Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cos9thpiminplylem2 Structured version   Visualization version   GIF version

Theorem cos9thpiminplylem2 33756
Description: The polynomial ((𝑋↑3) + ((-3 · 𝑋) + 1)) has no rational roots. (Contributed by Thierry Arnoux, 9-Nov-2025.)
Hypothesis
Ref Expression
cos9thpiminplylem2.1 (𝜑𝑋 ∈ ℚ)
Assertion
Ref Expression
cos9thpiminplylem2 (𝜑 → ((𝑋↑3) + ((-3 · 𝑋) + 1)) ≠ 0)

Proof of Theorem cos9thpiminplylem2
Dummy variables 𝑝 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . . . . 9 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 = 0) → 𝑋 = 0)
21oveq1d 7364 . . . . . . . 8 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 = 0) → (𝑋↑3) = (0↑3))
3 3nn 12207 . . . . . . . . . 10 3 ∈ ℕ
43a1i 11 . . . . . . . . 9 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 = 0) → 3 ∈ ℕ)
540expd 14046 . . . . . . . 8 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 = 0) → (0↑3) = 0)
62, 5eqtrd 2764 . . . . . . 7 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 = 0) → (𝑋↑3) = 0)
76oveq1d 7364 . . . . . 6 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 = 0) → ((𝑋↑3) + ((-3 · 𝑋) + 1)) = (0 + ((-3 · 𝑋) + 1)))
81oveq2d 7365 . . . . . . . 8 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 = 0) → (-3 · 𝑋) = (-3 · 0))
9 3cn 12209 . . . . . . . . . . 11 3 ∈ ℂ
109negcli 11432 . . . . . . . . . 10 -3 ∈ ℂ
1110a1i 11 . . . . . . . . 9 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 = 0) → -3 ∈ ℂ)
1211mul01d 11315 . . . . . . . 8 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 = 0) → (-3 · 0) = 0)
138, 12eqtr2d 2765 . . . . . . 7 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 = 0) → 0 = (-3 · 𝑋))
1413oveq1d 7364 . . . . . . . 8 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 = 0) → (0 + 1) = ((-3 · 𝑋) + 1))
15 0p1e1 12245 . . . . . . . 8 (0 + 1) = 1
1614, 15eqtr3di 2779 . . . . . . 7 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 = 0) → ((-3 · 𝑋) + 1) = 1)
1713, 16oveq12d 7367 . . . . . 6 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 = 0) → (0 + ((-3 · 𝑋) + 1)) = ((-3 · 𝑋) + 1))
187, 17, 163eqtrd 2768 . . . . 5 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 = 0) → ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 1)
19 ax-1ne0 11078 . . . . . 6 1 ≠ 0
2019a1i 11 . . . . 5 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 = 0) → 1 ≠ 0)
2118, 20eqnetrd 2992 . . . 4 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 = 0) → ((𝑋↑3) + ((-3 · 𝑋) + 1)) ≠ 0)
22 simpr 484 . . . . . . . . . . . 12 ((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) → 𝑋 = (𝑝 / 𝑞))
23 simplr 768 . . . . . . . . . . . . . . 15 (((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) → 𝑝 ∈ ℤ)
2423zcnd 12581 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) → 𝑝 ∈ ℂ)
2524adantr 480 . . . . . . . . . . . . 13 ((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) → 𝑝 ∈ ℂ)
26 simpr 484 . . . . . . . . . . . . . . 15 (((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) → 𝑞 ∈ ℕ)
2726nncnd 12144 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) → 𝑞 ∈ ℂ)
2827adantr 480 . . . . . . . . . . . . 13 ((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) → 𝑞 ∈ ℂ)
2926nnne0d 12178 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) → 𝑞 ≠ 0)
3029adantr 480 . . . . . . . . . . . . 13 ((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) → 𝑞 ≠ 0)
3125, 28, 30divcld 11900 . . . . . . . . . . . 12 ((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) → (𝑝 / 𝑞) ∈ ℂ)
3222, 31eqeltrd 2828 . . . . . . . . . . 11 ((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) → 𝑋 ∈ ℂ)
3332ad3antrrr 730 . . . . . . . . . 10 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → 𝑋 ∈ ℂ)
34 simplr 768 . . . . . . . . . 10 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → 𝑋 ≠ 0)
3533, 34reccld 11893 . . . . . . . . 9 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (1 / 𝑋) ∈ ℂ)
36 3nn0 12402 . . . . . . . . . 10 3 ∈ ℕ0
3736a1i 11 . . . . . . . . 9 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → 3 ∈ ℕ0)
3835, 37expcld 14053 . . . . . . . 8 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → ((1 / 𝑋)↑3) ∈ ℂ)
3910a1i 11 . . . . . . . . . 10 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → -3 ∈ ℂ)
4035sqcld 14051 . . . . . . . . . 10 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → ((1 / 𝑋)↑2) ∈ ℂ)
4139, 40mulcld 11135 . . . . . . . . 9 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (-3 · ((1 / 𝑋)↑2)) ∈ ℂ)
42 1cnd 11110 . . . . . . . . 9 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → 1 ∈ ℂ)
4341, 42addcld 11134 . . . . . . . 8 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → ((-3 · ((1 / 𝑋)↑2)) + 1) ∈ ℂ)
4436a1i 11 . . . . . . . . . 10 ((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) → 3 ∈ ℕ0)
4532, 44expcld 14053 . . . . . . . . 9 ((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) → (𝑋↑3) ∈ ℂ)
4645ad3antrrr 730 . . . . . . . 8 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (𝑋↑3) ∈ ℂ)
4738, 43, 46adddird 11140 . . . . . . 7 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → ((((1 / 𝑋)↑3) + ((-3 · ((1 / 𝑋)↑2)) + 1)) · (𝑋↑3)) = ((((1 / 𝑋)↑3) · (𝑋↑3)) + (((-3 · ((1 / 𝑋)↑2)) + 1) · (𝑋↑3))))
48 3z 12508 . . . . . . . . . . . 12 3 ∈ ℤ
4948a1i 11 . . . . . . . . . . 11 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → 3 ∈ ℤ)
5033, 34, 49exprecd 14061 . . . . . . . . . 10 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → ((1 / 𝑋)↑3) = (1 / (𝑋↑3)))
5150oveq1d 7364 . . . . . . . . 9 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (((1 / 𝑋)↑3) · (𝑋↑3)) = ((1 / (𝑋↑3)) · (𝑋↑3)))
5233, 34, 49expne0d 14059 . . . . . . . . . 10 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (𝑋↑3) ≠ 0)
5346, 52recid2d 11896 . . . . . . . . 9 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → ((1 / (𝑋↑3)) · (𝑋↑3)) = 1)
5451, 53eqtrd 2764 . . . . . . . 8 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (((1 / 𝑋)↑3) · (𝑋↑3)) = 1)
55 2z 12507 . . . . . . . . . . . . . . . . 17 2 ∈ ℤ
5655a1i 11 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → 2 ∈ ℤ)
5733, 34, 56exprecd 14061 . . . . . . . . . . . . . . 15 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → ((1 / 𝑋)↑2) = (1 / (𝑋↑2)))
5857oveq1d 7364 . . . . . . . . . . . . . 14 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (((1 / 𝑋)↑2) · (𝑋↑3)) = ((1 / (𝑋↑2)) · (𝑋↑3)))
5933sqcld 14051 . . . . . . . . . . . . . . 15 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (𝑋↑2) ∈ ℂ)
6033, 34, 56expne0d 14059 . . . . . . . . . . . . . . 15 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (𝑋↑2) ≠ 0)
6146, 59, 60divrec2d 11904 . . . . . . . . . . . . . 14 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → ((𝑋↑3) / (𝑋↑2)) = ((1 / (𝑋↑2)) · (𝑋↑3)))
62 2cnd 12206 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → 2 ∈ ℂ)
63 2p1e3 12265 . . . . . . . . . . . . . . . . . . 19 (2 + 1) = 3
6463a1i 11 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (2 + 1) = 3)
6564eqcomd 2735 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → 3 = (2 + 1))
6662, 42, 65mvrladdd 11533 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (3 − 2) = 1)
6766oveq2d 7365 . . . . . . . . . . . . . . 15 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (𝑋↑(3 − 2)) = (𝑋↑1))
6833, 34, 56, 49expsubd 14064 . . . . . . . . . . . . . . 15 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (𝑋↑(3 − 2)) = ((𝑋↑3) / (𝑋↑2)))
6933exp1d 14048 . . . . . . . . . . . . . . 15 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (𝑋↑1) = 𝑋)
7067, 68, 693eqtr3d 2772 . . . . . . . . . . . . . 14 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → ((𝑋↑3) / (𝑋↑2)) = 𝑋)
7158, 61, 703eqtr2d 2770 . . . . . . . . . . . . 13 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (((1 / 𝑋)↑2) · (𝑋↑3)) = 𝑋)
7271oveq2d 7365 . . . . . . . . . . . 12 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (3 · (((1 / 𝑋)↑2) · (𝑋↑3))) = (3 · 𝑋))
7372negeqd 11357 . . . . . . . . . . 11 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → -(3 · (((1 / 𝑋)↑2) · (𝑋↑3))) = -(3 · 𝑋))
7439, 40, 46mulassd 11138 . . . . . . . . . . . 12 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → ((-3 · ((1 / 𝑋)↑2)) · (𝑋↑3)) = (-3 · (((1 / 𝑋)↑2) · (𝑋↑3))))
759a1i 11 . . . . . . . . . . . . 13 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → 3 ∈ ℂ)
7640, 46mulcld 11135 . . . . . . . . . . . . 13 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (((1 / 𝑋)↑2) · (𝑋↑3)) ∈ ℂ)
7775, 76mulneg1d 11573 . . . . . . . . . . . 12 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (-3 · (((1 / 𝑋)↑2) · (𝑋↑3))) = -(3 · (((1 / 𝑋)↑2) · (𝑋↑3))))
7874, 77eqtrd 2764 . . . . . . . . . . 11 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → ((-3 · ((1 / 𝑋)↑2)) · (𝑋↑3)) = -(3 · (((1 / 𝑋)↑2) · (𝑋↑3))))
7975, 33mulneg1d 11573 . . . . . . . . . . 11 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (-3 · 𝑋) = -(3 · 𝑋))
8073, 78, 793eqtr4d 2774 . . . . . . . . . 10 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → ((-3 · ((1 / 𝑋)↑2)) · (𝑋↑3)) = (-3 · 𝑋))
8146mullidd 11133 . . . . . . . . . 10 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (1 · (𝑋↑3)) = (𝑋↑3))
8280, 81oveq12d 7367 . . . . . . . . 9 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (((-3 · ((1 / 𝑋)↑2)) · (𝑋↑3)) + (1 · (𝑋↑3))) = ((-3 · 𝑋) + (𝑋↑3)))
8341, 46, 42, 82joinlmuladdmuld 11142 . . . . . . . 8 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (((-3 · ((1 / 𝑋)↑2)) + 1) · (𝑋↑3)) = ((-3 · 𝑋) + (𝑋↑3)))
8454, 83oveq12d 7367 . . . . . . 7 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → ((((1 / 𝑋)↑3) · (𝑋↑3)) + (((-3 · ((1 / 𝑋)↑2)) + 1) · (𝑋↑3))) = (1 + ((-3 · 𝑋) + (𝑋↑3))))
8539, 33mulcld 11135 . . . . . . . . . 10 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (-3 · 𝑋) ∈ ℂ)
8685, 46addcld 11134 . . . . . . . . 9 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → ((-3 · 𝑋) + (𝑋↑3)) ∈ ℂ)
8742, 86addcomd 11318 . . . . . . . 8 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (1 + ((-3 · 𝑋) + (𝑋↑3))) = (((-3 · 𝑋) + (𝑋↑3)) + 1))
8885, 46addcomd 11318 . . . . . . . . 9 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → ((-3 · 𝑋) + (𝑋↑3)) = ((𝑋↑3) + (-3 · 𝑋)))
8988oveq1d 7364 . . . . . . . 8 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (((-3 · 𝑋) + (𝑋↑3)) + 1) = (((𝑋↑3) + (-3 · 𝑋)) + 1))
9046, 85, 42addassd 11137 . . . . . . . 8 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (((𝑋↑3) + (-3 · 𝑋)) + 1) = ((𝑋↑3) + ((-3 · 𝑋) + 1)))
9187, 89, 903eqtrd 2768 . . . . . . 7 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (1 + ((-3 · 𝑋) + (𝑋↑3))) = ((𝑋↑3) + ((-3 · 𝑋) + 1)))
9247, 84, 913eqtrd 2768 . . . . . 6 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → ((((1 / 𝑋)↑3) + ((-3 · ((1 / 𝑋)↑2)) + 1)) · (𝑋↑3)) = ((𝑋↑3) + ((-3 · 𝑋) + 1)))
9338, 43addcld 11134 . . . . . . 7 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (((1 / 𝑋)↑3) + ((-3 · ((1 / 𝑋)↑2)) + 1)) ∈ ℂ)
94 simpllr 775 . . . . . . . . . . . . 13 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) → 𝑋 = (𝑝 / 𝑞))
9594adantr 480 . . . . . . . . . . . 12 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → 𝑋 = (𝑝 / 𝑞))
9695oveq2d 7365 . . . . . . . . . . 11 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (1 / 𝑋) = (1 / (𝑝 / 𝑞)))
97 simp-6r 787 . . . . . . . . . . . . 13 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → 𝑝 ∈ ℤ)
9897zcnd 12581 . . . . . . . . . . . 12 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → 𝑝 ∈ ℂ)
99 simp-5r 785 . . . . . . . . . . . . 13 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → 𝑞 ∈ ℕ)
10099nncnd 12144 . . . . . . . . . . . 12 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → 𝑞 ∈ ℂ)
101 simpr 484 . . . . . . . . . . . . . . 15 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) → 𝑋 ≠ 0)
10294, 101eqnetrrd 2993 . . . . . . . . . . . . . 14 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) → (𝑝 / 𝑞) ≠ 0)
10324ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) → 𝑝 ∈ ℂ)
10427ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) → 𝑞 ∈ ℂ)
10529ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) → 𝑞 ≠ 0)
106103, 104, 105divne0bd 11912 . . . . . . . . . . . . . 14 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) → (𝑝 ≠ 0 ↔ (𝑝 / 𝑞) ≠ 0))
107102, 106mpbird 257 . . . . . . . . . . . . 13 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) → 𝑝 ≠ 0)
108107adantr 480 . . . . . . . . . . . 12 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → 𝑝 ≠ 0)
10999nnne0d 12178 . . . . . . . . . . . 12 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → 𝑞 ≠ 0)
11098, 100, 108, 109recdivd 11917 . . . . . . . . . . 11 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (1 / (𝑝 / 𝑞)) = (𝑞 / 𝑝))
111100, 98, 108divrecd 11903 . . . . . . . . . . . 12 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (𝑞 / 𝑝) = (𝑞 · (1 / 𝑝)))
11298div1d 11892 . . . . . . . . . . . . . 14 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (𝑝 / 1) = 𝑝)
113 simpr 484 . . . . . . . . . . . . . . 15 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (abs‘𝑝) = 1)
114113oveq2d 7365 . . . . . . . . . . . . . 14 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (𝑝 / (abs‘𝑝)) = (𝑝 / 1))
11523zred 12580 . . . . . . . . . . . . . . . . 17 (((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) → 𝑝 ∈ ℝ)
116115ad3antrrr 730 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) → 𝑝 ∈ ℝ)
117116, 107receqid 32689 . . . . . . . . . . . . . . 15 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) → ((1 / 𝑝) = 𝑝 ↔ (abs‘𝑝) = 1))
118117biimpar 477 . . . . . . . . . . . . . 14 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (1 / 𝑝) = 𝑝)
119112, 114, 1183eqtr4d 2774 . . . . . . . . . . . . 13 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (𝑝 / (abs‘𝑝)) = (1 / 𝑝))
120119oveq2d 7365 . . . . . . . . . . . 12 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (𝑞 · (𝑝 / (abs‘𝑝))) = (𝑞 · (1 / 𝑝)))
121111, 120eqtr4d 2767 . . . . . . . . . . 11 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (𝑞 / 𝑝) = (𝑞 · (𝑝 / (abs‘𝑝))))
12296, 110, 1213eqtrd 2768 . . . . . . . . . 10 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (1 / 𝑋) = (𝑞 · (𝑝 / (abs‘𝑝))))
12397zred 12580 . . . . . . . . . . . 12 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → 𝑝 ∈ ℝ)
124 sgnval2 32679 . . . . . . . . . . . 12 ((𝑝 ∈ ℝ ∧ 𝑝 ≠ 0) → (sgn‘𝑝) = (𝑝 / (abs‘𝑝)))
125123, 108, 124syl2anc 584 . . . . . . . . . . 11 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (sgn‘𝑝) = (𝑝 / (abs‘𝑝)))
126125oveq2d 7365 . . . . . . . . . 10 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (𝑞 · (sgn‘𝑝)) = (𝑞 · (𝑝 / (abs‘𝑝))))
127122, 126eqtr4d 2767 . . . . . . . . 9 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (1 / 𝑋) = (𝑞 · (sgn‘𝑝)))
12899nnzd 12498 . . . . . . . . . 10 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → 𝑞 ∈ ℤ)
129 neg1z 12511 . . . . . . . . . . . . 13 -1 ∈ ℤ
130129a1i 11 . . . . . . . . . . . 12 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → -1 ∈ ℤ)
131 0zd 12483 . . . . . . . . . . . 12 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → 0 ∈ ℤ)
132 1zzd 12506 . . . . . . . . . . . 12 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → 1 ∈ ℤ)
133130, 131, 132tpssd 32482 . . . . . . . . . . 11 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → {-1, 0, 1} ⊆ ℤ)
134123rexrd 11165 . . . . . . . . . . . 12 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → 𝑝 ∈ ℝ*)
135 sgncl 32777 . . . . . . . . . . . 12 (𝑝 ∈ ℝ* → (sgn‘𝑝) ∈ {-1, 0, 1})
136134, 135syl 17 . . . . . . . . . . 11 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (sgn‘𝑝) ∈ {-1, 0, 1})
137133, 136sseldd 3936 . . . . . . . . . 10 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (sgn‘𝑝) ∈ ℤ)
138128, 137zmulcld 12586 . . . . . . . . 9 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (𝑞 · (sgn‘𝑝)) ∈ ℤ)
139127, 138eqeltrd 2828 . . . . . . . 8 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (1 / 𝑋) ∈ ℤ)
140139cos9thpiminplylem1 33755 . . . . . . 7 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → (((1 / 𝑋)↑3) + ((-3 · ((1 / 𝑋)↑2)) + 1)) ≠ 0)
14193, 46, 140, 52mulne0d 11772 . . . . . 6 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → ((((1 / 𝑋)↑3) + ((-3 · ((1 / 𝑋)↑2)) + 1)) · (𝑋↑3)) ≠ 0)
14292, 141eqnetrrd 2993 . . . . 5 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) = 1) → ((𝑋↑3) + ((-3 · 𝑋) + 1)) ≠ 0)
143 simplr 768 . . . . . . . 8 (((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) → 𝑟 ∈ ℙ)
144 1nprm 16590 . . . . . . . . 9 ¬ 1 ∈ ℙ
145144a1i 11 . . . . . . . 8 (((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) → ¬ 1 ∈ ℙ)
146 nelne2 3023 . . . . . . . 8 ((𝑟 ∈ ℙ ∧ ¬ 1 ∈ ℙ) → 𝑟 ≠ 1)
147143, 145, 146syl2anc 584 . . . . . . 7 (((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) → 𝑟 ≠ 1)
148 prmnn 16585 . . . . . . . . . 10 (𝑟 ∈ ℙ → 𝑟 ∈ ℕ)
149148ad3antlr 731 . . . . . . . . 9 ((((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 𝑟 ∈ ℕ)
150149nnnn0d 12445 . . . . . . . 8 ((((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 𝑟 ∈ ℕ0)
151149nnzd 12498 . . . . . . . . . 10 ((((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 𝑟 ∈ ℤ)
152 simp-5r 785 . . . . . . . . . . 11 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) → 𝑝 ∈ ℤ)
153152ad4antr 732 . . . . . . . . . 10 ((((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 𝑝 ∈ ℤ)
154 simp-8r 791 . . . . . . . . . . 11 ((((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 𝑞 ∈ ℕ)
155154nnzd 12498 . . . . . . . . . 10 ((((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 𝑞 ∈ ℤ)
156 simplr 768 . . . . . . . . . . 11 ((((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 𝑟 ∥ (abs‘𝑝))
157 dvdsabsb 16186 . . . . . . . . . . . 12 ((𝑟 ∈ ℤ ∧ 𝑝 ∈ ℤ) → (𝑟𝑝𝑟 ∥ (abs‘𝑝)))
158157biimpar 477 . . . . . . . . . . 11 (((𝑟 ∈ ℤ ∧ 𝑝 ∈ ℤ) ∧ 𝑟 ∥ (abs‘𝑝)) → 𝑟𝑝)
159151, 153, 156, 158syl21anc 837 . . . . . . . . . 10 ((((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 𝑟𝑝)
160 simpllr 775 . . . . . . . . . . 11 ((((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 𝑟 ∈ ℙ)
1613a1i 11 . . . . . . . . . . 11 ((((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 3 ∈ ℕ)
16248a1i 11 . . . . . . . . . . . . . . 15 ((((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 3 ∈ ℤ)
163154nnnn0d 12445 . . . . . . . . . . . . . . . . 17 ((((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 𝑞 ∈ ℕ0)
164 nn0sqcl 13996 . . . . . . . . . . . . . . . . 17 (𝑞 ∈ ℕ0 → (𝑞↑2) ∈ ℕ0)
165163, 164syl 17 . . . . . . . . . . . . . . . 16 ((((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑞↑2) ∈ ℕ0)
166165nn0zd 12497 . . . . . . . . . . . . . . 15 ((((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑞↑2) ∈ ℤ)
167162, 166zmulcld 12586 . . . . . . . . . . . . . 14 ((((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (3 · (𝑞↑2)) ∈ ℤ)
168 zsqcl 14036 . . . . . . . . . . . . . . 15 (𝑝 ∈ ℤ → (𝑝↑2) ∈ ℤ)
169153, 168syl 17 . . . . . . . . . . . . . 14 ((((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑝↑2) ∈ ℤ)
170167, 169zsubcld 12585 . . . . . . . . . . . . 13 ((((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((3 · (𝑞↑2)) − (𝑝↑2)) ∈ ℤ)
171151, 153, 170, 159dvdsmultr1d 16208 . . . . . . . . . . . 12 ((((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 𝑟 ∥ (𝑝 · ((3 · (𝑞↑2)) − (𝑝↑2))))
172104adantr 480 . . . . . . . . . . . . . . 15 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 𝑞 ∈ ℂ)
17336a1i 11 . . . . . . . . . . . . . . 15 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 3 ∈ ℕ0)
174172, 173expcld 14053 . . . . . . . . . . . . . 14 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑞↑3) ∈ ℂ)
175103adantr 480 . . . . . . . . . . . . . . 15 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 𝑝 ∈ ℂ)
1769a1i 11 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 3 ∈ ℂ)
177172sqcld 14051 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑞↑2) ∈ ℂ)
178176, 177mulcld 11135 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (3 · (𝑞↑2)) ∈ ℂ)
179175sqcld 14051 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑝↑2) ∈ ℂ)
180178, 179subcld 11475 . . . . . . . . . . . . . . 15 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((3 · (𝑞↑2)) − (𝑝↑2)) ∈ ℂ)
181175, 180mulcld 11135 . . . . . . . . . . . . . 14 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑝 · ((3 · (𝑞↑2)) − (𝑝↑2))) ∈ ℂ)
18294adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 𝑋 = (𝑝 / 𝑞))
183182oveq1d 7364 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑋↑3) = ((𝑝 / 𝑞)↑3))
184183oveq1d 7364 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((𝑋↑3) · (𝑞↑3)) = (((𝑝 / 𝑞)↑3) · (𝑞↑3)))
185105adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 𝑞 ≠ 0)
186175, 172, 185, 173expdivd 14067 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((𝑝 / 𝑞)↑3) = ((𝑝↑3) / (𝑞↑3)))
187186oveq1d 7364 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (((𝑝 / 𝑞)↑3) · (𝑞↑3)) = (((𝑝↑3) / (𝑞↑3)) · (𝑞↑3)))
188175, 173expcld 14053 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑝↑3) ∈ ℂ)
18948a1i 11 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 3 ∈ ℤ)
190172, 185, 189expne0d 14059 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑞↑3) ≠ 0)
191188, 174, 190divcan1d 11901 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (((𝑝↑3) / (𝑞↑3)) · (𝑞↑3)) = (𝑝↑3))
192184, 187, 1913eqtrd 2768 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((𝑋↑3) · (𝑞↑3)) = (𝑝↑3))
19310a1i 11 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → -3 ∈ ℂ)
19432ad3antrrr 730 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 𝑋 ∈ ℂ)
195193, 194mulcld 11135 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (-3 · 𝑋) ∈ ℂ)
196 1cnd 11110 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 1 ∈ ℂ)
197193, 194, 174mulassd 11138 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((-3 · 𝑋) · (𝑞↑3)) = (-3 · (𝑋 · (𝑞↑3))))
198182oveq1d 7364 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑋 · (𝑞↑3)) = ((𝑝 / 𝑞) · (𝑞↑3)))
199175, 172, 174, 185div32d 11923 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((𝑝 / 𝑞) · (𝑞↑3)) = (𝑝 · ((𝑞↑3) / 𝑞)))
200 1zzd 12506 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 1 ∈ ℤ)
201172, 185, 200, 189expsubd 14064 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑞↑(3 − 1)) = ((𝑞↑3) / (𝑞↑1)))
202 3m1e2 12251 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (3 − 1) = 2
203202a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (3 − 1) = 2)
204203oveq2d 7365 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑞↑(3 − 1)) = (𝑞↑2))
205172exp1d 14048 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑞↑1) = 𝑞)
206205oveq2d 7365 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((𝑞↑3) / (𝑞↑1)) = ((𝑞↑3) / 𝑞))
207201, 204, 2063eqtr3rd 2773 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((𝑞↑3) / 𝑞) = (𝑞↑2))
208207oveq2d 7365 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑝 · ((𝑞↑3) / 𝑞)) = (𝑝 · (𝑞↑2)))
209198, 199, 2083eqtrd 2768 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑋 · (𝑞↑3)) = (𝑝 · (𝑞↑2)))
210209oveq2d 7365 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (-3 · (𝑋 · (𝑞↑3))) = (-3 · (𝑝 · (𝑞↑2))))
211197, 210eqtrd 2764 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((-3 · 𝑋) · (𝑞↑3)) = (-3 · (𝑝 · (𝑞↑2))))
212174mullidd 11133 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (1 · (𝑞↑3)) = (𝑞↑3))
213211, 212oveq12d 7367 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (((-3 · 𝑋) · (𝑞↑3)) + (1 · (𝑞↑3))) = ((-3 · (𝑝 · (𝑞↑2))) + (𝑞↑3)))
214195, 174, 196, 213joinlmuladdmuld 11142 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (((-3 · 𝑋) + 1) · (𝑞↑3)) = ((-3 · (𝑝 · (𝑞↑2))) + (𝑞↑3)))
215192, 214oveq12d 7367 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (((𝑋↑3) · (𝑞↑3)) + (((-3 · 𝑋) + 1) · (𝑞↑3))) = ((𝑝↑3) + ((-3 · (𝑝 · (𝑞↑2))) + (𝑞↑3))))
21645ad3antrrr 730 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑋↑3) ∈ ℂ)
217195, 196addcld 11134 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((-3 · 𝑋) + 1) ∈ ℂ)
218216, 217, 174adddird 11140 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (((𝑋↑3) + ((-3 · 𝑋) + 1)) · (𝑞↑3)) = (((𝑋↑3) · (𝑞↑3)) + (((-3 · 𝑋) + 1) · (𝑞↑3))))
219175, 178, 179subdid 11576 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑝 · ((3 · (𝑞↑2)) − (𝑝↑2))) = ((𝑝 · (3 · (𝑞↑2))) − (𝑝 · (𝑝↑2))))
220 2nn0 12401 . . . . . . . . . . . . . . . . . . . . . . 23 2 ∈ ℕ0
221220a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 2 ∈ ℕ0)
222 1nn0 12400 . . . . . . . . . . . . . . . . . . . . . . 23 1 ∈ ℕ0
223222a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 1 ∈ ℕ0)
224175, 221, 223expaddd 14055 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑝↑(1 + 2)) = ((𝑝↑1) · (𝑝↑2)))
225 1p2e3 12266 . . . . . . . . . . . . . . . . . . . . . . 23 (1 + 2) = 3
226225a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (1 + 2) = 3)
227226oveq2d 7365 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑝↑(1 + 2)) = (𝑝↑3))
228175exp1d 14048 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑝↑1) = 𝑝)
229228oveq1d 7364 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((𝑝↑1) · (𝑝↑2)) = (𝑝 · (𝑝↑2)))
230224, 227, 2293eqtr3rd 2773 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑝 · (𝑝↑2)) = (𝑝↑3))
231230oveq2d 7365 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((𝑝 · (3 · (𝑞↑2))) − (𝑝 · (𝑝↑2))) = ((𝑝 · (3 · (𝑞↑2))) − (𝑝↑3)))
232219, 231eqtrd 2764 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑝 · ((3 · (𝑞↑2)) − (𝑝↑2))) = ((𝑝 · (3 · (𝑞↑2))) − (𝑝↑3)))
233232oveq2d 7365 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((𝑞↑3) − (𝑝 · ((3 · (𝑞↑2)) − (𝑝↑2)))) = ((𝑞↑3) − ((𝑝 · (3 · (𝑞↑2))) − (𝑝↑3))))
234175, 178mulcld 11135 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑝 · (3 · (𝑞↑2))) ∈ ℂ)
235174, 234, 188subsub2d 11504 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((𝑞↑3) − ((𝑝 · (3 · (𝑞↑2))) − (𝑝↑3))) = ((𝑞↑3) + ((𝑝↑3) − (𝑝 · (3 · (𝑞↑2))))))
236174, 188, 234addsub12d 11498 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((𝑞↑3) + ((𝑝↑3) − (𝑝 · (3 · (𝑞↑2))))) = ((𝑝↑3) + ((𝑞↑3) − (𝑝 · (3 · (𝑞↑2))))))
237174, 234subcld 11475 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((𝑞↑3) − (𝑝 · (3 · (𝑞↑2)))) ∈ ℂ)
238188, 237addcomd 11318 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((𝑝↑3) + ((𝑞↑3) − (𝑝 · (3 · (𝑞↑2))))) = (((𝑞↑3) − (𝑝 · (3 · (𝑞↑2)))) + (𝑝↑3)))
239234negcld 11462 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → -(𝑝 · (3 · (𝑞↑2))) ∈ ℂ)
240174, 239addcomd 11318 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((𝑞↑3) + -(𝑝 · (3 · (𝑞↑2)))) = (-(𝑝 · (3 · (𝑞↑2))) + (𝑞↑3)))
241174, 234negsubd 11481 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((𝑞↑3) + -(𝑝 · (3 · (𝑞↑2)))) = ((𝑞↑3) − (𝑝 · (3 · (𝑞↑2)))))
242175, 176, 177mul12d 11325 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑝 · (3 · (𝑞↑2))) = (3 · (𝑝 · (𝑞↑2))))
243242negeqd 11357 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → -(𝑝 · (3 · (𝑞↑2))) = -(3 · (𝑝 · (𝑞↑2))))
244175, 177mulcld 11135 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑝 · (𝑞↑2)) ∈ ℂ)
245176, 244mulneg1d 11573 . . . . . . . . . . . . . . . . . . . . . . 23 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (-3 · (𝑝 · (𝑞↑2))) = -(3 · (𝑝 · (𝑞↑2))))
246243, 245eqtr4d 2767 . . . . . . . . . . . . . . . . . . . . . 22 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → -(𝑝 · (3 · (𝑞↑2))) = (-3 · (𝑝 · (𝑞↑2))))
247246oveq1d 7364 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (-(𝑝 · (3 · (𝑞↑2))) + (𝑞↑3)) = ((-3 · (𝑝 · (𝑞↑2))) + (𝑞↑3)))
248240, 241, 2473eqtr3d 2772 . . . . . . . . . . . . . . . . . . . 20 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((𝑞↑3) − (𝑝 · (3 · (𝑞↑2)))) = ((-3 · (𝑝 · (𝑞↑2))) + (𝑞↑3)))
249248oveq1d 7364 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (((𝑞↑3) − (𝑝 · (3 · (𝑞↑2)))) + (𝑝↑3)) = (((-3 · (𝑝 · (𝑞↑2))) + (𝑞↑3)) + (𝑝↑3)))
250238, 249eqtrd 2764 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((𝑝↑3) + ((𝑞↑3) − (𝑝 · (3 · (𝑞↑2))))) = (((-3 · (𝑝 · (𝑞↑2))) + (𝑞↑3)) + (𝑝↑3)))
251235, 236, 2503eqtrd 2768 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((𝑞↑3) − ((𝑝 · (3 · (𝑞↑2))) − (𝑝↑3))) = (((-3 · (𝑝 · (𝑞↑2))) + (𝑞↑3)) + (𝑝↑3)))
252193, 244mulcld 11135 . . . . . . . . . . . . . . . . . . 19 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (-3 · (𝑝 · (𝑞↑2))) ∈ ℂ)
253252, 174addcld 11134 . . . . . . . . . . . . . . . . . 18 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((-3 · (𝑝 · (𝑞↑2))) + (𝑞↑3)) ∈ ℂ)
254253, 188addcomd 11318 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (((-3 · (𝑝 · (𝑞↑2))) + (𝑞↑3)) + (𝑝↑3)) = ((𝑝↑3) + ((-3 · (𝑝 · (𝑞↑2))) + (𝑞↑3))))
255233, 251, 2543eqtrd 2768 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((𝑞↑3) − (𝑝 · ((3 · (𝑞↑2)) − (𝑝↑2)))) = ((𝑝↑3) + ((-3 · (𝑝 · (𝑞↑2))) + (𝑞↑3))))
256215, 218, 2553eqtr4rd 2775 . . . . . . . . . . . . . . 15 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((𝑞↑3) − (𝑝 · ((3 · (𝑞↑2)) − (𝑝↑2)))) = (((𝑋↑3) + ((-3 · 𝑋) + 1)) · (𝑞↑3)))
257 simpr 484 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0)
258257oveq1d 7364 . . . . . . . . . . . . . . 15 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (((𝑋↑3) + ((-3 · 𝑋) + 1)) · (𝑞↑3)) = (0 · (𝑞↑3)))
259174mul02d 11314 . . . . . . . . . . . . . . 15 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (0 · (𝑞↑3)) = 0)
260256, 258, 2593eqtrd 2768 . . . . . . . . . . . . . 14 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → ((𝑞↑3) − (𝑝 · ((3 · (𝑞↑2)) − (𝑝↑2)))) = 0)
261174, 181, 260subeq0d 11483 . . . . . . . . . . . . 13 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑞↑3) = (𝑝 · ((3 · (𝑞↑2)) − (𝑝↑2))))
262261ad5ant15 758 . . . . . . . . . . . 12 ((((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑞↑3) = (𝑝 · ((3 · (𝑞↑2)) − (𝑝↑2))))
263171, 262breqtrrd 5120 . . . . . . . . . . 11 ((((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 𝑟 ∥ (𝑞↑3))
264 prmdvdsexp 16626 . . . . . . . . . . . 12 ((𝑟 ∈ ℙ ∧ 𝑞 ∈ ℤ ∧ 3 ∈ ℕ) → (𝑟 ∥ (𝑞↑3) ↔ 𝑟𝑞))
265264biimpa 476 . . . . . . . . . . 11 (((𝑟 ∈ ℙ ∧ 𝑞 ∈ ℤ ∧ 3 ∈ ℕ) ∧ 𝑟 ∥ (𝑞↑3)) → 𝑟𝑞)
266160, 155, 161, 263, 265syl31anc 1375 . . . . . . . . . 10 ((((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 𝑟𝑞)
267 dvdsgcd 16455 . . . . . . . . . . 11 ((𝑟 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) → ((𝑟𝑝𝑟𝑞) → 𝑟 ∥ (𝑝 gcd 𝑞)))
268267imp 406 . . . . . . . . . 10 (((𝑟 ∈ ℤ ∧ 𝑝 ∈ ℤ ∧ 𝑞 ∈ ℤ) ∧ (𝑟𝑝𝑟𝑞)) → 𝑟 ∥ (𝑝 gcd 𝑞))
269151, 153, 155, 159, 266, 268syl32anc 1380 . . . . . . . . 9 ((((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 𝑟 ∥ (𝑝 gcd 𝑞))
270 simp-6r 787 . . . . . . . . 9 ((((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → (𝑝 gcd 𝑞) = 1)
271269, 270breqtrd 5118 . . . . . . . 8 ((((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 𝑟 ∥ 1)
272 dvds1 16230 . . . . . . . . 9 (𝑟 ∈ ℕ0 → (𝑟 ∥ 1 ↔ 𝑟 = 1))
273272biimpa 476 . . . . . . . 8 ((𝑟 ∈ ℕ0𝑟 ∥ 1) → 𝑟 = 1)
274150, 271, 273syl2anc 584 . . . . . . 7 ((((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) ∧ ((𝑋↑3) + ((-3 · 𝑋) + 1)) = 0) → 𝑟 = 1)
275147, 274mteqand 3016 . . . . . 6 (((((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) ∧ 𝑟 ∈ ℙ) ∧ 𝑟 ∥ (abs‘𝑝)) → ((𝑋↑3) + ((-3 · 𝑋) + 1)) ≠ 0)
276 nnabscl 15233 . . . . . . . 8 ((𝑝 ∈ ℤ ∧ 𝑝 ≠ 0) → (abs‘𝑝) ∈ ℕ)
277152, 107, 276syl2anc 584 . . . . . . 7 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) → (abs‘𝑝) ∈ ℕ)
278 eluz2b3 12823 . . . . . . . 8 ((abs‘𝑝) ∈ (ℤ‘2) ↔ ((abs‘𝑝) ∈ ℕ ∧ (abs‘𝑝) ≠ 1))
279 exprmfct 16615 . . . . . . . 8 ((abs‘𝑝) ∈ (ℤ‘2) → ∃𝑟 ∈ ℙ 𝑟 ∥ (abs‘𝑝))
280278, 279sylbir 235 . . . . . . 7 (((abs‘𝑝) ∈ ℕ ∧ (abs‘𝑝) ≠ 1) → ∃𝑟 ∈ ℙ 𝑟 ∥ (abs‘𝑝))
281277, 280sylan 580 . . . . . 6 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) → ∃𝑟 ∈ ℙ 𝑟 ∥ (abs‘𝑝))
282275, 281r19.29a 3137 . . . . 5 (((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) ∧ (abs‘𝑝) ≠ 1) → ((𝑋↑3) + ((-3 · 𝑋) + 1)) ≠ 0)
283142, 282pm2.61dane 3012 . . . 4 ((((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) ∧ 𝑋 ≠ 0) → ((𝑋↑3) + ((-3 · 𝑋) + 1)) ≠ 0)
28421, 283pm2.61dane 3012 . . 3 (((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ 𝑋 = (𝑝 / 𝑞)) ∧ (𝑝 gcd 𝑞) = 1) → ((𝑋↑3) + ((-3 · 𝑋) + 1)) ≠ 0)
285284anasss 466 . 2 ((((𝜑𝑝 ∈ ℤ) ∧ 𝑞 ∈ ℕ) ∧ (𝑋 = (𝑝 / 𝑞) ∧ (𝑝 gcd 𝑞) = 1)) → ((𝑋↑3) + ((-3 · 𝑋) + 1)) ≠ 0)
286 cos9thpiminplylem2.1 . . 3 (𝜑𝑋 ∈ ℚ)
287 elq2 32757 . . 3 (𝑋 ∈ ℚ → ∃𝑝 ∈ ℤ ∃𝑞 ∈ ℕ (𝑋 = (𝑝 / 𝑞) ∧ (𝑝 gcd 𝑞) = 1))
288286, 287syl 17 . 2 (𝜑 → ∃𝑝 ∈ ℤ ∃𝑞 ∈ ℕ (𝑋 = (𝑝 / 𝑞) ∧ (𝑝 gcd 𝑞) = 1))
289285, 288r19.29vva 3189 1 (𝜑 → ((𝑋↑3) + ((-3 · 𝑋) + 1)) ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  {ctp 4581   class class class wbr 5092  cfv 6482  (class class class)co 7349  cc 11007  cr 11008  0cc0 11009  1c1 11010   + caddc 11012   · cmul 11014  *cxr 11148  cmin 11347  -cneg 11348   / cdiv 11777  cn 12128  2c2 12183  3c3 12184  0cn0 12384  cz 12471  cuz 12735  cq 12849  cexp 13968  sgncsgn 14993  abscabs 15141  cdvds 16163   gcd cgcd 16405  cprime 16582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-fz 13411  df-fzo 13558  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-sgn 14994  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-dvds 16164  df-gcd 16406  df-prm 16583
This theorem is referenced by:  cos9thpiminply  33761
  Copyright terms: Public domain W3C validator