Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tpssg Structured version   Visualization version   GIF version

Theorem tpssg 32485
Description: An ordered triplet of elements of a class is a subset of the class. (Contributed by Thierry Arnoux, 2-Nov-2025.)
Assertion
Ref Expression
tpssg ((𝐴𝑉𝐵𝑊𝐶𝑋) → ((𝐴𝐷𝐵𝐷𝐶𝐷) ↔ {𝐴, 𝐵, 𝐶} ⊆ 𝐷))

Proof of Theorem tpssg
StepHypRef Expression
1 df-3an 1088 . . 3 ((𝐴𝐷𝐵𝐷𝐶𝐷) ↔ ((𝐴𝐷𝐵𝐷) ∧ 𝐶𝐷))
2 prssg 4799 . . . . 5 ((𝐴𝑉𝐵𝑊) → ((𝐴𝐷𝐵𝐷) ↔ {𝐴, 𝐵} ⊆ 𝐷))
3 snssg 4763 . . . . 5 (𝐶𝑋 → (𝐶𝐷 ↔ {𝐶} ⊆ 𝐷))
42, 3bi2anan9 638 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ 𝐶𝑋) → (((𝐴𝐷𝐵𝐷) ∧ 𝐶𝐷) ↔ ({𝐴, 𝐵} ⊆ 𝐷 ∧ {𝐶} ⊆ 𝐷)))
5 unss 4170 . . . . 5 (({𝐴, 𝐵} ⊆ 𝐷 ∧ {𝐶} ⊆ 𝐷) ↔ ({𝐴, 𝐵} ∪ {𝐶}) ⊆ 𝐷)
6 df-tp 4611 . . . . . 6 {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶})
76sseq1i 3992 . . . . 5 ({𝐴, 𝐵, 𝐶} ⊆ 𝐷 ↔ ({𝐴, 𝐵} ∪ {𝐶}) ⊆ 𝐷)
85, 7bitr4i 278 . . . 4 (({𝐴, 𝐵} ⊆ 𝐷 ∧ {𝐶} ⊆ 𝐷) ↔ {𝐴, 𝐵, 𝐶} ⊆ 𝐷)
94, 8bitrdi 287 . . 3 (((𝐴𝑉𝐵𝑊) ∧ 𝐶𝑋) → (((𝐴𝐷𝐵𝐷) ∧ 𝐶𝐷) ↔ {𝐴, 𝐵, 𝐶} ⊆ 𝐷))
101, 9bitrid 283 . 2 (((𝐴𝑉𝐵𝑊) ∧ 𝐶𝑋) → ((𝐴𝐷𝐵𝐷𝐶𝐷) ↔ {𝐴, 𝐵, 𝐶} ⊆ 𝐷))
11103impa 1109 1 ((𝐴𝑉𝐵𝑊𝐶𝑋) → ((𝐴𝐷𝐵𝐷𝐶𝐷) ↔ {𝐴, 𝐵, 𝐶} ⊆ 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2107  cun 3929  wss 3931  {csn 4606  {cpr 4608  {ctp 4610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-v 3465  df-un 3936  df-ss 3948  df-sn 4607  df-pr 4609  df-tp 4611
This theorem is referenced by:  tpssad  32487
  Copyright terms: Public domain W3C validator