
| 24 | 23 | eqeq2d 2745 |
. . . . . . . . . 10
⊢ (𝑐 = 𝐺 → ((abs‘(𝑋 − 𝐴)) = (abs‘(𝐵 − 𝑐)) ↔ (abs‘(𝑋 − 𝐴)) = (abs‘(𝐵 − 𝐺)))) |
| 25 | 24 | 3anbi2d 1442 |
. . . . . . . . 9
⊢ (𝑐 = 𝐺 → ((𝐴 ≠ 𝑑 ∧ (abs‘(𝑋 − 𝐴)) = (abs‘(𝐵 − 𝑐)) ∧ (abs‘(𝑋 − 𝑑)) = (abs‘(𝑒 − 𝑓))) ↔ (𝐴 ≠ 𝑑 ∧ (abs‘(𝑋 − 𝐴)) = (abs‘(𝐵 − 𝐺)) ∧ (abs‘(𝑋 − 𝑑)) = (abs‘(𝑒 − 𝑓))))) |
| 26 | 25 | rexbidv 3166 |
. . . . . . . 8
⊢ (𝑐 = 𝐺 → (∃𝑓 ∈ (𝐶‘𝑛)(𝐴 ≠ 𝑑 ∧ (abs‘(𝑋 − 𝐴)) = (abs‘(𝐵 − 𝑐)) ∧ (abs‘(𝑋 − 𝑑)) = (abs‘(𝑒 − 𝑓))) ↔ ∃𝑓 ∈ (𝐶‘𝑛)(𝐴 ≠ 𝑑 ∧ (abs‘(𝑋 − 𝐴)) = (abs‘(𝐵 − 𝐺)) ∧ (abs‘(𝑋 − 𝑑)) = (abs‘(𝑒 − 𝑓))))) |
| 27 | 26 | 2rexbidv 3209 |
. . . . . . 7
⊢ (𝑐 = 𝐺 → (∃𝑑 ∈ (𝐶‘𝑛)∃𝑒 ∈ (𝐶‘𝑛)∃𝑓 ∈ (𝐶‘𝑛)(𝐴 ≠ 𝑑 ∧ (abs‘(𝑋 − 𝐴)) = (abs‘(𝐵 − 𝑐)) ∧ (abs‘(𝑋 − 𝑑)) = (abs‘(𝑒 − 𝑓))) ↔ ∃𝑑 ∈ (𝐶‘𝑛)∃𝑒 ∈ (𝐶‘𝑛)∃𝑓 ∈ (𝐶‘𝑛)(𝐴 ≠ 𝑑 ∧ (abs‘(𝑋 − 𝐴)) = (abs‘(𝐵 − 𝐺)) ∧ (abs‘(𝑋 − 𝑑)) = (abs‘(𝑒 − 𝑓))))) |
| 28 | | constrcccllem.a |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ Constr) |
| 29 | 28 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐷, 𝐸, 𝐹}) ⊆ (𝐶‘𝑛)) → 𝐴 ∈ Constr) |
| 30 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐷, 𝐸, 𝐹}) ⊆ (𝐶‘𝑛)) → ({𝐴, 𝐵, 𝐺} ∪ {𝐷, 𝐸, 𝐹}) ⊆ (𝐶‘𝑛)) |
| 31 | 30 | unssad 4173 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐷, 𝐸, 𝐹}) ⊆ (𝐶‘𝑛)) → {𝐴, 𝐵, 𝐺} ⊆ (𝐶‘𝑛)) |
| 32 | 29, 31 | tpssad 32487 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐷, 𝐸, 𝐹}) ⊆ (𝐶‘𝑛)) → 𝐴 ∈ (𝐶‘𝑛)) |
| 33 | | constrcccllem.b |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 ∈ Constr) |
| 34 | 33 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐷, 𝐸, 𝐹}) ⊆ (𝐶‘𝑛)) → 𝐵 ∈ Constr) |
| 35 | 34, 31 | tpssbd 32488 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐷, 𝐸, 𝐹}) ⊆ (𝐶‘𝑛)) → 𝐵 ∈ (𝐶‘𝑛)) |
| 36 | | constrcccllem.c |
. . . . . . . . 9
⊢ (𝜑 → 𝐺 ∈ Constr) |
| 37 | 36 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐷, 𝐸, 𝐹}) ⊆ (𝐶‘𝑛)) → 𝐺 ∈ Constr) |
| 38 | 37, 31 | tpsscd 32489 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐷, 𝐸, 𝐹}) ⊆ (𝐶‘𝑛)) → 𝐺 ∈ (𝐶‘𝑛)) |
| 39 | | neeq2 2994 |
. . . . . . . . 9
⊢ (𝑑 = 𝐷 → (𝐴 ≠ 𝑑 ↔ 𝐴 ≠ 𝐷)) |
| 40 | | oveq2 7421 |
. . . . . . . . . . 11
⊢ (𝑑 = 𝐷 → (𝑋 − 𝑑) = (𝑋 − 𝐷)) |
| 41 | 40 | fveq2d 6890 |
. . . . . . . . . 10
⊢ (𝑑 = 𝐷 → (abs‘(𝑋 − 𝑑)) = (abs‘(𝑋 − 𝐷))) |
| 42 | 41 | eqeq1d 2736 |
. . . . . . . . 9
⊢ (𝑑 = 𝐷 → ((abs‘(𝑋 − 𝑑)) = (abs‘(𝑒 − 𝑓)) ↔ (abs‘(𝑋 − 𝐷)) = (abs‘(𝑒 − 𝑓)))) |
| 43 | 39, 42 | 3anbi13d 1439 |
. . . . . . . 8
⊢ (𝑑 = 𝐷 → ((𝐴 ≠ 𝑑 ∧ (abs‘(𝑋 − 𝐴)) = (abs‘(𝐵 − 𝐺)) ∧ (abs‘(𝑋 − 𝑑)) = (abs‘(𝑒 − 𝑓))) ↔ (𝐴 ≠ 𝐷 ∧ (abs‘(𝑋 − 𝐴)) = (abs‘(𝐵 − 𝐺)) ∧ (abs‘(𝑋 − 𝐷)) = (abs‘(𝑒 − 𝑓))))) |
| 44 | | oveq1 7420 |
. . . . . . . . . . 11
⊢ (𝑒 = 𝐸 → (𝑒 − 𝑓) = (𝐸 − 𝑓)) |
| 45 | 44 | fveq2d 6890 |
. . . . . . . . . 10
⊢ (𝑒 = 𝐸 → (abs‘(𝑒 − 𝑓)) = (abs‘(𝐸 − 𝑓))) |
| 46 | 45 | eqeq2d 2745 |
. . . . . . . . 9
⊢ (𝑒 = 𝐸 → ((abs‘(𝑋 − 𝐷)) = (abs‘(𝑒 − 𝑓)) ↔ (abs‘(𝑋 − 𝐷)) = (abs‘(𝐸 − 𝑓)))) |
| 47 | 46 | 3anbi3d 1443 |
. . . . . . . 8
⊢ (𝑒 = 𝐸 → ((𝐴 ≠ 𝐷 ∧ (abs‘(𝑋 − 𝐴)) = (abs‘(𝐵 − 𝐺)) ∧ (abs‘(𝑋 − 𝐷)) = (abs‘(𝑒 − 𝑓))) ↔ (𝐴 ≠ 𝐷 ∧ (abs‘(𝑋 − 𝐴)) = (abs‘(𝐵 − 𝐺)) ∧ (abs‘(𝑋 − 𝐷)) = (abs‘(𝐸 − 𝑓))))) |
| 48 | | oveq2 7421 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝐹 → (𝐸 − 𝑓) = (𝐸 − 𝐹)) |
| 49 | 48 | fveq2d 6890 |
. . . . . . . . . 10
⊢ (𝑓 = 𝐹 → (abs‘(𝐸 − 𝑓)) = (abs‘(𝐸 − 𝐹))) |
| 50 | 49 | eqeq2d 2745 |
. . . . . . . . 9
⊢ (𝑓 = 𝐹 → ((abs‘(𝑋 − 𝐷)) = (abs‘(𝐸 − 𝑓)) ↔ (abs‘(𝑋 − 𝐷)) = (abs‘(𝐸 − 𝐹)))) |
| 51 | 50 | 3anbi3d 1443 |
. . . . . . . 8
⊢ (𝑓 = 𝐹 → ((𝐴 ≠ 𝐷 ∧ (abs‘(𝑋 − 𝐴)) = (abs‘(𝐵 − 𝐺)) ∧ (abs‘(𝑋 − 𝐷)) = (abs‘(𝐸 − 𝑓))) ↔ (𝐴 ≠ 𝐷 ∧ (abs‘(𝑋 − 𝐴)) = (abs‘(𝐵 − 𝐺)) ∧ (abs‘(𝑋 − 𝐷)) = (abs‘(𝐸 − 𝐹))))) |
| 52 | | constrcccllem.d |
. . . . . . . . . 10
⊢ (𝜑 → 𝐷 ∈ Constr) |
| 53 | 52 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐷, 𝐸, 𝐹}) ⊆ (𝐶‘𝑛)) → 𝐷 ∈ Constr) |
| 54 | 30 | unssbd 4174 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐷, 𝐸, 𝐹}) ⊆ (𝐶‘𝑛)) → {𝐷, 𝐸, 𝐹} ⊆ (𝐶‘𝑛)) |
| 55 | 53, 54 | tpssad 32487 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐷, 𝐸, 𝐹}) ⊆ (𝐶‘𝑛)) → 𝐷 ∈ (𝐶‘𝑛)) |
| 56 | | constrcccllem.e |
. . . . . . . . . 10
⊢ (𝜑 → 𝐸 ∈ Constr) |
| 57 | 56 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐷, 𝐸, 𝐹}) ⊆ (𝐶‘𝑛)) → 𝐸 ∈ Constr) |
| 58 | 57, 54 | tpssbd 32488 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐷, 𝐸, 𝐹}) ⊆ (𝐶‘𝑛)) → 𝐸 ∈ (𝐶‘𝑛)) |
| 59 | | constrcccllem.f |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 ∈ Constr) |
| 60 | 59 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐷, 𝐸, 𝐹}) ⊆ (𝐶‘𝑛)) → 𝐹 ∈ Constr) |
| 61 | 60, 54 | tpsscd 32489 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐷, 𝐸, 𝐹}) ⊆ (𝐶‘𝑛)) → 𝐹 ∈ (𝐶‘𝑛)) |
| 62 | | constrcccllem.1 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ≠ 𝐷) |
| 63 | 62 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐷, 𝐸, 𝐹}) ⊆ (𝐶‘𝑛)) → 𝐴 ≠ 𝐷) |
| 64 | | constrcccllem.2 |
. . . . . . . . . 10
⊢ (𝜑 → (abs‘(𝑋 − 𝐴)) = (abs‘(𝐵 − 𝐺))) |
| 65 | 64 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐷, 𝐸, 𝐹}) ⊆ (𝐶‘𝑛)) → (abs‘(𝑋 − 𝐴)) = (abs‘(𝐵 − 𝐺))) |
| 66 | | constrcccllem.3 |
. . . . . . . . . 10
⊢ (𝜑 → (abs‘(𝑋 − 𝐷)) = (abs‘(𝐸 − 𝐹))) |
| 67 | 66 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐷, 𝐸, 𝐹}) ⊆ (𝐶‘𝑛)) → (abs‘(𝑋 − 𝐷)) = (abs‘(𝐸 − 𝐹))) |
| 68 | 63, 65, 67 | 3jca 1128 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐷, 𝐸, 𝐹}) ⊆ (𝐶‘𝑛)) → (𝐴 ≠ 𝐷 ∧ (abs‘(𝑋 − 𝐴)) = (abs‘(𝐵 − 𝐺)) ∧ (abs‘(𝑋 − 𝐷)) = (abs‘(𝐸 − 𝐹)))) |
| 69 | 43, 47, 51, 55, 58, 61, 68 | 3rspcedvdw 3623 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐷, 𝐸, 𝐹}) ⊆ (𝐶‘𝑛)) → ∃𝑑 ∈ (𝐶‘𝑛)∃𝑒 ∈ (𝐶‘𝑛)∃𝑓 ∈ (𝐶‘𝑛)(𝐴 ≠ 𝑑 ∧ (abs‘(𝑋 − 𝐴)) = (abs‘(𝐵 − 𝐺)) ∧ (abs‘(𝑋 − 𝑑)) = (abs‘(𝑒 − 𝑓)))) |
| 70 | 15, 21, 27, 32, 35, 38, 69 | 3rspcedvdw 3623 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐷, 𝐸, 𝐹}) ⊆ (𝐶‘𝑛)) → ∃𝑎 ∈ (𝐶‘𝑛)∃𝑏 ∈ (𝐶‘𝑛)∃𝑐 ∈ (𝐶‘𝑛)∃𝑑 ∈ (𝐶‘𝑛)∃𝑒 ∈ (𝐶‘𝑛)∃𝑓 ∈ (𝐶‘𝑛)(𝑎 ≠ 𝑑 ∧ (abs‘(𝑋 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑋 − 𝑑)) = (abs‘(𝑒 − 𝑓)))) |
| 71 | 70 | 3mix3d 1338 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐷, 𝐸, 𝐹}) ⊆ (𝐶‘𝑛)) → (∃𝑎 ∈ (𝐶‘𝑛)∃𝑏 ∈ (𝐶‘𝑛)∃𝑐 ∈ (𝐶‘𝑛)∃𝑑 ∈ (𝐶‘𝑛)∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑋 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ 𝑋 = (𝑐 + (𝑟 · (𝑑 − 𝑐))) ∧
(ℑ‘((∗‘(𝑏 − 𝑎)) · (𝑑 − 𝑐))) ≠ 0) ∨ ∃𝑎 ∈ (𝐶‘𝑛)∃𝑏 ∈ (𝐶‘𝑛)∃𝑐 ∈ (𝐶‘𝑛)∃𝑒 ∈ (𝐶‘𝑛)∃𝑓 ∈ (𝐶‘𝑛)∃𝑡 ∈ ℝ (𝑋 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ (abs‘(𝑋 − 𝑐)) = (abs‘(𝑒 − 𝑓))) ∨ ∃𝑎 ∈ (𝐶‘𝑛)∃𝑏 ∈ (𝐶‘𝑛)∃𝑐 ∈ (𝐶‘𝑛)∃𝑑 ∈ (𝐶‘𝑛)∃𝑒 ∈ (𝐶‘𝑛)∃𝑓 ∈ (𝐶‘𝑛)(𝑎 ≠ 𝑑 ∧ (abs‘(𝑋 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑋 − 𝑑)) = (abs‘(𝑒 − 𝑓))))) |
| 72 | | constr0.1 |
. . . . . 6
⊢ 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑 − 𝑐))) ∧
(ℑ‘((∗‘(𝑏 − 𝑎)) · (𝑑 − 𝑐))) ≠ 0) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 ∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ (abs‘(𝑥 − 𝑐)) = (abs‘(𝑒 − 𝑓))) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 (𝑎 ≠ 𝑑 ∧ (abs‘(𝑥 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑥 − 𝑑)) = (abs‘(𝑒 − 𝑓))))}), {0, 1}) |
| 73 | | nnon 7875 |
. . . . . . 7
⊢ (𝑛 ∈ ω → 𝑛 ∈ On) |
| 74 | 73 | ad2antlr 727 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐷, 𝐸, 𝐹}) ⊆ (𝐶‘𝑛)) → 𝑛 ∈ On) |
| 75 | | eqid 2734 |
. . . . . 6
⊢ (𝐶‘𝑛) = (𝐶‘𝑛) |
| 76 | 72, 74, 75 | constrsuc 33718 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐷, 𝐸, 𝐹}) ⊆ (𝐶‘𝑛)) → (𝑋 ∈ (𝐶‘suc 𝑛) ↔ (𝑋 ∈ ℂ ∧ (∃𝑎 ∈ (𝐶‘𝑛)∃𝑏 ∈ (𝐶‘𝑛)∃𝑐 ∈ (𝐶‘𝑛)∃𝑑 ∈ (𝐶‘𝑛)∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑋 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ 𝑋 = (𝑐 + (𝑟 · (𝑑 − 𝑐))) ∧
(ℑ‘((∗‘(𝑏 − 𝑎)) · (𝑑 − 𝑐))) ≠ 0) ∨ ∃𝑎 ∈ (𝐶‘𝑛)∃𝑏 ∈ (𝐶‘𝑛)∃𝑐 ∈ (𝐶‘𝑛)∃𝑒 ∈ (𝐶‘𝑛)∃𝑓 ∈ (𝐶‘𝑛)∃𝑡 ∈ ℝ (𝑋 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ (abs‘(𝑋 − 𝑐)) = (abs‘(𝑒 − 𝑓))) ∨ ∃𝑎 ∈ (𝐶‘𝑛)∃𝑏 ∈ (𝐶‘𝑛)∃𝑐 ∈ (𝐶‘𝑛)∃𝑑 ∈ (𝐶‘𝑛)∃𝑒 ∈ (𝐶‘𝑛)∃𝑓 ∈ (𝐶‘𝑛)(𝑎 ≠ 𝑑 ∧ (abs‘(𝑋 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑋 − 𝑑)) = (abs‘(𝑒 − 𝑓))))))) |
| 77 | 8, 71, 76 | mpbir2and 713 |
. . . 4
⊢ (((𝜑 ∧ 𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐷, 𝐸, 𝐹}) ⊆ (𝐶‘𝑛)) → 𝑋 ∈ (𝐶‘suc 𝑛)) |
| 78 | 3, 6, 77 | rspcedvd 3607 |
. . 3
⊢ (((𝜑 ∧ 𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐷, 𝐸, 𝐹}) ⊆ (𝐶‘𝑛)) → ∃𝑚 ∈ ω 𝑋 ∈ (𝐶‘𝑚)) |
| 79 | 72 | isconstr 33716 |
. . 3
⊢ (𝑋 ∈ Constr ↔
∃𝑚 ∈ ω
𝑋 ∈ (𝐶‘𝑚)) |
| 80 | 78, 79 | sylibr 234 |
. 2
⊢ (((𝜑 ∧ 𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐷, 𝐸, 𝐹}) ⊆ (𝐶‘𝑛)) → 𝑋 ∈ Constr) |
| 81 | 28, 33, 36 | tpssd 32486 |
. . . 4
⊢ (𝜑 → {𝐴, 𝐵, 𝐺} ⊆ Constr) |
| 82 | 52, 56, 59 | tpssd 32486 |
. . . 4
⊢ (𝜑 → {𝐷, 𝐸, 𝐹} ⊆ Constr) |
| 83 | 81, 82 | unssd 4172 |
. . 3
⊢ (𝜑 → ({𝐴, 𝐵, 𝐺} ∪ {𝐷, 𝐸, 𝐹}) ⊆ Constr) |
| 84 | | tpfi 9347 |
. . . . 5
⊢ {𝐴, 𝐵, 𝐺} ∈ Fin |
| 85 | 84 | a1i 11 |
. . . 4
⊢ (𝜑 → {𝐴, 𝐵, 𝐺} ∈ Fin) |
| 86 | | tpfi 9347 |
. . . . 5
⊢ {𝐷, 𝐸, 𝐹} ∈ Fin |
| 87 | 86 | a1i 11 |
. . . 4
⊢ (𝜑 → {𝐷, 𝐸, 𝐹} ∈ Fin) |
| 88 | 85, 87 | unfid 9194 |
. . 3
⊢ (𝜑 → ({𝐴, 𝐵, 𝐺} ∪ {𝐷, 𝐸, 𝐹}) ∈ Fin) |
| 89 | 72, 83, 88 | constrfiss 33731 |
. 2
⊢ (𝜑 → ∃𝑛 ∈ ω ({𝐴, 𝐵, 𝐺} ∪ {𝐷, 𝐸, 𝐹}) ⊆ (𝐶‘𝑛)) |
| 90 | 80, 89 | r19.29a 3149 |
1
⊢ (𝜑 → 𝑋 ∈ Constr) |