MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  un12 Structured version   Visualization version   GIF version

Theorem un12 4148
Description: A rearrangement of union. (Contributed by NM, 12-Aug-2004.)
Assertion
Ref Expression
un12 (𝐴 ∪ (𝐵𝐶)) = (𝐵 ∪ (𝐴𝐶))

Proof of Theorem un12
StepHypRef Expression
1 uncom 4133 . . 3 (𝐴𝐵) = (𝐵𝐴)
21uneq1i 4139 . 2 ((𝐴𝐵) ∪ 𝐶) = ((𝐵𝐴) ∪ 𝐶)
3 unass 4147 . 2 ((𝐴𝐵) ∪ 𝐶) = (𝐴 ∪ (𝐵𝐶))
4 unass 4147 . 2 ((𝐵𝐴) ∪ 𝐶) = (𝐵 ∪ (𝐴𝐶))
52, 3, 43eqtr3i 2766 1 (𝐴 ∪ (𝐵𝐶)) = (𝐵 ∪ (𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cun 3924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-v 3461  df-un 3931
This theorem is referenced by:  un23  4149  un4  4150  fresaun  6749  unfi  9185  reconnlem1  24766  poimirlem6  37650  poimirlem7  37651  asindmre  37727  frege133d  43789
  Copyright terms: Public domain W3C validator