MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  un12 Structured version   Visualization version   GIF version

Theorem un12 4097
Description: A rearrangement of union. (Contributed by NM, 12-Aug-2004.)
Assertion
Ref Expression
un12 (𝐴 ∪ (𝐵𝐶)) = (𝐵 ∪ (𝐴𝐶))

Proof of Theorem un12
StepHypRef Expression
1 uncom 4083 . . 3 (𝐴𝐵) = (𝐵𝐴)
21uneq1i 4089 . 2 ((𝐴𝐵) ∪ 𝐶) = ((𝐵𝐴) ∪ 𝐶)
3 unass 4096 . 2 ((𝐴𝐵) ∪ 𝐶) = (𝐴 ∪ (𝐵𝐶))
4 unass 4096 . 2 ((𝐵𝐴) ∪ 𝐶) = (𝐵 ∪ (𝐴𝐶))
52, 3, 43eqtr3i 2774 1 (𝐴 ∪ (𝐵𝐶)) = (𝐵 ∪ (𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cun 3881
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-un 3888
This theorem is referenced by:  un23  4098  un4  4099  fresaun  6629  unfi  8917  reconnlem1  23895  poimirlem6  35710  poimirlem7  35711  asindmre  35787  frege133d  41262
  Copyright terms: Public domain W3C validator