| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > un12 | Structured version Visualization version GIF version | ||
| Description: A rearrangement of union. (Contributed by NM, 12-Aug-2004.) |
| Ref | Expression |
|---|---|
| un12 | ⊢ (𝐴 ∪ (𝐵 ∪ 𝐶)) = (𝐵 ∪ (𝐴 ∪ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uncom 4111 | . . 3 ⊢ (𝐴 ∪ 𝐵) = (𝐵 ∪ 𝐴) | |
| 2 | 1 | uneq1i 4117 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∪ 𝐶) = ((𝐵 ∪ 𝐴) ∪ 𝐶) |
| 3 | unass 4125 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∪ 𝐶) = (𝐴 ∪ (𝐵 ∪ 𝐶)) | |
| 4 | unass 4125 | . 2 ⊢ ((𝐵 ∪ 𝐴) ∪ 𝐶) = (𝐵 ∪ (𝐴 ∪ 𝐶)) | |
| 5 | 2, 3, 4 | 3eqtr3i 2760 | 1 ⊢ (𝐴 ∪ (𝐵 ∪ 𝐶)) = (𝐵 ∪ (𝐴 ∪ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∪ cun 3903 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-un 3910 |
| This theorem is referenced by: un23 4127 un4 4128 fresaun 6699 unfi 9095 reconnlem1 24731 poimirlem6 37608 poimirlem7 37609 asindmre 37685 frege133d 43741 |
| Copyright terms: Public domain | W3C validator |