Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > un12 | Structured version Visualization version GIF version |
Description: A rearrangement of union. (Contributed by NM, 12-Aug-2004.) |
Ref | Expression |
---|---|
un12 | ⊢ (𝐴 ∪ (𝐵 ∪ 𝐶)) = (𝐵 ∪ (𝐴 ∪ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uncom 4083 | . . 3 ⊢ (𝐴 ∪ 𝐵) = (𝐵 ∪ 𝐴) | |
2 | 1 | uneq1i 4089 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∪ 𝐶) = ((𝐵 ∪ 𝐴) ∪ 𝐶) |
3 | unass 4096 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∪ 𝐶) = (𝐴 ∪ (𝐵 ∪ 𝐶)) | |
4 | unass 4096 | . 2 ⊢ ((𝐵 ∪ 𝐴) ∪ 𝐶) = (𝐵 ∪ (𝐴 ∪ 𝐶)) | |
5 | 2, 3, 4 | 3eqtr3i 2774 | 1 ⊢ (𝐴 ∪ (𝐵 ∪ 𝐶)) = (𝐵 ∪ (𝐴 ∪ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∪ cun 3881 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-un 3888 |
This theorem is referenced by: un23 4098 un4 4099 fresaun 6629 unfi 8917 reconnlem1 23895 poimirlem6 35710 poimirlem7 35711 asindmre 35787 frege133d 41262 |
Copyright terms: Public domain | W3C validator |