Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > un12 | Structured version Visualization version GIF version |
Description: A rearrangement of union. (Contributed by NM, 12-Aug-2004.) |
Ref | Expression |
---|---|
un12 | ⊢ (𝐴 ∪ (𝐵 ∪ 𝐶)) = (𝐵 ∪ (𝐴 ∪ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uncom 4087 | . . 3 ⊢ (𝐴 ∪ 𝐵) = (𝐵 ∪ 𝐴) | |
2 | 1 | uneq1i 4093 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∪ 𝐶) = ((𝐵 ∪ 𝐴) ∪ 𝐶) |
3 | unass 4100 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∪ 𝐶) = (𝐴 ∪ (𝐵 ∪ 𝐶)) | |
4 | unass 4100 | . 2 ⊢ ((𝐵 ∪ 𝐴) ∪ 𝐶) = (𝐵 ∪ (𝐴 ∪ 𝐶)) | |
5 | 2, 3, 4 | 3eqtr3i 2774 | 1 ⊢ (𝐴 ∪ (𝐵 ∪ 𝐶)) = (𝐵 ∪ (𝐴 ∪ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∪ cun 3885 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-un 3892 |
This theorem is referenced by: un23 4102 un4 4103 fresaun 6645 unfi 8955 reconnlem1 23989 poimirlem6 35783 poimirlem7 35784 asindmre 35860 frege133d 41373 |
Copyright terms: Public domain | W3C validator |