Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cos9thpiminplylem2 Structured version   Visualization version   GIF version

Theorem cos9thpiminplylem2 33752
Description: The polynomial ((𝑋↑3) + ((-3 · 𝑋) + 1)) has no rational roots. (Contributed by Thierry Arnoux, 9-Nov-2025.)
Hypothesis
Ref Expression
cos9thpiminplylem2.1 (𝜑𝑋 ∈ ℚ)
Assertion
Ref Expression
cos9thpiminplylem2 (𝜑 → ((𝑋↑3) + ((-3 · 𝑋) + 1)) ≠ 0)

Proof of Theorem cos9thpiminplylem2
Dummy variables 𝑝 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . . . . 9 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 = 0) → 𝑋 = 0)
21oveq1d 7415 . . . . . . . 8 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 = 0) → (𝑋↑3) = (0↑3))
3 3nn 12312 . . . . . . . . . 10 3 ∈ ℕ
43a1i 11 . . . . . . . . 9 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 = 0) → 3 ∈ ℕ)
540expd 14147 . . . . . . . 8 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 = 0) → (0↑3) = 0)
62, 5eqtrd 2769 . . . . . . 7 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 = 0) → (𝑋↑3) = 0)
76oveq1d 7415 . . . . . 6 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 = 0) → ((𝑋↑3) + ((-3 · 𝑋) + 1)) = (0 + ((-3 · 𝑋) + 1)))
81oveq2d 7416 . . . . . . . 8 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 = 0) → (-3 · 𝑋) = (-3 · 0))
9 3cn 12314 . . . . . . . . . . 11 3 ∈ ℂ
109negcli 11544 . . . . . . . . . 10 -3 ∈ ℂ
1110a1i 11 . . . . . . . . 9 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 = 0) → -3 ∈ ℂ)
1211mul01d 11427 . . . . . . . 8 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 = 0) → (-3 · 0) = 0)
138, 12eqtr2d 2770 . . . . . . 7 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 = 0) → 0 = (-3 · 𝑋))
1413oveq1d 7415 . . . . . . . 8 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 = 0) → (0 + 1) = ((-3 · 𝑋) + 1))
15 0p1e1 12355 . . . . . . . 8 (0 + 1) = 1
1614, 15eqtr3di 2784 . . . . . . 7 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 = 0) → ((-3 · 𝑋) + 1) = 1)
1713, 16oveq12d 7418 . . . . . 6 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 = 0) → (0 + ((-3 · 𝑋) + 1)) = ((-3 · 𝑋) + 1))
187, 17, 163eqtrd 2773 . . . . 5 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 = 0) → ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 1)
19 ax-1ne0 11191 . . . . . 6 1 ≠ 0
2019a1i 11 . . . . 5 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 = 0) → 1 ≠ 0)
2118, 20eqnetrd 2998 . . . 4 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 = 0) → ((𝑋↑3) + ((-3 · 𝑋) + 1)) ≠ 0)
22 simpr 484 . . . . . . . . . . . 12 ((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) → 𝑋 = (𝑝 / 𝑞))
23 simplr 768 . . . . . . . . . . . . . . 15 (((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) → 𝑝 ∈ ℤ)
2423zcnd 12691 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) → 𝑝 ∈ ℂ)
2524adantr 480 . . . . . . . . . . . . 13 ((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) → 𝑝 ∈ ℂ)
26 simpr 484 . . . . . . . . . . . . . . 15 (((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) → 𝑞 ∈ ℕ)
2726nncnd 12249 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) → 𝑞 ∈ ℂ)
2827adantr 480 . . . . . . . . . . . . 13 ((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) → 𝑞 ∈ ℂ)
2926nnne0d 12283 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) → 𝑞 ≠ 0)
3029adantr 480 . . . . . . . . . . . . 13 ((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) → 𝑞 ≠ 0)
3125, 28, 30divcld 12010 . . . . . . . . . . . 12 ((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) → (𝑝 / 𝑞) ∈ ℂ)
3222, 31eqeltrd 2833 . . . . . . . . . . 11 ((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) → 𝑋 ∈ ℂ)
3332ad3antrrr 730 . . . . . . . . . 10 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → 𝑋 ∈ ℂ)
34 simplr 768 . . . . . . . . . 10 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → 𝑋 ≠ 0)
3533, 34reccld 12003 . . . . . . . . 9 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (1 / 𝑋) ∈ ℂ)
36 3nn0 12512 . . . . . . . . . 10 3 ∈ ℕ0
3736a1i 11 . . . . . . . . 9 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → 3 ∈ ℕ0)
3835, 37expcld 14154 . . . . . . . 8 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → ((1 / 𝑋)↑3) ∈ ℂ)
3910a1i 11 . . . . . . . . . 10 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → -3 ∈ ℂ)
4035sqcld 14152 . . . . . . . . . 10 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → ((1 / 𝑋)↑2) ∈ ℂ)
4139, 40mulcld 11248 . . . . . . . . 9 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (-3 · ((1 / 𝑋)↑2)) ∈ ℂ)
42 1cnd 11223 . . . . . . . . 9 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → 1 ∈ ℂ)
4341, 42addcld 11247 . . . . . . . 8 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → ((-3 · ((1 / 𝑋)↑2)) + 1) ∈ ℂ)
4436a1i 11 . . . . . . . . . 10 ((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) → 3 ∈ ℕ0)
4532, 44expcld 14154 . . . . . . . . 9 ((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) → (𝑋↑3) ∈ ℂ)
4645ad3antrrr 730 . . . . . . . 8 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (𝑋↑3) ∈ ℂ)
4738, 43, 46adddird 11253 . . . . . . 7 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → ((((1 / 𝑋)↑3) + ((-3 · ((1 / 𝑋)↑2)) + 1)) · (𝑋↑3)) = ((((1 / 𝑋)↑3) · (𝑋↑3)) + (((-3 · ((1 / 𝑋)↑2)) + 1) · (𝑋↑3))))
48 3z 12618 . . . . . . . . . . . 12 3 ∈ ℤ
4948a1i 11 . . . . . . . . . . 11 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → 3 ∈ ℤ)
5033, 34, 49exprecd 14162 . . . . . . . . . 10 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → ((1 / 𝑋)↑3) = (1 / (𝑋↑3)))
5150oveq1d 7415 . . . . . . . . 9 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (((1 / 𝑋)↑3) · (𝑋↑3)) = ((1 / (𝑋↑3)) · (𝑋↑3)))
5233, 34, 49expne0d 14160 . . . . . . . . . 10 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (𝑋↑3) ≠ 0)
5346, 52recid2d 12006 . . . . . . . . 9 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → ((1 / (𝑋↑3)) · (𝑋↑3)) = 1)
5451, 53eqtrd 2769 . . . . . . . 8 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (((1 / 𝑋)↑3) · (𝑋↑3)) = 1)
55 2z 12617 . . . . . . . . . . . . . . . . 17 2 ∈ ℤ
5655a1i 11 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → 2 ∈ ℤ)
5733, 34, 56exprecd 14162 . . . . . . . . . . . . . . 15 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → ((1 / 𝑋)↑2) = (1 / (𝑋↑2)))
5857oveq1d 7415 . . . . . . . . . . . . . 14 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (((1 / 𝑋)↑2) · (𝑋↑3)) = ((1 / (𝑋↑2)) · (𝑋↑3)))
5933sqcld 14152 . . . . . . . . . . . . . . 15 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (𝑋↑2) ∈ ℂ)
6033, 34, 56expne0d 14160 . . . . . . . . . . . . . . 15 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (𝑋↑2) ≠ 0)
6146, 59, 60divrec2d 12014 . . . . . . . . . . . . . 14 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → ((𝑋↑3) / (𝑋↑2)) = ((1 / (𝑋↑2)) · (𝑋↑3)))
62 2cnd 12311 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → 2 ∈ ℂ)
63 2p1e3 12375 . . . . . . . . . . . . . . . . . . 19 (2 + 1) = 3
6463a1i 11 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (2 + 1) = 3)
6564eqcomd 2740 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → 3 = (2 + 1))
6662, 42, 65mvrladdd 11643 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (3 − 2) = 1)
6766oveq2d 7416 . . . . . . . . . . . . . . 15 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (𝑋↑(3 − 2)) = (𝑋↑1))
6833, 34, 56, 49expsubd 14165 . . . . . . . . . . . . . . 15 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (𝑋↑(3 − 2)) = ((𝑋↑3) / (𝑋↑2)))
6933exp1d 14149 . . . . . . . . . . . . . . 15 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (𝑋↑1) = 𝑋)
7067, 68, 693eqtr3d 2777 . . . . . . . . . . . . . 14 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → ((𝑋↑3) / (𝑋↑2)) = 𝑋)
7158, 61, 703eqtr2d 2775 . . . . . . . . . . . . 13 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (((1 / 𝑋)↑2) · (𝑋↑3)) = 𝑋)
7271oveq2d 7416 . . . . . . . . . . . 12 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (3 · (((1 / 𝑋)↑2) · (𝑋↑3))) = (3 · 𝑋))
7372negeqd 11469 . . . . . . . . . . 11 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → -(3 · (((1 / 𝑋)↑2) · (𝑋↑3))) = -(3 · 𝑋))
7439, 40, 46mulassd 11251 . . . . . . . . . . . 12 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → ((-3 · ((1 / 𝑋)↑2)) · (𝑋↑3)) = (-3 · (((1 / 𝑋)↑2) · (𝑋↑3))))
759a1i 11 . . . . . . . . . . . . 13 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → 3 ∈ ℂ)
7640, 46mulcld 11248 . . . . . . . . . . . . 13 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (((1 / 𝑋)↑2) · (𝑋↑3)) ∈ ℂ)
7775, 76mulneg1d 11683 . . . . . . . . . . . 12 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (-3 · (((1 / 𝑋)↑2) · (𝑋↑3))) = -(3 · (((1 / 𝑋)↑2) · (𝑋↑3))))
7874, 77eqtrd 2769 . . . . . . . . . . 11 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → ((-3 · ((1 / 𝑋)↑2)) · (𝑋↑3)) = -(3 · (((1 / 𝑋)↑2) · (𝑋↑3))))
7975, 33mulneg1d 11683 . . . . . . . . . . 11 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (-3 · 𝑋) = -(3 · 𝑋))
8073, 78, 793eqtr4d 2779 . . . . . . . . . 10 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → ((-3 · ((1 / 𝑋)↑2)) · (𝑋↑3)) = (-3 · 𝑋))
8146mullidd 11246 . . . . . . . . . 10 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (1 · (𝑋↑3)) = (𝑋↑3))
8280, 81oveq12d 7418 . . . . . . . . 9 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (((-3 · ((1 / 𝑋)↑2)) · (𝑋↑3)) + (1 · (𝑋↑3))) = ((-3 · 𝑋) + (𝑋↑3)))
8341, 46, 42, 82joinlmuladdmuld 11255 . . . . . . . 8 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (((-3 · ((1 / 𝑋)↑2)) + 1) · (𝑋↑3)) = ((-3 · 𝑋) + (𝑋↑3)))
8454, 83oveq12d 7418 . . . . . . 7 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → ((((1 / 𝑋)↑3) · (𝑋↑3)) + (((-3 · ((1 / 𝑋)↑2)) + 1) · (𝑋↑3))) = (1 + ((-3 · 𝑋) + (𝑋↑3))))
8539, 33mulcld 11248 . . . . . . . . . 10 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (-3 · 𝑋) ∈ ℂ)
8685, 46addcld 11247 . . . . . . . . 9 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → ((-3 · 𝑋) + (𝑋↑3)) ∈ ℂ)
8742, 86addcomd 11430 . . . . . . . 8 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (1 + ((-3 · 𝑋) + (𝑋↑3))) = (((-3 · 𝑋) + (𝑋↑3)) + 1))
8885, 46addcomd 11430 . . . . . . . . 9 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → ((-3 · 𝑋) + (𝑋↑3)) = ((𝑋↑3) + (-3 · 𝑋)))
8988oveq1d 7415 . . . . . . . 8 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (((-3 · 𝑋) + (𝑋↑3)) + 1) = (((𝑋↑3) + (-3 · 𝑋)) + 1))
9046, 85, 42addassd 11250 . . . . . . . 8 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (((𝑋↑3) + (-3 · 𝑋)) + 1) = ((𝑋↑3) + ((-3 · 𝑋) + 1)))
9187, 89, 903eqtrd 2773 . . . . . . 7 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (1 + ((-3 · 𝑋) + (𝑋↑3))) = ((𝑋↑3) + ((-3 · 𝑋) + 1)))
9247, 84, 913eqtrd 2773 . . . . . 6 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → ((((1 / 𝑋)↑3) + ((-3 · ((1 / 𝑋)↑2)) + 1)) · (𝑋↑3)) = ((𝑋↑3) + ((-3 · 𝑋) + 1)))
9338, 43addcld 11247 . . . . . . 7 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (((1 / 𝑋)↑3) + ((-3 · ((1 / 𝑋)↑2)) + 1)) ∈ ℂ)
94 simpllr 775 . . . . . . . . . . . . 13 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) → 𝑋 = (𝑝 / 𝑞))
9594adantr 480 . . . . . . . . . . . 12 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → 𝑋 = (𝑝 / 𝑞))
9695oveq2d 7416 . . . . . . . . . . 11 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (1 / 𝑋) = (1 / (𝑝 / 𝑞)))
97 simp-6r 787 . . . . . . . . . . . . 13 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → 𝑝 ∈ ℤ)
9897zcnd 12691 . . . . . . . . . . . 12 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → 𝑝 ∈ ℂ)
99 simp-5r 785 . . . . . . . . . . . . 13 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → 𝑞 ∈ ℕ)
10099nncnd 12249 . . . . . . . . . . . 12 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → 𝑞 ∈ ℂ)
101 simpr 484 . . . . . . . . . . . . . . 15 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) → 𝑋 ≠ 0)
10294, 101eqnetrrd 2999 . . . . . . . . . . . . . 14 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) → (𝑝 / 𝑞) ≠ 0)
10324ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) → 𝑝 ∈ ℂ)
10427ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) → 𝑞 ∈ ℂ)
10529ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) → 𝑞 ≠ 0)
106103, 104, 105divne0bd 12022 . . . . . . . . . . . . . 14 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) → (𝑝 ≠ 0 ↔ (𝑝 / 𝑞) ≠ 0))
107102, 106mpbird 257 . . . . . . . . . . . . 13 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) → 𝑝 ≠ 0)
108107adantr 480 . . . . . . . . . . . 12 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → 𝑝 ≠ 0)
10999nnne0d 12283 . . . . . . . . . . . 12 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → 𝑞 ≠ 0)
11098, 100, 108, 109recdivd 12027 . . . . . . . . . . 11 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (1 / (𝑝 / 𝑞)) = (𝑞 / 𝑝))
111100, 98, 108divrecd 12013 . . . . . . . . . . . 12 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (𝑞 / 𝑝) = (𝑞 · (1 / 𝑝)))
11298div1d 12002 . . . . . . . . . . . . . 14 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (𝑝 / 1) = 𝑝)
113 simpr 484 . . . . . . . . . . . . . . 15 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (abs‘𝑝) = 1)
114113oveq2d 7416 . . . . . . . . . . . . . 14 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (𝑝 / (abs‘𝑝)) = (𝑝 / 1))
11523zred 12690 . . . . . . . . . . . . . . . . 17 (((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) → 𝑝 ∈ ℝ)
116115ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) → 𝑝 ∈ ℝ)
117116, 107receqid 32658 . . . . . . . . . . . . . . 15 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) → ((1 / 𝑝) = 𝑝 ↔ (abs‘𝑝) = 1))
118117biimpar 477 . . . . . . . . . . . . . 14 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (1 / 𝑝) = 𝑝)
119112, 114, 1183eqtr4d 2779 . . . . . . . . . . . . 13 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (𝑝 / (abs‘𝑝)) = (1 / 𝑝))
120119oveq2d 7416 . . . . . . . . . . . 12 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (𝑞 · (𝑝 / (abs‘𝑝))) = (𝑞 · (1 / 𝑝)))
121111, 120eqtr4d 2772 . . . . . . . . . . 11 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (𝑞 / 𝑝) = (𝑞 · (𝑝 / (abs‘𝑝))))
12296, 110, 1213eqtrd 2773 . . . . . . . . . 10 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (1 / 𝑋) = (𝑞 · (𝑝 / (abs‘𝑝))))
12397zred 12690 . . . . . . . . . . . 12 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → 𝑝 ∈ ℝ)
124 sgnval2 32648 . . . . . . . . . . . 12 ((𝑝 ∈ ℝ ∧ 𝑝 ≠ 0) → (sgn‘𝑝) = (𝑝 / (abs‘𝑝)))
125123, 108, 124syl2anc 584 . . . . . . . . . . 11 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (sgn‘𝑝) = (𝑝 / (abs‘𝑝)))
126125oveq2d 7416 . . . . . . . . . 10 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (𝑞 · (sgn‘𝑝)) = (𝑞 · (𝑝 / (abs‘𝑝))))
127122, 126eqtr4d 2772 . . . . . . . . 9 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (1 / 𝑋) = (𝑞 · (sgn‘𝑝)))
12899nnzd 12608 . . . . . . . . . 10 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → 𝑞 ∈ ℤ)
129 neg1z 12621 . . . . . . . . . . . . 13 -1 ∈ ℤ
130129a1i 11 . . . . . . . . . . . 12 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → -1 ∈ ℤ)
131 0zd 12593 . . . . . . . . . . . 12 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → 0 ∈ ℤ)
132 1zzd 12616 . . . . . . . . . . . 12 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → 1 ∈ ℤ)
133130, 131, 132tpssd 32453 . . . . . . . . . . 11 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → {-1, 0, 1} ⊆ ℤ)
134123rexrd 11278 . . . . . . . . . . . 12 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → 𝑝 ∈ ℝ*)
135 sgncl 32747 . . . . . . . . . . . 12 (𝑝 ∈ ℝ* → (sgn‘𝑝) ∈ {-1, 0, 1})
136134, 135syl 17 . . . . . . . . . . 11 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (sgn‘𝑝) ∈ {-1, 0, 1})
137133, 136sseldd 3957 . . . . . . . . . 10 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (sgn‘𝑝) ∈ ℤ)
138128, 137zmulcld 12696 . . . . . . . . 9 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (𝑞 · (sgn‘𝑝)) ∈ ℤ)
139127, 138eqeltrd 2833 . . . . . . . 8 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (1 / 𝑋) ∈ ℤ)
140139cos9thpiminplylem1 33751 . . . . . . 7 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (((1 / 𝑋)↑3) + ((-3 · ((1 / 𝑋)↑2)) + 1)) ≠ 0)
14193, 46, 140, 52mulne0d 11882 . . . . . 6 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → ((((1 / 𝑋)↑3) + ((-3 · ((1 / 𝑋)↑2)) + 1)) · (𝑋↑3)) ≠ 0)
14292, 141eqnetrrd 2999 . . . . 5 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → ((𝑋↑3) + ((-3 · 𝑋) + 1)) ≠ 0)
143 simplr 768 . . . . . . . 8 (((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) → 𝑟 ∈ ℙ)
144 1nprm 16685 . . . . . . . . 9 ¬ 1 ∈ ℙ
145144a1i 11 . . . . . . . 8 (((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) → ¬ 1 ∈ ℙ)
146 nelne2 3029 . . . . . . . 8 ((𝑟 ∈ ℙ ∧ ¬ 1 ∈ ℙ) → 𝑟 ≠ 1)
147143, 145, 146syl2anc 584 . . . . . . 7 (((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) → 𝑟 ≠ 1)
148 prmnn 16680 . . . . . . . . . 10 (𝑟 ∈ ℙ → 𝑟 ∈ ℕ)
149148ad3antlr 731 . . . . . . . . 9 ((((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 𝑟 ∈ ℕ)
150149nnnn0d 12555 . . . . . . . 8 ((((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 𝑟 ∈ ℕ0)
151149nnzd 12608 . . . . . . . . . 10 ((((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 𝑟 ∈ ℤ)
152 simp-5r 785 . . . . . . . . . . 11 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) → 𝑝 ∈ ℤ)
153152ad4antr 732 . . . . . . . . . 10 ((((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 𝑝 ∈ ℤ)
154 simp-8r 791 . . . . . . . . . . 11 ((((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 𝑞 ∈ ℕ)
155154nnzd 12608 . . . . . . . . . 10 ((((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 𝑞 ∈ ℤ)
156 simplr 768 . . . . . . . . . . 11 ((((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 𝑟 ∥ (abs‘𝑝))
157 dvdsabsb 16282 . . . . . . . . . . . 12 ((𝑟 ∈ ℤ ∧ 𝑝 ∈ ℤ) → (𝑟𝑝𝑟 ∥ (abs‘𝑝)))
158157biimpar 477 . . . . . . . . . . 11 (((𝑟 ∈ ℤ ∧ 𝑝 ∈ ℤ) ∧ 𝑟 ∥ (abs‘𝑝)) → 𝑟𝑝)
159151, 153, 156, 158syl21anc 837 . . . . . . . . . 10 ((((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 𝑟𝑝)
160 simpllr 775 . . . . . . . . . . 11 ((((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 𝑟 ∈ ℙ)
1613a1i 11 . . . . . . . . . . 11 ((((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 3 ∈ ℕ)
16248a1i 11 . . . . . . . . . . . . . . 15 ((((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 3 ∈ ℤ)
163154nnnn0d 12555 . . . . . . . . . . . . . . . . 17 ((((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 𝑞 ∈ ℕ0)
164 nn0sqcl 14097 . . . . . . . . . . . . . . . . 17 (𝑞 ∈ ℕ0 → (𝑞↑2) ∈ ℕ0)
165163, 164syl 17 . . . . . . . . . . . . . . . 16 ((((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑞↑2) ∈ ℕ0)
166165nn0zd 12607 . . . . . . . . . . . . . . 15 ((((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑞↑2) ∈ ℤ)
167162, 166zmulcld 12696 . . . . . . . . . . . . . 14 ((((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (3 · (𝑞↑2)) ∈ ℤ)
168 zsqcl 14137 . . . . . . . . . . . . . . 15 (𝑝 ∈ ℤ → (𝑝↑2) ∈ ℤ)
169153, 168syl 17 . . . . . . . . . . . . . 14 ((((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑝↑2) ∈ ℤ)
170167, 169zsubcld 12695 . . . . . . . . . . . . 13 ((((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((3 · (𝑞↑2)) − (𝑝↑2)) ∈ ℤ)
171151, 153, 170, 159dvdsmultr1d 16303 . . . . . . . . . . . 12 ((((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 𝑟 ∥ (𝑝 · ((3 · (𝑞↑2)) − (𝑝↑2))))
172104adantr 480 . . . . . . . . . . . . . . 15 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 𝑞 ∈ ℂ)
17336a1i 11 . . . . . . . . . . . . . . 15 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 3 ∈ ℕ0)
174172, 173expcld 14154 . . . . . . . . . . . . . 14 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑞↑3) ∈ ℂ)
175103adantr 480 . . . . . . . . . . . . . . 15 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 𝑝 ∈ ℂ)
1769a1i 11 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 3 ∈ ℂ)
177172sqcld 14152 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑞↑2) ∈ ℂ)
178176, 177mulcld 11248 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (3 · (𝑞↑2)) ∈ ℂ)
179175sqcld 14152 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑝↑2) ∈ ℂ)
180178, 179subcld 11587 . . . . . . . . . . . . . . 15 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((3 · (𝑞↑2)) − (𝑝↑2)) ∈ ℂ)
181175, 180mulcld 11248 . . . . . . . . . . . . . 14 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑝 · ((3 · (𝑞↑2)) − (𝑝↑2))) ∈ ℂ)
18294adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 𝑋 = (𝑝 / 𝑞))
183182oveq1d 7415 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑋↑3) = ((𝑝 / 𝑞)↑3))
184183oveq1d 7415 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((𝑋↑3) · (𝑞↑3)) = (((𝑝 / 𝑞)↑3) · (𝑞↑3)))
185105adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 𝑞 ≠ 0)
186175, 172, 185, 173expdivd 14168 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((𝑝 / 𝑞)↑3) = ((𝑝↑3) / (𝑞↑3)))
187186oveq1d 7415 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (((𝑝 / 𝑞)↑3) · (𝑞↑3)) = (((𝑝↑3) / (𝑞↑3)) · (𝑞↑3)))
188175, 173expcld 14154 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑝↑3) ∈ ℂ)
18948a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 3 ∈ ℤ)
190172, 185, 189expne0d 14160 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑞↑3) ≠ 0)
191188, 174, 190divcan1d 12011 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (((𝑝↑3) / (𝑞↑3)) · (𝑞↑3)) = (𝑝↑3))
192184, 187, 1913eqtrd 2773 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((𝑋↑3) · (𝑞↑3)) = (𝑝↑3))
19310a1i 11 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → -3 ∈ ℂ)
19432ad3antrrr 730 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 𝑋 ∈ ℂ)
195193, 194mulcld 11248 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (-3 · 𝑋) ∈ ℂ)
196 1cnd 11223 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 1 ∈ ℂ)
197193, 194, 174mulassd 11251 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((-3 · 𝑋) · (𝑞↑3)) = (-3 · (𝑋 · (𝑞↑3))))
198182oveq1d 7415 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑋 · (𝑞↑3)) = ((𝑝 / 𝑞) · (𝑞↑3)))
199175, 172, 174, 185div32d 12033 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((𝑝 / 𝑞) · (𝑞↑3)) = (𝑝 · ((𝑞↑3) / 𝑞)))
200 1zzd 12616 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 1 ∈ ℤ)
201172, 185, 200, 189expsubd 14165 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑞↑(3 − 1)) = ((𝑞↑3) / (𝑞↑1)))
202 3m1e2 12361 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (3 − 1) = 2
203202a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (3 − 1) = 2)
204203oveq2d 7416 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑞↑(3 − 1)) = (𝑞↑2))
205172exp1d 14149 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑞↑1) = 𝑞)
206205oveq2d 7416 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((𝑞↑3) / (𝑞↑1)) = ((𝑞↑3) / 𝑞))
207201, 204, 2063eqtr3rd 2778 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((𝑞↑3) / 𝑞) = (𝑞↑2))
208207oveq2d 7416 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑝 · ((𝑞↑3) / 𝑞)) = (𝑝 · (𝑞↑2)))
209198, 199, 2083eqtrd 2773 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑋 · (𝑞↑3)) = (𝑝 · (𝑞↑2)))
210209oveq2d 7416 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (-3 · (𝑋 · (𝑞↑3))) = (-3 · (𝑝 · (𝑞↑2))))
211197, 210eqtrd 2769 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((-3 · 𝑋) · (𝑞↑3)) = (-3 · (𝑝 · (𝑞↑2))))
212174mullidd 11246 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (1 · (𝑞↑3)) = (𝑞↑3))
213211, 212oveq12d 7418 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (((-3 · 𝑋) · (𝑞↑3)) + (1 · (𝑞↑3))) = ((-3 · (𝑝 · (𝑞↑2))) + (𝑞↑3)))
214195, 174, 196, 213joinlmuladdmuld 11255 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (((-3 · 𝑋) + 1) · (𝑞↑3)) = ((-3 · (𝑝 · (𝑞↑2))) + (𝑞↑3)))
215192, 214oveq12d 7418 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (((𝑋↑3) · (𝑞↑3)) + (((-3 · 𝑋) + 1) · (𝑞↑3))) = ((𝑝↑3) + ((-3 · (𝑝 · (𝑞↑2))) + (𝑞↑3))))
21645ad3antrrr 730 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑋↑3) ∈ ℂ)
217195, 196addcld 11247 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((-3 · 𝑋) + 1) ∈ ℂ)
218216, 217, 174adddird 11253 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (((𝑋↑3) + ((-3 · 𝑋) + 1)) · (𝑞↑3)) = (((𝑋↑3) · (𝑞↑3)) + (((-3 · 𝑋) + 1) · (𝑞↑3))))
219175, 178, 179subdid 11686 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑝 · ((3 · (𝑞↑2)) − (𝑝↑2))) = ((𝑝 · (3 · (𝑞↑2))) − (𝑝 · (𝑝↑2))))
220 2nn0 12511 . . . . . . . . . . . . . . . . . . . . . . 23 2 ∈ ℕ0
221220a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 2 ∈ ℕ0)
222 1nn0 12510 . . . . . . . . . . . . . . . . . . . . . . 23 1 ∈ ℕ0
223222a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 1 ∈ ℕ0)
224175, 221, 223expaddd 14156 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑝↑(1 + 2)) = ((𝑝↑1) · (𝑝↑2)))
225 1p2e3 12376 . . . . . . . . . . . . . . . . . . . . . . 23 (1 + 2) = 3
226225a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (1 + 2) = 3)
227226oveq2d 7416 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑝↑(1 + 2)) = (𝑝↑3))
228175exp1d 14149 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑝↑1) = 𝑝)
229228oveq1d 7415 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((𝑝↑1) · (𝑝↑2)) = (𝑝 · (𝑝↑2)))
230224, 227, 2293eqtr3rd 2778 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑝 · (𝑝↑2)) = (𝑝↑3))
231230oveq2d 7416 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((𝑝 · (3 · (𝑞↑2))) − (𝑝 · (𝑝↑2))) = ((𝑝 · (3 · (𝑞↑2))) − (𝑝↑3)))
232219, 231eqtrd 2769 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑝 · ((3 · (𝑞↑2)) − (𝑝↑2))) = ((𝑝 · (3 · (𝑞↑2))) − (𝑝↑3)))
233232oveq2d 7416 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((𝑞↑3) − (𝑝 · ((3 · (𝑞↑2)) − (𝑝↑2)))) = ((𝑞↑3) − ((𝑝 · (3 · (𝑞↑2))) − (𝑝↑3))))
234175, 178mulcld 11248 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑝 · (3 · (𝑞↑2))) ∈ ℂ)
235174, 234, 188subsub2d 11616 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((𝑞↑3) − ((𝑝 · (3 · (𝑞↑2))) − (𝑝↑3))) = ((𝑞↑3) + ((𝑝↑3) − (𝑝 · (3 · (𝑞↑2))))))
236174, 188, 234addsub12d 11610 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((𝑞↑3) + ((𝑝↑3) − (𝑝 · (3 · (𝑞↑2))))) = ((𝑝↑3) + ((𝑞↑3) − (𝑝 · (3 · (𝑞↑2))))))
237174, 234subcld 11587 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((𝑞↑3) − (𝑝 · (3 · (𝑞↑2)))) ∈ ℂ)
238188, 237addcomd 11430 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((𝑝↑3) + ((𝑞↑3) − (𝑝 · (3 · (𝑞↑2))))) = (((𝑞↑3) − (𝑝 · (3 · (𝑞↑2)))) + (𝑝↑3)))
239234negcld 11574 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → -(𝑝 · (3 · (𝑞↑2))) ∈ ℂ)
240174, 239addcomd 11430 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((𝑞↑3) + -(𝑝 · (3 · (𝑞↑2)))) = (-(𝑝 · (3 · (𝑞↑2))) + (𝑞↑3)))
241174, 234negsubd 11593 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((𝑞↑3) + -(𝑝 · (3 · (𝑞↑2)))) = ((𝑞↑3) − (𝑝 · (3 · (𝑞↑2)))))
242175, 176, 177mul12d 11437 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑝 · (3 · (𝑞↑2))) = (3 · (𝑝 · (𝑞↑2))))
243242negeqd 11469 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → -(𝑝 · (3 · (𝑞↑2))) = -(3 · (𝑝 · (𝑞↑2))))
244175, 177mulcld 11248 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑝 · (𝑞↑2)) ∈ ℂ)
245176, 244mulneg1d 11683 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (-3 · (𝑝 · (𝑞↑2))) = -(3 · (𝑝 · (𝑞↑2))))
246243, 245eqtr4d 2772 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → -(𝑝 · (3 · (𝑞↑2))) = (-3 · (𝑝 · (𝑞↑2))))
247246oveq1d 7415 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (-(𝑝 · (3 · (𝑞↑2))) + (𝑞↑3)) = ((-3 · (𝑝 · (𝑞↑2))) + (𝑞↑3)))
248240, 241, 2473eqtr3d 2777 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((𝑞↑3) − (𝑝 · (3 · (𝑞↑2)))) = ((-3 · (𝑝 · (𝑞↑2))) + (𝑞↑3)))
249248oveq1d 7415 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (((𝑞↑3) − (𝑝 · (3 · (𝑞↑2)))) + (𝑝↑3)) = (((-3 · (𝑝 · (𝑞↑2))) + (𝑞↑3)) + (𝑝↑3)))
250238, 249eqtrd 2769 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((𝑝↑3) + ((𝑞↑3) − (𝑝 · (3 · (𝑞↑2))))) = (((-3 · (𝑝 · (𝑞↑2))) + (𝑞↑3)) + (𝑝↑3)))
251235, 236, 2503eqtrd 2773 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((𝑞↑3) − ((𝑝 · (3 · (𝑞↑2))) − (𝑝↑3))) = (((-3 · (𝑝 · (𝑞↑2))) + (𝑞↑3)) + (𝑝↑3)))
252193, 244mulcld 11248 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (-3 · (𝑝 · (𝑞↑2))) ∈ ℂ)
253252, 174addcld 11247 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((-3 · (𝑝 · (𝑞↑2))) + (𝑞↑3)) ∈ ℂ)
254253, 188addcomd 11430 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (((-3 · (𝑝 · (𝑞↑2))) + (𝑞↑3)) + (𝑝↑3)) = ((𝑝↑3) + ((-3 · (𝑝 · (𝑞↑2))) + (𝑞↑3))))
255233, 251, 2543eqtrd 2773 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((𝑞↑3) − (𝑝 · ((3 · (𝑞↑2)) − (𝑝↑2)))) = ((𝑝↑3) + ((-3 · (𝑝 · (𝑞↑2))) + (𝑞↑3))))
256215, 218, 2553eqtr4rd 2780 . . . . . . . . . . . . . . 15 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((𝑞↑3) − (𝑝 · ((3 · (𝑞↑2)) − (𝑝↑2)))) = (((𝑋↑3) + ((-3 · 𝑋) + 1)) · (𝑞↑3)))
257 simpr 484 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0)
258257oveq1d 7415 . . . . . . . . . . . . . . 15 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (((𝑋↑3) + ((-3 · 𝑋) + 1)) · (𝑞↑3)) = (0 · (𝑞↑3)))
259174mul02d 11426 . . . . . . . . . . . . . . 15 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (0 · (𝑞↑3)) = 0)
260256, 258, 2593eqtrd 2773 . . . . . . . . . . . . . 14 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((𝑞↑3) − (𝑝 · ((3 · (𝑞↑2)) − (𝑝↑2)))) = 0)
261174, 181, 260subeq0d 11595 . . . . . . . . . . . . 13 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑞↑3) = (𝑝 · ((3 · (𝑞↑2)) − (𝑝↑2))))
262261ad5ant15 758 . . . . . . . . . . . 12 ((((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑞↑3) = (𝑝 · ((3 · (𝑞↑2)) − (𝑝↑2))))
263171, 262breqtrrd 5145 . . . . . . . . . . 11 ((((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 𝑟 ∥ (𝑞↑3))
264 prmdvdsexp 16721 . . . . . . . . . . . 12 ((𝑟 ∈ ℙ ∧ 𝑞 ∈ ℤ ∧ 3 ∈ ℕ) → (𝑟 ∥ (𝑞↑3) ↔ 𝑟𝑞))
265264biimpa 476 . . . . . . . . . . 11 (((𝑟 ∈ ℙ ∧ 𝑞 ∈ ℤ ∧ 3 ∈ ℕ) ∧ 𝑟 ∥ (𝑞↑3)) → 𝑟𝑞)
266160, 155, 161, 263, 265syl31anc 1374 . . . . . . . . . 10 ((((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 𝑟𝑞)
267 dvdsgcd 16550 . . . . . . . . . . 11 ((𝑟 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) → ((𝑟𝑝𝑟𝑞) → 𝑟 ∥ (𝑝 gcd 𝑞)))
268267imp 406 . . . . . . . . . 10 (((𝑟 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ (𝑟𝑝𝑟𝑞)) → 𝑟 ∥ (𝑝 gcd 𝑞))
269151, 153, 155, 159, 266, 268syl32anc 1379 . . . . . . . . 9 ((((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 𝑟 ∥ (𝑝 gcd 𝑞))
270 simp-6r 787 . . . . . . . . 9 ((((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑝 gcd 𝑞) = 1)
271269, 270breqtrd 5143 . . . . . . . 8 ((((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 𝑟 ∥ 1)
272 dvds1 16325 . . . . . . . . 9 (𝑟 ∈ ℕ0 → (𝑟 ∥ 1 ↔ 𝑟 = 1))
273272biimpa 476 . . . . . . . 8 ((𝑟 ∈ ℕ0𝑟 ∥ 1) → 𝑟 = 1)
274150, 271, 273syl2anc 584 . . . . . . 7 ((((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 𝑟 = 1)
275147, 274mteqand 3022 . . . . . 6 (((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) → ((𝑋↑3) + ((-3 · 𝑋) + 1)) ≠ 0)
276 nnabscl 15333 . . . . . . . 8 ((𝑝 ∈ ℤ ∧ 𝑝 ≠ 0) → (abs‘𝑝) ∈ ℕ)
277152, 107, 276syl2anc 584 . . . . . . 7 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) → (abs‘𝑝) ∈ ℕ)
278 eluz2b3 12931 . . . . . . . 8 ((abs‘𝑝) ∈ (ℤ‘2) ↔ ((abs‘𝑝) ∈ ℕ ∧ (abs‘𝑝) ≠ 1))
279 exprmfct 16710 . . . . . . . 8 ((abs‘𝑝) ∈ (ℤ‘2) → ∃𝑟 ∈ ℙ 𝑟 ∥ (abs‘𝑝))
280278, 279sylbir 235 . . . . . . 7 (((abs‘𝑝) ∈ ℕ ∧ (abs‘𝑝) ≠ 1) → ∃𝑟 ∈ ℙ 𝑟 ∥ (abs‘𝑝))
281277, 280sylan 580 . . . . . 6 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) → ∃𝑟 ∈ ℙ 𝑟 ∥ (abs‘𝑝))
282275, 281r19.29a 3146 . . . . 5 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) → ((𝑋↑3) + ((-3 · 𝑋) + 1)) ≠ 0)
283142, 282pm2.61dane 3018 . . . 4 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) → ((𝑋↑3) + ((-3 · 𝑋) + 1)) ≠ 0)
28421, 283pm2.61dane 3018 . . 3 (((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) → ((𝑋↑3) + ((-3 · 𝑋) + 1)) ≠ 0)
285284anasss 466 . 2 ((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ (𝑋 = (𝑝 / 𝑞) ∧ (𝑝 gcd 𝑞) = 1)) → ((𝑋↑3) + ((-3 · 𝑋) + 1)) ≠ 0)
286 cos9thpiminplylem2.1 . . 3 (𝜑𝑋 ∈ ℚ)
287 elq2 32727 . . 3 (𝑋 ∈ ℚ → ∃𝑝 ∈ ℤ ∃𝑞 ∈ ℕ (𝑋 = (𝑝 / 𝑞) ∧ (𝑝 gcd 𝑞) = 1))
288286, 287syl 17 . 2 (𝜑 → ∃𝑝 ∈ ℤ ∃𝑞 ∈ ℕ (𝑋 = (𝑝 / 𝑞) ∧ (𝑝 gcd 𝑞) = 1))
289285, 288r19.29vva 3199 1 (𝜑 → ((𝑋↑3) + ((-3 · 𝑋) + 1)) ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2931  wrex 3059  {ctp 4603   class class class wbr 5117  cfv 6528  (class class class)co 7400  cc 11120  cr 11121  0cc0 11122  1c1 11123   + caddc 11125   · cmul 11127  *cxr 11261  cmin 11459  -cneg 11460   / cdiv 11887  cn 12233  2c2 12288  3c3 12289  0cn0 12494  cz 12581  cuz 12845  cq 12957  cexp 14069  sgncsgn 15094  abscabs 15242  cdvds 16259   gcd cgcd 16500  cprime 16677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724  ax-cnex 11178  ax-resscn 11179  ax-1cn 11180  ax-icn 11181  ax-addcl 11182  ax-addrcl 11183  ax-mulcl 11184  ax-mulrcl 11185  ax-mulcom 11186  ax-addass 11187  ax-mulass 11188  ax-distr 11189  ax-i2m1 11190  ax-1ne0 11191  ax-1rid 11192  ax-rnegex 11193  ax-rrecex 11194  ax-cnre 11195  ax-pre-lttri 11196  ax-pre-lttrn 11197  ax-pre-ltadd 11198  ax-pre-mulgt0 11199  ax-pre-sup 11200
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-tp 4604  df-op 4606  df-uni 4882  df-iun 4967  df-br 5118  df-opab 5180  df-mpt 5200  df-tr 5228  df-id 5546  df-eprel 5551  df-po 5559  df-so 5560  df-fr 5604  df-we 5606  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-pred 6288  df-ord 6353  df-on 6354  df-lim 6355  df-suc 6356  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-riota 7357  df-ov 7403  df-oprab 7404  df-mpo 7405  df-om 7857  df-1st 7983  df-2nd 7984  df-frecs 8275  df-wrecs 8306  df-recs 8380  df-rdg 8419  df-1o 8475  df-2o 8476  df-er 8714  df-en 8955  df-dom 8956  df-sdom 8957  df-fin 8958  df-sup 9449  df-inf 9450  df-pnf 11264  df-mnf 11265  df-xr 11266  df-ltxr 11267  df-le 11268  df-sub 11461  df-neg 11462  df-div 11888  df-nn 12234  df-2 12296  df-3 12297  df-4 12298  df-5 12299  df-6 12300  df-7 12301  df-8 12302  df-9 12303  df-n0 12495  df-z 12582  df-dec 12702  df-uz 12846  df-q 12958  df-rp 13002  df-fz 13515  df-fzo 13662  df-fl 13799  df-mod 13877  df-seq 14010  df-exp 14070  df-sgn 15095  df-cj 15107  df-re 15108  df-im 15109  df-sqrt 15243  df-abs 15244  df-dvds 16260  df-gcd 16501  df-prm 16678
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator