Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  constrcccllem Structured version   Visualization version   GIF version

Theorem constrcccllem 33720
Description: Constructible numbers are closed under circle-circle intersections. (Contributed by Thierry Arnoux, 2-Nov-2025.)
Hypotheses
Ref Expression
constr0.1 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})
constrcccllem.a (𝜑𝐴 ∈ Constr)
constrcccllem.b (𝜑𝐵 ∈ Constr)
constrcccllem.c (𝜑𝐺 ∈ Constr)
constrcccllem.d (𝜑𝐷 ∈ Constr)
constrcccllem.e (𝜑𝐸 ∈ Constr)
constrcccllem.f (𝜑𝐹 ∈ Constr)
constrcccllem.x (𝜑𝑋 ∈ ℂ)
constrcccllem.1 (𝜑𝐴𝐷)
constrcccllem.2 (𝜑 → (abs‘(𝑋𝐴)) = (abs‘(𝐵𝐺)))
constrcccllem.3 (𝜑 → (abs‘(𝑋𝐷)) = (abs‘(𝐸𝐹)))
Assertion
Ref Expression
constrcccllem (𝜑𝑋 ∈ Constr)
Distinct variable groups:   𝐴,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓,𝑠,𝑡,𝑥   𝐵,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓,𝑠,𝑡,𝑥   𝐶,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓,𝑠,𝑡,𝑥   𝐷,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓,𝑠,𝑡,𝑥   𝐸,𝑎,𝑏,𝑐,𝑒,𝑓,𝑠,𝑡,𝑥   𝐹,𝑎,𝑏,𝑐,𝑒,𝑓,𝑠,𝑡,𝑥   𝐺,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓,𝑠,𝑡,𝑥   𝑋,𝑎,𝑏,𝑐,𝑑,𝑒,𝑓,𝑟,𝑡   𝑠,𝑟,𝑥   𝜑,𝑎,𝑏,𝑐,𝑒,𝑓,𝑠,𝑡,𝑥
Allowed substitution hints:   𝜑(𝑟,𝑑)   𝐴(𝑟)   𝐵(𝑟)   𝐶(𝑟)   𝐷(𝑟)   𝐸(𝑟,𝑑)   𝐹(𝑟,𝑑)   𝐺(𝑟)   𝑋(𝑥,𝑠)

Proof of Theorem constrcccllem
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 peano2b 7823 . . . . . 6 (𝑛 ∈ ω ↔ suc 𝑛 ∈ ω)
21biimpi 216 . . . . 5 (𝑛 ∈ ω → suc 𝑛 ∈ ω)
32ad2antlr 727 . . . 4 (((𝜑𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐷, 𝐸, 𝐹}) ⊆ (𝐶𝑛)) → suc 𝑛 ∈ ω)
4 fveq2 6826 . . . . . 6 (𝑚 = suc 𝑛 → (𝐶𝑚) = (𝐶‘suc 𝑛))
54eleq2d 2814 . . . . 5 (𝑚 = suc 𝑛 → (𝑋 ∈ (𝐶𝑚) ↔ 𝑋 ∈ (𝐶‘suc 𝑛)))
65adantl 481 . . . 4 ((((𝜑𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐷, 𝐸, 𝐹}) ⊆ (𝐶𝑛)) ∧ 𝑚 = suc 𝑛) → (𝑋 ∈ (𝐶𝑚) ↔ 𝑋 ∈ (𝐶‘suc 𝑛)))
7 constrcccllem.x . . . . . 6 (𝜑𝑋 ∈ ℂ)
87ad2antrr 726 . . . . 5 (((𝜑𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐷, 𝐸, 𝐹}) ⊆ (𝐶𝑛)) → 𝑋 ∈ ℂ)
9 neeq1 2987 . . . . . . . . . 10 (𝑎 = 𝐴 → (𝑎𝑑𝐴𝑑))
10 oveq2 7361 . . . . . . . . . . . 12 (𝑎 = 𝐴 → (𝑋𝑎) = (𝑋𝐴))
1110fveq2d 6830 . . . . . . . . . . 11 (𝑎 = 𝐴 → (abs‘(𝑋𝑎)) = (abs‘(𝑋𝐴)))
1211eqeq1d 2731 . . . . . . . . . 10 (𝑎 = 𝐴 → ((abs‘(𝑋𝑎)) = (abs‘(𝑏𝑐)) ↔ (abs‘(𝑋𝐴)) = (abs‘(𝑏𝑐))))
139, 123anbi12d 1439 . . . . . . . . 9 (𝑎 = 𝐴 → ((𝑎𝑑 ∧ (abs‘(𝑋𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑋𝑑)) = (abs‘(𝑒𝑓))) ↔ (𝐴𝑑 ∧ (abs‘(𝑋𝐴)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑋𝑑)) = (abs‘(𝑒𝑓)))))
1413rexbidv 3153 . . . . . . . 8 (𝑎 = 𝐴 → (∃𝑓 ∈ (𝐶𝑛)(𝑎𝑑 ∧ (abs‘(𝑋𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑋𝑑)) = (abs‘(𝑒𝑓))) ↔ ∃𝑓 ∈ (𝐶𝑛)(𝐴𝑑 ∧ (abs‘(𝑋𝐴)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑋𝑑)) = (abs‘(𝑒𝑓)))))
15142rexbidv 3194 . . . . . . 7 (𝑎 = 𝐴 → (∃𝑑 ∈ (𝐶𝑛)∃𝑒 ∈ (𝐶𝑛)∃𝑓 ∈ (𝐶𝑛)(𝑎𝑑 ∧ (abs‘(𝑋𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑋𝑑)) = (abs‘(𝑒𝑓))) ↔ ∃𝑑 ∈ (𝐶𝑛)∃𝑒 ∈ (𝐶𝑛)∃𝑓 ∈ (𝐶𝑛)(𝐴𝑑 ∧ (abs‘(𝑋𝐴)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑋𝑑)) = (abs‘(𝑒𝑓)))))
16 oveq1 7360 . . . . . . . . . . . 12 (𝑏 = 𝐵 → (𝑏𝑐) = (𝐵𝑐))
1716fveq2d 6830 . . . . . . . . . . 11 (𝑏 = 𝐵 → (abs‘(𝑏𝑐)) = (abs‘(𝐵𝑐)))
1817eqeq2d 2740 . . . . . . . . . 10 (𝑏 = 𝐵 → ((abs‘(𝑋𝐴)) = (abs‘(𝑏𝑐)) ↔ (abs‘(𝑋𝐴)) = (abs‘(𝐵𝑐))))
19183anbi2d 1443 . . . . . . . . 9 (𝑏 = 𝐵 → ((𝐴𝑑 ∧ (abs‘(𝑋𝐴)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑋𝑑)) = (abs‘(𝑒𝑓))) ↔ (𝐴𝑑 ∧ (abs‘(𝑋𝐴)) = (abs‘(𝐵𝑐)) ∧ (abs‘(𝑋𝑑)) = (abs‘(𝑒𝑓)))))
2019rexbidv 3153 . . . . . . . 8 (𝑏 = 𝐵 → (∃𝑓 ∈ (𝐶𝑛)(𝐴𝑑 ∧ (abs‘(𝑋𝐴)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑋𝑑)) = (abs‘(𝑒𝑓))) ↔ ∃𝑓 ∈ (𝐶𝑛)(𝐴𝑑 ∧ (abs‘(𝑋𝐴)) = (abs‘(𝐵𝑐)) ∧ (abs‘(𝑋𝑑)) = (abs‘(𝑒𝑓)))))
21202rexbidv 3194 . . . . . . 7 (𝑏 = 𝐵 → (∃𝑑 ∈ (𝐶𝑛)∃𝑒 ∈ (𝐶𝑛)∃𝑓 ∈ (𝐶𝑛)(𝐴𝑑 ∧ (abs‘(𝑋𝐴)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑋𝑑)) = (abs‘(𝑒𝑓))) ↔ ∃𝑑 ∈ (𝐶𝑛)∃𝑒 ∈ (𝐶𝑛)∃𝑓 ∈ (𝐶𝑛)(𝐴𝑑 ∧ (abs‘(𝑋𝐴)) = (abs‘(𝐵𝑐)) ∧ (abs‘(𝑋𝑑)) = (abs‘(𝑒𝑓)))))
22 oveq2 7361 . . . . . . . . . . . 12 (𝑐 = 𝐺 → (𝐵𝑐) = (𝐵𝐺))
2322fveq2d 6830 . . . . . . . . . . 11 (𝑐 = 𝐺 → (abs‘(𝐵𝑐)) = (abs‘(𝐵𝐺)))
2423eqeq2d 2740 . . . . . . . . . 10 (𝑐 = 𝐺 → ((abs‘(𝑋𝐴)) = (abs‘(𝐵𝑐)) ↔ (abs‘(𝑋𝐴)) = (abs‘(𝐵𝐺))))
25243anbi2d 1443 . . . . . . . . 9 (𝑐 = 𝐺 → ((𝐴𝑑 ∧ (abs‘(𝑋𝐴)) = (abs‘(𝐵𝑐)) ∧ (abs‘(𝑋𝑑)) = (abs‘(𝑒𝑓))) ↔ (𝐴𝑑 ∧ (abs‘(𝑋𝐴)) = (abs‘(𝐵𝐺)) ∧ (abs‘(𝑋𝑑)) = (abs‘(𝑒𝑓)))))
2625rexbidv 3153 . . . . . . . 8 (𝑐 = 𝐺 → (∃𝑓 ∈ (𝐶𝑛)(𝐴𝑑 ∧ (abs‘(𝑋𝐴)) = (abs‘(𝐵𝑐)) ∧ (abs‘(𝑋𝑑)) = (abs‘(𝑒𝑓))) ↔ ∃𝑓 ∈ (𝐶𝑛)(𝐴𝑑 ∧ (abs‘(𝑋𝐴)) = (abs‘(𝐵𝐺)) ∧ (abs‘(𝑋𝑑)) = (abs‘(𝑒𝑓)))))
27262rexbidv 3194 . . . . . . 7 (𝑐 = 𝐺 → (∃𝑑 ∈ (𝐶𝑛)∃𝑒 ∈ (𝐶𝑛)∃𝑓 ∈ (𝐶𝑛)(𝐴𝑑 ∧ (abs‘(𝑋𝐴)) = (abs‘(𝐵𝑐)) ∧ (abs‘(𝑋𝑑)) = (abs‘(𝑒𝑓))) ↔ ∃𝑑 ∈ (𝐶𝑛)∃𝑒 ∈ (𝐶𝑛)∃𝑓 ∈ (𝐶𝑛)(𝐴𝑑 ∧ (abs‘(𝑋𝐴)) = (abs‘(𝐵𝐺)) ∧ (abs‘(𝑋𝑑)) = (abs‘(𝑒𝑓)))))
28 constrcccllem.a . . . . . . . . 9 (𝜑𝐴 ∈ Constr)
2928ad2antrr 726 . . . . . . . 8 (((𝜑𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐷, 𝐸, 𝐹}) ⊆ (𝐶𝑛)) → 𝐴 ∈ Constr)
30 simpr 484 . . . . . . . . 9 (((𝜑𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐷, 𝐸, 𝐹}) ⊆ (𝐶𝑛)) → ({𝐴, 𝐵, 𝐺} ∪ {𝐷, 𝐸, 𝐹}) ⊆ (𝐶𝑛))
3130unssad 4146 . . . . . . . 8 (((𝜑𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐷, 𝐸, 𝐹}) ⊆ (𝐶𝑛)) → {𝐴, 𝐵, 𝐺} ⊆ (𝐶𝑛))
3229, 31tpssad 32501 . . . . . . 7 (((𝜑𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐷, 𝐸, 𝐹}) ⊆ (𝐶𝑛)) → 𝐴 ∈ (𝐶𝑛))
33 constrcccllem.b . . . . . . . . 9 (𝜑𝐵 ∈ Constr)
3433ad2antrr 726 . . . . . . . 8 (((𝜑𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐷, 𝐸, 𝐹}) ⊆ (𝐶𝑛)) → 𝐵 ∈ Constr)
3534, 31tpssbd 32502 . . . . . . 7 (((𝜑𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐷, 𝐸, 𝐹}) ⊆ (𝐶𝑛)) → 𝐵 ∈ (𝐶𝑛))
36 constrcccllem.c . . . . . . . . 9 (𝜑𝐺 ∈ Constr)
3736ad2antrr 726 . . . . . . . 8 (((𝜑𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐷, 𝐸, 𝐹}) ⊆ (𝐶𝑛)) → 𝐺 ∈ Constr)
3837, 31tpsscd 32503 . . . . . . 7 (((𝜑𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐷, 𝐸, 𝐹}) ⊆ (𝐶𝑛)) → 𝐺 ∈ (𝐶𝑛))
39 neeq2 2988 . . . . . . . . 9 (𝑑 = 𝐷 → (𝐴𝑑𝐴𝐷))
40 oveq2 7361 . . . . . . . . . . 11 (𝑑 = 𝐷 → (𝑋𝑑) = (𝑋𝐷))
4140fveq2d 6830 . . . . . . . . . 10 (𝑑 = 𝐷 → (abs‘(𝑋𝑑)) = (abs‘(𝑋𝐷)))
4241eqeq1d 2731 . . . . . . . . 9 (𝑑 = 𝐷 → ((abs‘(𝑋𝑑)) = (abs‘(𝑒𝑓)) ↔ (abs‘(𝑋𝐷)) = (abs‘(𝑒𝑓))))
4339, 423anbi13d 1440 . . . . . . . 8 (𝑑 = 𝐷 → ((𝐴𝑑 ∧ (abs‘(𝑋𝐴)) = (abs‘(𝐵𝐺)) ∧ (abs‘(𝑋𝑑)) = (abs‘(𝑒𝑓))) ↔ (𝐴𝐷 ∧ (abs‘(𝑋𝐴)) = (abs‘(𝐵𝐺)) ∧ (abs‘(𝑋𝐷)) = (abs‘(𝑒𝑓)))))
44 oveq1 7360 . . . . . . . . . . 11 (𝑒 = 𝐸 → (𝑒𝑓) = (𝐸𝑓))
4544fveq2d 6830 . . . . . . . . . 10 (𝑒 = 𝐸 → (abs‘(𝑒𝑓)) = (abs‘(𝐸𝑓)))
4645eqeq2d 2740 . . . . . . . . 9 (𝑒 = 𝐸 → ((abs‘(𝑋𝐷)) = (abs‘(𝑒𝑓)) ↔ (abs‘(𝑋𝐷)) = (abs‘(𝐸𝑓))))
47463anbi3d 1444 . . . . . . . 8 (𝑒 = 𝐸 → ((𝐴𝐷 ∧ (abs‘(𝑋𝐴)) = (abs‘(𝐵𝐺)) ∧ (abs‘(𝑋𝐷)) = (abs‘(𝑒𝑓))) ↔ (𝐴𝐷 ∧ (abs‘(𝑋𝐴)) = (abs‘(𝐵𝐺)) ∧ (abs‘(𝑋𝐷)) = (abs‘(𝐸𝑓)))))
48 oveq2 7361 . . . . . . . . . . 11 (𝑓 = 𝐹 → (𝐸𝑓) = (𝐸𝐹))
4948fveq2d 6830 . . . . . . . . . 10 (𝑓 = 𝐹 → (abs‘(𝐸𝑓)) = (abs‘(𝐸𝐹)))
5049eqeq2d 2740 . . . . . . . . 9 (𝑓 = 𝐹 → ((abs‘(𝑋𝐷)) = (abs‘(𝐸𝑓)) ↔ (abs‘(𝑋𝐷)) = (abs‘(𝐸𝐹))))
51503anbi3d 1444 . . . . . . . 8 (𝑓 = 𝐹 → ((𝐴𝐷 ∧ (abs‘(𝑋𝐴)) = (abs‘(𝐵𝐺)) ∧ (abs‘(𝑋𝐷)) = (abs‘(𝐸𝑓))) ↔ (𝐴𝐷 ∧ (abs‘(𝑋𝐴)) = (abs‘(𝐵𝐺)) ∧ (abs‘(𝑋𝐷)) = (abs‘(𝐸𝐹)))))
52 constrcccllem.d . . . . . . . . . 10 (𝜑𝐷 ∈ Constr)
5352ad2antrr 726 . . . . . . . . 9 (((𝜑𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐷, 𝐸, 𝐹}) ⊆ (𝐶𝑛)) → 𝐷 ∈ Constr)
5430unssbd 4147 . . . . . . . . 9 (((𝜑𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐷, 𝐸, 𝐹}) ⊆ (𝐶𝑛)) → {𝐷, 𝐸, 𝐹} ⊆ (𝐶𝑛))
5553, 54tpssad 32501 . . . . . . . 8 (((𝜑𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐷, 𝐸, 𝐹}) ⊆ (𝐶𝑛)) → 𝐷 ∈ (𝐶𝑛))
56 constrcccllem.e . . . . . . . . . 10 (𝜑𝐸 ∈ Constr)
5756ad2antrr 726 . . . . . . . . 9 (((𝜑𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐷, 𝐸, 𝐹}) ⊆ (𝐶𝑛)) → 𝐸 ∈ Constr)
5857, 54tpssbd 32502 . . . . . . . 8 (((𝜑𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐷, 𝐸, 𝐹}) ⊆ (𝐶𝑛)) → 𝐸 ∈ (𝐶𝑛))
59 constrcccllem.f . . . . . . . . . 10 (𝜑𝐹 ∈ Constr)
6059ad2antrr 726 . . . . . . . . 9 (((𝜑𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐷, 𝐸, 𝐹}) ⊆ (𝐶𝑛)) → 𝐹 ∈ Constr)
6160, 54tpsscd 32503 . . . . . . . 8 (((𝜑𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐷, 𝐸, 𝐹}) ⊆ (𝐶𝑛)) → 𝐹 ∈ (𝐶𝑛))
62 constrcccllem.1 . . . . . . . . . 10 (𝜑𝐴𝐷)
6362ad2antrr 726 . . . . . . . . 9 (((𝜑𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐷, 𝐸, 𝐹}) ⊆ (𝐶𝑛)) → 𝐴𝐷)
64 constrcccllem.2 . . . . . . . . . 10 (𝜑 → (abs‘(𝑋𝐴)) = (abs‘(𝐵𝐺)))
6564ad2antrr 726 . . . . . . . . 9 (((𝜑𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐷, 𝐸, 𝐹}) ⊆ (𝐶𝑛)) → (abs‘(𝑋𝐴)) = (abs‘(𝐵𝐺)))
66 constrcccllem.3 . . . . . . . . . 10 (𝜑 → (abs‘(𝑋𝐷)) = (abs‘(𝐸𝐹)))
6766ad2antrr 726 . . . . . . . . 9 (((𝜑𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐷, 𝐸, 𝐹}) ⊆ (𝐶𝑛)) → (abs‘(𝑋𝐷)) = (abs‘(𝐸𝐹)))
6863, 65, 673jca 1128 . . . . . . . 8 (((𝜑𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐷, 𝐸, 𝐹}) ⊆ (𝐶𝑛)) → (𝐴𝐷 ∧ (abs‘(𝑋𝐴)) = (abs‘(𝐵𝐺)) ∧ (abs‘(𝑋𝐷)) = (abs‘(𝐸𝐹))))
6943, 47, 51, 55, 58, 61, 683rspcedvdw 3597 . . . . . . 7 (((𝜑𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐷, 𝐸, 𝐹}) ⊆ (𝐶𝑛)) → ∃𝑑 ∈ (𝐶𝑛)∃𝑒 ∈ (𝐶𝑛)∃𝑓 ∈ (𝐶𝑛)(𝐴𝑑 ∧ (abs‘(𝑋𝐴)) = (abs‘(𝐵𝐺)) ∧ (abs‘(𝑋𝑑)) = (abs‘(𝑒𝑓))))
7015, 21, 27, 32, 35, 38, 693rspcedvdw 3597 . . . . . 6 (((𝜑𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐷, 𝐸, 𝐹}) ⊆ (𝐶𝑛)) → ∃𝑎 ∈ (𝐶𝑛)∃𝑏 ∈ (𝐶𝑛)∃𝑐 ∈ (𝐶𝑛)∃𝑑 ∈ (𝐶𝑛)∃𝑒 ∈ (𝐶𝑛)∃𝑓 ∈ (𝐶𝑛)(𝑎𝑑 ∧ (abs‘(𝑋𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑋𝑑)) = (abs‘(𝑒𝑓))))
71703mix3d 1339 . . . . 5 (((𝜑𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐷, 𝐸, 𝐹}) ⊆ (𝐶𝑛)) → (∃𝑎 ∈ (𝐶𝑛)∃𝑏 ∈ (𝐶𝑛)∃𝑐 ∈ (𝐶𝑛)∃𝑑 ∈ (𝐶𝑛)∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑋 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑋 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎 ∈ (𝐶𝑛)∃𝑏 ∈ (𝐶𝑛)∃𝑐 ∈ (𝐶𝑛)∃𝑒 ∈ (𝐶𝑛)∃𝑓 ∈ (𝐶𝑛)∃𝑡 ∈ ℝ (𝑋 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑋𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎 ∈ (𝐶𝑛)∃𝑏 ∈ (𝐶𝑛)∃𝑐 ∈ (𝐶𝑛)∃𝑑 ∈ (𝐶𝑛)∃𝑒 ∈ (𝐶𝑛)∃𝑓 ∈ (𝐶𝑛)(𝑎𝑑 ∧ (abs‘(𝑋𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑋𝑑)) = (abs‘(𝑒𝑓)))))
72 constr0.1 . . . . . 6 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})
73 nnon 7812 . . . . . . 7 (𝑛 ∈ ω → 𝑛 ∈ On)
7473ad2antlr 727 . . . . . 6 (((𝜑𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐷, 𝐸, 𝐹}) ⊆ (𝐶𝑛)) → 𝑛 ∈ On)
75 eqid 2729 . . . . . 6 (𝐶𝑛) = (𝐶𝑛)
7672, 74, 75constrsuc 33704 . . . . 5 (((𝜑𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐷, 𝐸, 𝐹}) ⊆ (𝐶𝑛)) → (𝑋 ∈ (𝐶‘suc 𝑛) ↔ (𝑋 ∈ ℂ ∧ (∃𝑎 ∈ (𝐶𝑛)∃𝑏 ∈ (𝐶𝑛)∃𝑐 ∈ (𝐶𝑛)∃𝑑 ∈ (𝐶𝑛)∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑋 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑋 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎 ∈ (𝐶𝑛)∃𝑏 ∈ (𝐶𝑛)∃𝑐 ∈ (𝐶𝑛)∃𝑒 ∈ (𝐶𝑛)∃𝑓 ∈ (𝐶𝑛)∃𝑡 ∈ ℝ (𝑋 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑋𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎 ∈ (𝐶𝑛)∃𝑏 ∈ (𝐶𝑛)∃𝑐 ∈ (𝐶𝑛)∃𝑑 ∈ (𝐶𝑛)∃𝑒 ∈ (𝐶𝑛)∃𝑓 ∈ (𝐶𝑛)(𝑎𝑑 ∧ (abs‘(𝑋𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑋𝑑)) = (abs‘(𝑒𝑓)))))))
778, 71, 76mpbir2and 713 . . . 4 (((𝜑𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐷, 𝐸, 𝐹}) ⊆ (𝐶𝑛)) → 𝑋 ∈ (𝐶‘suc 𝑛))
783, 6, 77rspcedvd 3581 . . 3 (((𝜑𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐷, 𝐸, 𝐹}) ⊆ (𝐶𝑛)) → ∃𝑚 ∈ ω 𝑋 ∈ (𝐶𝑚))
7972isconstr 33702 . . 3 (𝑋 ∈ Constr ↔ ∃𝑚 ∈ ω 𝑋 ∈ (𝐶𝑚))
8078, 79sylibr 234 . 2 (((𝜑𝑛 ∈ ω) ∧ ({𝐴, 𝐵, 𝐺} ∪ {𝐷, 𝐸, 𝐹}) ⊆ (𝐶𝑛)) → 𝑋 ∈ Constr)
8128, 33, 36tpssd 32500 . . . 4 (𝜑 → {𝐴, 𝐵, 𝐺} ⊆ Constr)
8252, 56, 59tpssd 32500 . . . 4 (𝜑 → {𝐷, 𝐸, 𝐹} ⊆ Constr)
8381, 82unssd 4145 . . 3 (𝜑 → ({𝐴, 𝐵, 𝐺} ∪ {𝐷, 𝐸, 𝐹}) ⊆ Constr)
84 tpfi 9234 . . . . 5 {𝐴, 𝐵, 𝐺} ∈ Fin
8584a1i 11 . . . 4 (𝜑 → {𝐴, 𝐵, 𝐺} ∈ Fin)
86 tpfi 9234 . . . . 5 {𝐷, 𝐸, 𝐹} ∈ Fin
8786a1i 11 . . . 4 (𝜑 → {𝐷, 𝐸, 𝐹} ∈ Fin)
8885, 87unfid 9096 . . 3 (𝜑 → ({𝐴, 𝐵, 𝐺} ∪ {𝐷, 𝐸, 𝐹}) ∈ Fin)
8972, 83, 88constrfiss 33717 . 2 (𝜑 → ∃𝑛 ∈ ω ({𝐴, 𝐵, 𝐺} ∪ {𝐷, 𝐸, 𝐹}) ⊆ (𝐶𝑛))
9080, 89r19.29a 3137 1 (𝜑𝑋 ∈ Constr)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1085  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  {crab 3396  Vcvv 3438  cun 3903  wss 3905  {cpr 4581  {ctp 4583  cmpt 5176  Oncon0 6311  suc csuc 6313  cfv 6486  (class class class)co 7353  ωcom 7806  reccrdg 8338  Fincfn 8879  cc 11026  cr 11027  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033  cmin 11365  ccj 15021  cim 15023  abscabs 15159  Constrcconstr 33695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-pnf 11170  df-mnf 11171  df-ltxr 11173  df-sub 11367  df-constr 33696
This theorem is referenced by:  constrcccl  33724
  Copyright terms: Public domain W3C validator