MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  un12 Structured version   Visualization version   GIF version

Theorem un12 4147
Description: A rearrangement of union. (Contributed by NM, 12-Aug-2004.)
Assertion
Ref Expression
un12 (𝐴 ∪ (𝐵𝐶)) = (𝐵 ∪ (𝐴𝐶))

Proof of Theorem un12
StepHypRef Expression
1 uncom 4133 . . 3 (𝐴𝐵) = (𝐵𝐴)
21uneq1i 4139 . 2 ((𝐴𝐵) ∪ 𝐶) = ((𝐵𝐴) ∪ 𝐶)
3 unass 4146 . 2 ((𝐴𝐵) ∪ 𝐶) = (𝐴 ∪ (𝐵𝐶))
4 unass 4146 . 2 ((𝐵𝐴) ∪ 𝐶) = (𝐵 ∪ (𝐴𝐶))
52, 3, 43eqtr3i 2857 1 (𝐴 ∪ (𝐵𝐶)) = (𝐵 ∪ (𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1530  cun 3938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-v 3502  df-un 3945
This theorem is referenced by:  un23  4148  un4  4149  fresaun  6546  reconnlem1  23349  poimirlem6  34765  poimirlem7  34766  asindmre  34844  frege133d  39975
  Copyright terms: Public domain W3C validator