Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cos9thpiminplylem2 Structured version   Visualization version   GIF version

Theorem cos9thpiminplylem2 33766
Description: The polynomial ((𝑋↑3) + ((-3 · 𝑋) + 1)) has no rational roots. (Contributed by Thierry Arnoux, 9-Nov-2025.)
Hypothesis
Ref Expression
cos9thpiminplylem2.1 (𝜑𝑋 ∈ ℚ)
Assertion
Ref Expression
cos9thpiminplylem2 (𝜑 → ((𝑋↑3) + ((-3 · 𝑋) + 1)) ≠ 0)

Proof of Theorem cos9thpiminplylem2
Dummy variables 𝑝 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . . . . 9 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 = 0) → 𝑋 = 0)
21oveq1d 7384 . . . . . . . 8 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 = 0) → (𝑋↑3) = (0↑3))
3 3nn 12241 . . . . . . . . . 10 3 ∈ ℕ
43a1i 11 . . . . . . . . 9 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 = 0) → 3 ∈ ℕ)
540expd 14080 . . . . . . . 8 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 = 0) → (0↑3) = 0)
62, 5eqtrd 2764 . . . . . . 7 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 = 0) → (𝑋↑3) = 0)
76oveq1d 7384 . . . . . 6 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 = 0) → ((𝑋↑3) + ((-3 · 𝑋) + 1)) = (0 + ((-3 · 𝑋) + 1)))
81oveq2d 7385 . . . . . . . 8 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 = 0) → (-3 · 𝑋) = (-3 · 0))
9 3cn 12243 . . . . . . . . . . 11 3 ∈ ℂ
109negcli 11466 . . . . . . . . . 10 -3 ∈ ℂ
1110a1i 11 . . . . . . . . 9 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 = 0) → -3 ∈ ℂ)
1211mul01d 11349 . . . . . . . 8 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 = 0) → (-3 · 0) = 0)
138, 12eqtr2d 2765 . . . . . . 7 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 = 0) → 0 = (-3 · 𝑋))
1413oveq1d 7384 . . . . . . . 8 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 = 0) → (0 + 1) = ((-3 · 𝑋) + 1))
15 0p1e1 12279 . . . . . . . 8 (0 + 1) = 1
1614, 15eqtr3di 2779 . . . . . . 7 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 = 0) → ((-3 · 𝑋) + 1) = 1)
1713, 16oveq12d 7387 . . . . . 6 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 = 0) → (0 + ((-3 · 𝑋) + 1)) = ((-3 · 𝑋) + 1))
187, 17, 163eqtrd 2768 . . . . 5 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 = 0) → ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 1)
19 ax-1ne0 11113 . . . . . 6 1 ≠ 0
2019a1i 11 . . . . 5 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 = 0) → 1 ≠ 0)
2118, 20eqnetrd 2992 . . . 4 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 = 0) → ((𝑋↑3) + ((-3 · 𝑋) + 1)) ≠ 0)
22 simpr 484 . . . . . . . . . . . 12 ((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) → 𝑋 = (𝑝 / 𝑞))
23 simplr 768 . . . . . . . . . . . . . . 15 (((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) → 𝑝 ∈ ℤ)
2423zcnd 12615 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) → 𝑝 ∈ ℂ)
2524adantr 480 . . . . . . . . . . . . 13 ((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) → 𝑝 ∈ ℂ)
26 simpr 484 . . . . . . . . . . . . . . 15 (((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) → 𝑞 ∈ ℕ)
2726nncnd 12178 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) → 𝑞 ∈ ℂ)
2827adantr 480 . . . . . . . . . . . . 13 ((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) → 𝑞 ∈ ℂ)
2926nnne0d 12212 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) → 𝑞 ≠ 0)
3029adantr 480 . . . . . . . . . . . . 13 ((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) → 𝑞 ≠ 0)
3125, 28, 30divcld 11934 . . . . . . . . . . . 12 ((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) → (𝑝 / 𝑞) ∈ ℂ)
3222, 31eqeltrd 2828 . . . . . . . . . . 11 ((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) → 𝑋 ∈ ℂ)
3332ad3antrrr 730 . . . . . . . . . 10 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → 𝑋 ∈ ℂ)
34 simplr 768 . . . . . . . . . 10 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → 𝑋 ≠ 0)
3533, 34reccld 11927 . . . . . . . . 9 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (1 / 𝑋) ∈ ℂ)
36 3nn0 12436 . . . . . . . . . 10 3 ∈ ℕ0
3736a1i 11 . . . . . . . . 9 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → 3 ∈ ℕ0)
3835, 37expcld 14087 . . . . . . . 8 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → ((1 / 𝑋)↑3) ∈ ℂ)
3910a1i 11 . . . . . . . . . 10 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → -3 ∈ ℂ)
4035sqcld 14085 . . . . . . . . . 10 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → ((1 / 𝑋)↑2) ∈ ℂ)
4139, 40mulcld 11170 . . . . . . . . 9 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (-3 · ((1 / 𝑋)↑2)) ∈ ℂ)
42 1cnd 11145 . . . . . . . . 9 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → 1 ∈ ℂ)
4341, 42addcld 11169 . . . . . . . 8 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → ((-3 · ((1 / 𝑋)↑2)) + 1) ∈ ℂ)
4436a1i 11 . . . . . . . . . 10 ((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) → 3 ∈ ℕ0)
4532, 44expcld 14087 . . . . . . . . 9 ((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) → (𝑋↑3) ∈ ℂ)
4645ad3antrrr 730 . . . . . . . 8 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (𝑋↑3) ∈ ℂ)
4738, 43, 46adddird 11175 . . . . . . 7 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → ((((1 / 𝑋)↑3) + ((-3 · ((1 / 𝑋)↑2)) + 1)) · (𝑋↑3)) = ((((1 / 𝑋)↑3) · (𝑋↑3)) + (((-3 · ((1 / 𝑋)↑2)) + 1) · (𝑋↑3))))
48 3z 12542 . . . . . . . . . . . 12 3 ∈ ℤ
4948a1i 11 . . . . . . . . . . 11 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → 3 ∈ ℤ)
5033, 34, 49exprecd 14095 . . . . . . . . . 10 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → ((1 / 𝑋)↑3) = (1 / (𝑋↑3)))
5150oveq1d 7384 . . . . . . . . 9 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (((1 / 𝑋)↑3) · (𝑋↑3)) = ((1 / (𝑋↑3)) · (𝑋↑3)))
5233, 34, 49expne0d 14093 . . . . . . . . . 10 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (𝑋↑3) ≠ 0)
5346, 52recid2d 11930 . . . . . . . . 9 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → ((1 / (𝑋↑3)) · (𝑋↑3)) = 1)
5451, 53eqtrd 2764 . . . . . . . 8 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (((1 / 𝑋)↑3) · (𝑋↑3)) = 1)
55 2z 12541 . . . . . . . . . . . . . . . . 17 2 ∈ ℤ
5655a1i 11 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → 2 ∈ ℤ)
5733, 34, 56exprecd 14095 . . . . . . . . . . . . . . 15 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → ((1 / 𝑋)↑2) = (1 / (𝑋↑2)))
5857oveq1d 7384 . . . . . . . . . . . . . 14 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (((1 / 𝑋)↑2) · (𝑋↑3)) = ((1 / (𝑋↑2)) · (𝑋↑3)))
5933sqcld 14085 . . . . . . . . . . . . . . 15 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (𝑋↑2) ∈ ℂ)
6033, 34, 56expne0d 14093 . . . . . . . . . . . . . . 15 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (𝑋↑2) ≠ 0)
6146, 59, 60divrec2d 11938 . . . . . . . . . . . . . 14 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → ((𝑋↑3) / (𝑋↑2)) = ((1 / (𝑋↑2)) · (𝑋↑3)))
62 2cnd 12240 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → 2 ∈ ℂ)
63 2p1e3 12299 . . . . . . . . . . . . . . . . . . 19 (2 + 1) = 3
6463a1i 11 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (2 + 1) = 3)
6564eqcomd 2735 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → 3 = (2 + 1))
6662, 42, 65mvrladdd 11567 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (3 − 2) = 1)
6766oveq2d 7385 . . . . . . . . . . . . . . 15 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (𝑋↑(3 − 2)) = (𝑋↑1))
6833, 34, 56, 49expsubd 14098 . . . . . . . . . . . . . . 15 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (𝑋↑(3 − 2)) = ((𝑋↑3) / (𝑋↑2)))
6933exp1d 14082 . . . . . . . . . . . . . . 15 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (𝑋↑1) = 𝑋)
7067, 68, 693eqtr3d 2772 . . . . . . . . . . . . . 14 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → ((𝑋↑3) / (𝑋↑2)) = 𝑋)
7158, 61, 703eqtr2d 2770 . . . . . . . . . . . . 13 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (((1 / 𝑋)↑2) · (𝑋↑3)) = 𝑋)
7271oveq2d 7385 . . . . . . . . . . . 12 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (3 · (((1 / 𝑋)↑2) · (𝑋↑3))) = (3 · 𝑋))
7372negeqd 11391 . . . . . . . . . . 11 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → -(3 · (((1 / 𝑋)↑2) · (𝑋↑3))) = -(3 · 𝑋))
7439, 40, 46mulassd 11173 . . . . . . . . . . . 12 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → ((-3 · ((1 / 𝑋)↑2)) · (𝑋↑3)) = (-3 · (((1 / 𝑋)↑2) · (𝑋↑3))))
759a1i 11 . . . . . . . . . . . . 13 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → 3 ∈ ℂ)
7640, 46mulcld 11170 . . . . . . . . . . . . 13 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (((1 / 𝑋)↑2) · (𝑋↑3)) ∈ ℂ)
7775, 76mulneg1d 11607 . . . . . . . . . . . 12 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (-3 · (((1 / 𝑋)↑2) · (𝑋↑3))) = -(3 · (((1 / 𝑋)↑2) · (𝑋↑3))))
7874, 77eqtrd 2764 . . . . . . . . . . 11 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → ((-3 · ((1 / 𝑋)↑2)) · (𝑋↑3)) = -(3 · (((1 / 𝑋)↑2) · (𝑋↑3))))
7975, 33mulneg1d 11607 . . . . . . . . . . 11 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (-3 · 𝑋) = -(3 · 𝑋))
8073, 78, 793eqtr4d 2774 . . . . . . . . . 10 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → ((-3 · ((1 / 𝑋)↑2)) · (𝑋↑3)) = (-3 · 𝑋))
8146mullidd 11168 . . . . . . . . . 10 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (1 · (𝑋↑3)) = (𝑋↑3))
8280, 81oveq12d 7387 . . . . . . . . 9 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (((-3 · ((1 / 𝑋)↑2)) · (𝑋↑3)) + (1 · (𝑋↑3))) = ((-3 · 𝑋) + (𝑋↑3)))
8341, 46, 42, 82joinlmuladdmuld 11177 . . . . . . . 8 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (((-3 · ((1 / 𝑋)↑2)) + 1) · (𝑋↑3)) = ((-3 · 𝑋) + (𝑋↑3)))
8454, 83oveq12d 7387 . . . . . . 7 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → ((((1 / 𝑋)↑3) · (𝑋↑3)) + (((-3 · ((1 / 𝑋)↑2)) + 1) · (𝑋↑3))) = (1 + ((-3 · 𝑋) + (𝑋↑3))))
8539, 33mulcld 11170 . . . . . . . . . 10 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (-3 · 𝑋) ∈ ℂ)
8685, 46addcld 11169 . . . . . . . . 9 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → ((-3 · 𝑋) + (𝑋↑3)) ∈ ℂ)
8742, 86addcomd 11352 . . . . . . . 8 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (1 + ((-3 · 𝑋) + (𝑋↑3))) = (((-3 · 𝑋) + (𝑋↑3)) + 1))
8885, 46addcomd 11352 . . . . . . . . 9 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → ((-3 · 𝑋) + (𝑋↑3)) = ((𝑋↑3) + (-3 · 𝑋)))
8988oveq1d 7384 . . . . . . . 8 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (((-3 · 𝑋) + (𝑋↑3)) + 1) = (((𝑋↑3) + (-3 · 𝑋)) + 1))
9046, 85, 42addassd 11172 . . . . . . . 8 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (((𝑋↑3) + (-3 · 𝑋)) + 1) = ((𝑋↑3) + ((-3 · 𝑋) + 1)))
9187, 89, 903eqtrd 2768 . . . . . . 7 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (1 + ((-3 · 𝑋) + (𝑋↑3))) = ((𝑋↑3) + ((-3 · 𝑋) + 1)))
9247, 84, 913eqtrd 2768 . . . . . 6 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → ((((1 / 𝑋)↑3) + ((-3 · ((1 / 𝑋)↑2)) + 1)) · (𝑋↑3)) = ((𝑋↑3) + ((-3 · 𝑋) + 1)))
9338, 43addcld 11169 . . . . . . 7 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (((1 / 𝑋)↑3) + ((-3 · ((1 / 𝑋)↑2)) + 1)) ∈ ℂ)
94 simpllr 775 . . . . . . . . . . . . 13 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) → 𝑋 = (𝑝 / 𝑞))
9594adantr 480 . . . . . . . . . . . 12 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → 𝑋 = (𝑝 / 𝑞))
9695oveq2d 7385 . . . . . . . . . . 11 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (1 / 𝑋) = (1 / (𝑝 / 𝑞)))
97 simp-6r 787 . . . . . . . . . . . . 13 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → 𝑝 ∈ ℤ)
9897zcnd 12615 . . . . . . . . . . . 12 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → 𝑝 ∈ ℂ)
99 simp-5r 785 . . . . . . . . . . . . 13 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → 𝑞 ∈ ℕ)
10099nncnd 12178 . . . . . . . . . . . 12 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → 𝑞 ∈ ℂ)
101 simpr 484 . . . . . . . . . . . . . . 15 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) → 𝑋 ≠ 0)
10294, 101eqnetrrd 2993 . . . . . . . . . . . . . 14 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) → (𝑝 / 𝑞) ≠ 0)
10324ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) → 𝑝 ∈ ℂ)
10427ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) → 𝑞 ∈ ℂ)
10529ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) → 𝑞 ≠ 0)
106103, 104, 105divne0bd 11946 . . . . . . . . . . . . . 14 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) → (𝑝 ≠ 0 ↔ (𝑝 / 𝑞) ≠ 0))
107102, 106mpbird 257 . . . . . . . . . . . . 13 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) → 𝑝 ≠ 0)
108107adantr 480 . . . . . . . . . . . 12 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → 𝑝 ≠ 0)
10999nnne0d 12212 . . . . . . . . . . . 12 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → 𝑞 ≠ 0)
11098, 100, 108, 109recdivd 11951 . . . . . . . . . . 11 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (1 / (𝑝 / 𝑞)) = (𝑞 / 𝑝))
111100, 98, 108divrecd 11937 . . . . . . . . . . . 12 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (𝑞 / 𝑝) = (𝑞 · (1 / 𝑝)))
11298div1d 11926 . . . . . . . . . . . . . 14 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (𝑝 / 1) = 𝑝)
113 simpr 484 . . . . . . . . . . . . . . 15 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (abs‘𝑝) = 1)
114113oveq2d 7385 . . . . . . . . . . . . . 14 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (𝑝 / (abs‘𝑝)) = (𝑝 / 1))
11523zred 12614 . . . . . . . . . . . . . . . . 17 (((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) → 𝑝 ∈ ℝ)
116115ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) → 𝑝 ∈ ℝ)
117116, 107receqid 32718 . . . . . . . . . . . . . . 15 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) → ((1 / 𝑝) = 𝑝 ↔ (abs‘𝑝) = 1))
118117biimpar 477 . . . . . . . . . . . . . 14 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (1 / 𝑝) = 𝑝)
119112, 114, 1183eqtr4d 2774 . . . . . . . . . . . . 13 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (𝑝 / (abs‘𝑝)) = (1 / 𝑝))
120119oveq2d 7385 . . . . . . . . . . . 12 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (𝑞 · (𝑝 / (abs‘𝑝))) = (𝑞 · (1 / 𝑝)))
121111, 120eqtr4d 2767 . . . . . . . . . . 11 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (𝑞 / 𝑝) = (𝑞 · (𝑝 / (abs‘𝑝))))
12296, 110, 1213eqtrd 2768 . . . . . . . . . 10 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (1 / 𝑋) = (𝑞 · (𝑝 / (abs‘𝑝))))
12397zred 12614 . . . . . . . . . . . 12 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → 𝑝 ∈ ℝ)
124 sgnval2 32708 . . . . . . . . . . . 12 ((𝑝 ∈ ℝ ∧ 𝑝 ≠ 0) → (sgn‘𝑝) = (𝑝 / (abs‘𝑝)))
125123, 108, 124syl2anc 584 . . . . . . . . . . 11 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (sgn‘𝑝) = (𝑝 / (abs‘𝑝)))
126125oveq2d 7385 . . . . . . . . . 10 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (𝑞 · (sgn‘𝑝)) = (𝑞 · (𝑝 / (abs‘𝑝))))
127122, 126eqtr4d 2767 . . . . . . . . 9 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (1 / 𝑋) = (𝑞 · (sgn‘𝑝)))
12899nnzd 12532 . . . . . . . . . 10 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → 𝑞 ∈ ℤ)
129 neg1z 12545 . . . . . . . . . . . . 13 -1 ∈ ℤ
130129a1i 11 . . . . . . . . . . . 12 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → -1 ∈ ℤ)
131 0zd 12517 . . . . . . . . . . . 12 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → 0 ∈ ℤ)
132 1zzd 12540 . . . . . . . . . . . 12 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → 1 ∈ ℤ)
133130, 131, 132tpssd 32517 . . . . . . . . . . 11 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → {-1, 0, 1} ⊆ ℤ)
134123rexrd 11200 . . . . . . . . . . . 12 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → 𝑝 ∈ ℝ*)
135 sgncl 32806 . . . . . . . . . . . 12 (𝑝 ∈ ℝ* → (sgn‘𝑝) ∈ {-1, 0, 1})
136134, 135syl 17 . . . . . . . . . . 11 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (sgn‘𝑝) ∈ {-1, 0, 1})
137133, 136sseldd 3944 . . . . . . . . . 10 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (sgn‘𝑝) ∈ ℤ)
138128, 137zmulcld 12620 . . . . . . . . 9 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (𝑞 · (sgn‘𝑝)) ∈ ℤ)
139127, 138eqeltrd 2828 . . . . . . . 8 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (1 / 𝑋) ∈ ℤ)
140139cos9thpiminplylem1 33765 . . . . . . 7 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (((1 / 𝑋)↑3) + ((-3 · ((1 / 𝑋)↑2)) + 1)) ≠ 0)
14193, 46, 140, 52mulne0d 11806 . . . . . 6 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → ((((1 / 𝑋)↑3) + ((-3 · ((1 / 𝑋)↑2)) + 1)) · (𝑋↑3)) ≠ 0)
14292, 141eqnetrrd 2993 . . . . 5 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → ((𝑋↑3) + ((-3 · 𝑋) + 1)) ≠ 0)
143 simplr 768 . . . . . . . 8 (((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) → 𝑟 ∈ ℙ)
144 1nprm 16625 . . . . . . . . 9 ¬ 1 ∈ ℙ
145144a1i 11 . . . . . . . 8 (((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) → ¬ 1 ∈ ℙ)
146 nelne2 3023 . . . . . . . 8 ((𝑟 ∈ ℙ ∧ ¬ 1 ∈ ℙ) → 𝑟 ≠ 1)
147143, 145, 146syl2anc 584 . . . . . . 7 (((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) → 𝑟 ≠ 1)
148 prmnn 16620 . . . . . . . . . 10 (𝑟 ∈ ℙ → 𝑟 ∈ ℕ)
149148ad3antlr 731 . . . . . . . . 9 ((((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 𝑟 ∈ ℕ)
150149nnnn0d 12479 . . . . . . . 8 ((((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 𝑟 ∈ ℕ0)
151149nnzd 12532 . . . . . . . . . 10 ((((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 𝑟 ∈ ℤ)
152 simp-5r 785 . . . . . . . . . . 11 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) → 𝑝 ∈ ℤ)
153152ad4antr 732 . . . . . . . . . 10 ((((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 𝑝 ∈ ℤ)
154 simp-8r 791 . . . . . . . . . . 11 ((((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 𝑞 ∈ ℕ)
155154nnzd 12532 . . . . . . . . . 10 ((((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 𝑞 ∈ ℤ)
156 simplr 768 . . . . . . . . . . 11 ((((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 𝑟 ∥ (abs‘𝑝))
157 dvdsabsb 16221 . . . . . . . . . . . 12 ((𝑟 ∈ ℤ ∧ 𝑝 ∈ ℤ) → (𝑟𝑝𝑟 ∥ (abs‘𝑝)))
158157biimpar 477 . . . . . . . . . . 11 (((𝑟 ∈ ℤ ∧ 𝑝 ∈ ℤ) ∧ 𝑟 ∥ (abs‘𝑝)) → 𝑟𝑝)
159151, 153, 156, 158syl21anc 837 . . . . . . . . . 10 ((((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 𝑟𝑝)
160 simpllr 775 . . . . . . . . . . 11 ((((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 𝑟 ∈ ℙ)
1613a1i 11 . . . . . . . . . . 11 ((((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 3 ∈ ℕ)
16248a1i 11 . . . . . . . . . . . . . . 15 ((((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 3 ∈ ℤ)
163154nnnn0d 12479 . . . . . . . . . . . . . . . . 17 ((((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 𝑞 ∈ ℕ0)
164 nn0sqcl 14030 . . . . . . . . . . . . . . . . 17 (𝑞 ∈ ℕ0 → (𝑞↑2) ∈ ℕ0)
165163, 164syl 17 . . . . . . . . . . . . . . . 16 ((((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑞↑2) ∈ ℕ0)
166165nn0zd 12531 . . . . . . . . . . . . . . 15 ((((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑞↑2) ∈ ℤ)
167162, 166zmulcld 12620 . . . . . . . . . . . . . 14 ((((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (3 · (𝑞↑2)) ∈ ℤ)
168 zsqcl 14070 . . . . . . . . . . . . . . 15 (𝑝 ∈ ℤ → (𝑝↑2) ∈ ℤ)
169153, 168syl 17 . . . . . . . . . . . . . 14 ((((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑝↑2) ∈ ℤ)
170167, 169zsubcld 12619 . . . . . . . . . . . . 13 ((((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((3 · (𝑞↑2)) − (𝑝↑2)) ∈ ℤ)
171151, 153, 170, 159dvdsmultr1d 16243 . . . . . . . . . . . 12 ((((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 𝑟 ∥ (𝑝 · ((3 · (𝑞↑2)) − (𝑝↑2))))
172104adantr 480 . . . . . . . . . . . . . . 15 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 𝑞 ∈ ℂ)
17336a1i 11 . . . . . . . . . . . . . . 15 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 3 ∈ ℕ0)
174172, 173expcld 14087 . . . . . . . . . . . . . 14 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑞↑3) ∈ ℂ)
175103adantr 480 . . . . . . . . . . . . . . 15 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 𝑝 ∈ ℂ)
1769a1i 11 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 3 ∈ ℂ)
177172sqcld 14085 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑞↑2) ∈ ℂ)
178176, 177mulcld 11170 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (3 · (𝑞↑2)) ∈ ℂ)
179175sqcld 14085 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑝↑2) ∈ ℂ)
180178, 179subcld 11509 . . . . . . . . . . . . . . 15 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((3 · (𝑞↑2)) − (𝑝↑2)) ∈ ℂ)
181175, 180mulcld 11170 . . . . . . . . . . . . . 14 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑝 · ((3 · (𝑞↑2)) − (𝑝↑2))) ∈ ℂ)
18294adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 𝑋 = (𝑝 / 𝑞))
183182oveq1d 7384 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑋↑3) = ((𝑝 / 𝑞)↑3))
184183oveq1d 7384 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((𝑋↑3) · (𝑞↑3)) = (((𝑝 / 𝑞)↑3) · (𝑞↑3)))
185105adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 𝑞 ≠ 0)
186175, 172, 185, 173expdivd 14101 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((𝑝 / 𝑞)↑3) = ((𝑝↑3) / (𝑞↑3)))
187186oveq1d 7384 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (((𝑝 / 𝑞)↑3) · (𝑞↑3)) = (((𝑝↑3) / (𝑞↑3)) · (𝑞↑3)))
188175, 173expcld 14087 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑝↑3) ∈ ℂ)
18948a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 3 ∈ ℤ)
190172, 185, 189expne0d 14093 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑞↑3) ≠ 0)
191188, 174, 190divcan1d 11935 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (((𝑝↑3) / (𝑞↑3)) · (𝑞↑3)) = (𝑝↑3))
192184, 187, 1913eqtrd 2768 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((𝑋↑3) · (𝑞↑3)) = (𝑝↑3))
19310a1i 11 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → -3 ∈ ℂ)
19432ad3antrrr 730 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 𝑋 ∈ ℂ)
195193, 194mulcld 11170 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (-3 · 𝑋) ∈ ℂ)
196 1cnd 11145 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 1 ∈ ℂ)
197193, 194, 174mulassd 11173 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((-3 · 𝑋) · (𝑞↑3)) = (-3 · (𝑋 · (𝑞↑3))))
198182oveq1d 7384 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑋 · (𝑞↑3)) = ((𝑝 / 𝑞) · (𝑞↑3)))
199175, 172, 174, 185div32d 11957 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((𝑝 / 𝑞) · (𝑞↑3)) = (𝑝 · ((𝑞↑3) / 𝑞)))
200 1zzd 12540 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 1 ∈ ℤ)
201172, 185, 200, 189expsubd 14098 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑞↑(3 − 1)) = ((𝑞↑3) / (𝑞↑1)))
202 3m1e2 12285 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (3 − 1) = 2
203202a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (3 − 1) = 2)
204203oveq2d 7385 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑞↑(3 − 1)) = (𝑞↑2))
205172exp1d 14082 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑞↑1) = 𝑞)
206205oveq2d 7385 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((𝑞↑3) / (𝑞↑1)) = ((𝑞↑3) / 𝑞))
207201, 204, 2063eqtr3rd 2773 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((𝑞↑3) / 𝑞) = (𝑞↑2))
208207oveq2d 7385 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑝 · ((𝑞↑3) / 𝑞)) = (𝑝 · (𝑞↑2)))
209198, 199, 2083eqtrd 2768 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑋 · (𝑞↑3)) = (𝑝 · (𝑞↑2)))
210209oveq2d 7385 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (-3 · (𝑋 · (𝑞↑3))) = (-3 · (𝑝 · (𝑞↑2))))
211197, 210eqtrd 2764 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((-3 · 𝑋) · (𝑞↑3)) = (-3 · (𝑝 · (𝑞↑2))))
212174mullidd 11168 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (1 · (𝑞↑3)) = (𝑞↑3))
213211, 212oveq12d 7387 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (((-3 · 𝑋) · (𝑞↑3)) + (1 · (𝑞↑3))) = ((-3 · (𝑝 · (𝑞↑2))) + (𝑞↑3)))
214195, 174, 196, 213joinlmuladdmuld 11177 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (((-3 · 𝑋) + 1) · (𝑞↑3)) = ((-3 · (𝑝 · (𝑞↑2))) + (𝑞↑3)))
215192, 214oveq12d 7387 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (((𝑋↑3) · (𝑞↑3)) + (((-3 · 𝑋) + 1) · (𝑞↑3))) = ((𝑝↑3) + ((-3 · (𝑝 · (𝑞↑2))) + (𝑞↑3))))
21645ad3antrrr 730 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑋↑3) ∈ ℂ)
217195, 196addcld 11169 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((-3 · 𝑋) + 1) ∈ ℂ)
218216, 217, 174adddird 11175 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (((𝑋↑3) + ((-3 · 𝑋) + 1)) · (𝑞↑3)) = (((𝑋↑3) · (𝑞↑3)) + (((-3 · 𝑋) + 1) · (𝑞↑3))))
219175, 178, 179subdid 11610 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑝 · ((3 · (𝑞↑2)) − (𝑝↑2))) = ((𝑝 · (3 · (𝑞↑2))) − (𝑝 · (𝑝↑2))))
220 2nn0 12435 . . . . . . . . . . . . . . . . . . . . . . 23 2 ∈ ℕ0
221220a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 2 ∈ ℕ0)
222 1nn0 12434 . . . . . . . . . . . . . . . . . . . . . . 23 1 ∈ ℕ0
223222a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 1 ∈ ℕ0)
224175, 221, 223expaddd 14089 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑝↑(1 + 2)) = ((𝑝↑1) · (𝑝↑2)))
225 1p2e3 12300 . . . . . . . . . . . . . . . . . . . . . . 23 (1 + 2) = 3
226225a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (1 + 2) = 3)
227226oveq2d 7385 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑝↑(1 + 2)) = (𝑝↑3))
228175exp1d 14082 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑝↑1) = 𝑝)
229228oveq1d 7384 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((𝑝↑1) · (𝑝↑2)) = (𝑝 · (𝑝↑2)))
230224, 227, 2293eqtr3rd 2773 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑝 · (𝑝↑2)) = (𝑝↑3))
231230oveq2d 7385 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((𝑝 · (3 · (𝑞↑2))) − (𝑝 · (𝑝↑2))) = ((𝑝 · (3 · (𝑞↑2))) − (𝑝↑3)))
232219, 231eqtrd 2764 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑝 · ((3 · (𝑞↑2)) − (𝑝↑2))) = ((𝑝 · (3 · (𝑞↑2))) − (𝑝↑3)))
233232oveq2d 7385 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((𝑞↑3) − (𝑝 · ((3 · (𝑞↑2)) − (𝑝↑2)))) = ((𝑞↑3) − ((𝑝 · (3 · (𝑞↑2))) − (𝑝↑3))))
234175, 178mulcld 11170 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑝 · (3 · (𝑞↑2))) ∈ ℂ)
235174, 234, 188subsub2d 11538 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((𝑞↑3) − ((𝑝 · (3 · (𝑞↑2))) − (𝑝↑3))) = ((𝑞↑3) + ((𝑝↑3) − (𝑝 · (3 · (𝑞↑2))))))
236174, 188, 234addsub12d 11532 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((𝑞↑3) + ((𝑝↑3) − (𝑝 · (3 · (𝑞↑2))))) = ((𝑝↑3) + ((𝑞↑3) − (𝑝 · (3 · (𝑞↑2))))))
237174, 234subcld 11509 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((𝑞↑3) − (𝑝 · (3 · (𝑞↑2)))) ∈ ℂ)
238188, 237addcomd 11352 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((𝑝↑3) + ((𝑞↑3) − (𝑝 · (3 · (𝑞↑2))))) = (((𝑞↑3) − (𝑝 · (3 · (𝑞↑2)))) + (𝑝↑3)))
239234negcld 11496 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → -(𝑝 · (3 · (𝑞↑2))) ∈ ℂ)
240174, 239addcomd 11352 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((𝑞↑3) + -(𝑝 · (3 · (𝑞↑2)))) = (-(𝑝 · (3 · (𝑞↑2))) + (𝑞↑3)))
241174, 234negsubd 11515 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((𝑞↑3) + -(𝑝 · (3 · (𝑞↑2)))) = ((𝑞↑3) − (𝑝 · (3 · (𝑞↑2)))))
242175, 176, 177mul12d 11359 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑝 · (3 · (𝑞↑2))) = (3 · (𝑝 · (𝑞↑2))))
243242negeqd 11391 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → -(𝑝 · (3 · (𝑞↑2))) = -(3 · (𝑝 · (𝑞↑2))))
244175, 177mulcld 11170 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑝 · (𝑞↑2)) ∈ ℂ)
245176, 244mulneg1d 11607 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (-3 · (𝑝 · (𝑞↑2))) = -(3 · (𝑝 · (𝑞↑2))))
246243, 245eqtr4d 2767 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → -(𝑝 · (3 · (𝑞↑2))) = (-3 · (𝑝 · (𝑞↑2))))
247246oveq1d 7384 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (-(𝑝 · (3 · (𝑞↑2))) + (𝑞↑3)) = ((-3 · (𝑝 · (𝑞↑2))) + (𝑞↑3)))
248240, 241, 2473eqtr3d 2772 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((𝑞↑3) − (𝑝 · (3 · (𝑞↑2)))) = ((-3 · (𝑝 · (𝑞↑2))) + (𝑞↑3)))
249248oveq1d 7384 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (((𝑞↑3) − (𝑝 · (3 · (𝑞↑2)))) + (𝑝↑3)) = (((-3 · (𝑝 · (𝑞↑2))) + (𝑞↑3)) + (𝑝↑3)))
250238, 249eqtrd 2764 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((𝑝↑3) + ((𝑞↑3) − (𝑝 · (3 · (𝑞↑2))))) = (((-3 · (𝑝 · (𝑞↑2))) + (𝑞↑3)) + (𝑝↑3)))
251235, 236, 2503eqtrd 2768 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((𝑞↑3) − ((𝑝 · (3 · (𝑞↑2))) − (𝑝↑3))) = (((-3 · (𝑝 · (𝑞↑2))) + (𝑞↑3)) + (𝑝↑3)))
252193, 244mulcld 11170 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (-3 · (𝑝 · (𝑞↑2))) ∈ ℂ)
253252, 174addcld 11169 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((-3 · (𝑝 · (𝑞↑2))) + (𝑞↑3)) ∈ ℂ)
254253, 188addcomd 11352 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (((-3 · (𝑝 · (𝑞↑2))) + (𝑞↑3)) + (𝑝↑3)) = ((𝑝↑3) + ((-3 · (𝑝 · (𝑞↑2))) + (𝑞↑3))))
255233, 251, 2543eqtrd 2768 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((𝑞↑3) − (𝑝 · ((3 · (𝑞↑2)) − (𝑝↑2)))) = ((𝑝↑3) + ((-3 · (𝑝 · (𝑞↑2))) + (𝑞↑3))))
256215, 218, 2553eqtr4rd 2775 . . . . . . . . . . . . . . 15 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((𝑞↑3) − (𝑝 · ((3 · (𝑞↑2)) − (𝑝↑2)))) = (((𝑋↑3) + ((-3 · 𝑋) + 1)) · (𝑞↑3)))
257 simpr 484 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0)
258257oveq1d 7384 . . . . . . . . . . . . . . 15 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (((𝑋↑3) + ((-3 · 𝑋) + 1)) · (𝑞↑3)) = (0 · (𝑞↑3)))
259174mul02d 11348 . . . . . . . . . . . . . . 15 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (0 · (𝑞↑3)) = 0)
260256, 258, 2593eqtrd 2768 . . . . . . . . . . . . . 14 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((𝑞↑3) − (𝑝 · ((3 · (𝑞↑2)) − (𝑝↑2)))) = 0)
261174, 181, 260subeq0d 11517 . . . . . . . . . . . . 13 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑞↑3) = (𝑝 · ((3 · (𝑞↑2)) − (𝑝↑2))))
262261ad5ant15 758 . . . . . . . . . . . 12 ((((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑞↑3) = (𝑝 · ((3 · (𝑞↑2)) − (𝑝↑2))))
263171, 262breqtrrd 5130 . . . . . . . . . . 11 ((((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 𝑟 ∥ (𝑞↑3))
264 prmdvdsexp 16661 . . . . . . . . . . . 12 ((𝑟 ∈ ℙ ∧ 𝑞 ∈ ℤ ∧ 3 ∈ ℕ) → (𝑟 ∥ (𝑞↑3) ↔ 𝑟𝑞))
265264biimpa 476 . . . . . . . . . . 11 (((𝑟 ∈ ℙ ∧ 𝑞 ∈ ℤ ∧ 3 ∈ ℕ) ∧ 𝑟 ∥ (𝑞↑3)) → 𝑟𝑞)
266160, 155, 161, 263, 265syl31anc 1375 . . . . . . . . . 10 ((((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 𝑟𝑞)
267 dvdsgcd 16490 . . . . . . . . . . 11 ((𝑟 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) → ((𝑟𝑝𝑟𝑞) → 𝑟 ∥ (𝑝 gcd 𝑞)))
268267imp 406 . . . . . . . . . 10 (((𝑟 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ (𝑟𝑝𝑟𝑞)) → 𝑟 ∥ (𝑝 gcd 𝑞))
269151, 153, 155, 159, 266, 268syl32anc 1380 . . . . . . . . 9 ((((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 𝑟 ∥ (𝑝 gcd 𝑞))
270 simp-6r 787 . . . . . . . . 9 ((((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑝 gcd 𝑞) = 1)
271269, 270breqtrd 5128 . . . . . . . 8 ((((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 𝑟 ∥ 1)
272 dvds1 16265 . . . . . . . . 9 (𝑟 ∈ ℕ0 → (𝑟 ∥ 1 ↔ 𝑟 = 1))
273272biimpa 476 . . . . . . . 8 ((𝑟 ∈ ℕ0𝑟 ∥ 1) → 𝑟 = 1)
274150, 271, 273syl2anc 584 . . . . . . 7 ((((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 𝑟 = 1)
275147, 274mteqand 3016 . . . . . 6 (((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) → ((𝑋↑3) + ((-3 · 𝑋) + 1)) ≠ 0)
276 nnabscl 15268 . . . . . . . 8 ((𝑝 ∈ ℤ ∧ 𝑝 ≠ 0) → (abs‘𝑝) ∈ ℕ)
277152, 107, 276syl2anc 584 . . . . . . 7 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) → (abs‘𝑝) ∈ ℕ)
278 eluz2b3 12857 . . . . . . . 8 ((abs‘𝑝) ∈ (ℤ‘2) ↔ ((abs‘𝑝) ∈ ℕ ∧ (abs‘𝑝) ≠ 1))
279 exprmfct 16650 . . . . . . . 8 ((abs‘𝑝) ∈ (ℤ‘2) → ∃𝑟 ∈ ℙ 𝑟 ∥ (abs‘𝑝))
280278, 279sylbir 235 . . . . . . 7 (((abs‘𝑝) ∈ ℕ ∧ (abs‘𝑝) ≠ 1) → ∃𝑟 ∈ ℙ 𝑟 ∥ (abs‘𝑝))
281277, 280sylan 580 . . . . . 6 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) → ∃𝑟 ∈ ℙ 𝑟 ∥ (abs‘𝑝))
282275, 281r19.29a 3141 . . . . 5 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) → ((𝑋↑3) + ((-3 · 𝑋) + 1)) ≠ 0)
283142, 282pm2.61dane 3012 . . . 4 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) → ((𝑋↑3) + ((-3 · 𝑋) + 1)) ≠ 0)
28421, 283pm2.61dane 3012 . . 3 (((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) → ((𝑋↑3) + ((-3 · 𝑋) + 1)) ≠ 0)
285284anasss 466 . 2 ((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ (𝑋 = (𝑝 / 𝑞) ∧ (𝑝 gcd 𝑞) = 1)) → ((𝑋↑3) + ((-3 · 𝑋) + 1)) ≠ 0)
286 cos9thpiminplylem2.1 . . 3 (𝜑𝑋 ∈ ℚ)
287 elq2 32786 . . 3 (𝑋 ∈ ℚ → ∃𝑝 ∈ ℤ ∃𝑞 ∈ ℕ (𝑋 = (𝑝 / 𝑞) ∧ (𝑝 gcd 𝑞) = 1))
288286, 287syl 17 . 2 (𝜑 → ∃𝑝 ∈ ℤ ∃𝑞 ∈ ℕ (𝑋 = (𝑝 / 𝑞) ∧ (𝑝 gcd 𝑞) = 1))
289285, 288r19.29vva 3195 1 (𝜑 → ((𝑋↑3) + ((-3 · 𝑋) + 1)) ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  {ctp 4589   class class class wbr 5102  cfv 6499  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049  *cxr 11183  cmin 11381  -cneg 11382   / cdiv 11811  cn 12162  2c2 12217  3c3 12218  0cn0 12418  cz 12505  cuz 12769  cq 12883  cexp 14002  sgncsgn 15028  abscabs 15176  cdvds 16198   gcd cgcd 16440  cprime 16617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-sgn 15029  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-dvds 16199  df-gcd 16441  df-prm 16618
This theorem is referenced by:  cos9thpiminply  33771
  Copyright terms: Public domain W3C validator